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Abstract: In this paper we introduce a collision operator for a mixture of gases which
satisfies several fundamental properties.

Different BGK type collision operators for gas mixtures have been introduced earlier but
none of them could satisfy all the basic physical properties: positivity, correct exchange
coefficients, entropy inequality, indifferentiability principle.

We show that all those properties are verified for our model, and we derive its Chapman-
Enskog expansion.
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Un modele de type BGK pour les mélanges de gaz

Résumé : Dans ce rapport nous présentons un opérateur de collision pour les mélanges de
gaz vérifiant certaines propriétés fondamentales.

Plusieurs opérateurs de collision de type BGK pour les mélanges ont été proposé; néanmoins
aucun déntre eux ne vérifie toutes les propriétés physiques fondamentales: positivité, coeffi-
cients d’interaction, inégalité d’entropie, principe d’indifférentiabilité.

Nous provons que toutes ces propriétés sont vérifiées par notre modele, et obtenons également
I’expansion de Chapman Enskog associée.

Mots-clés : théorie cinétique, mélanges de gaz, modeles de type BGK, développement de
Chapman-Enskog



A consistent BGK-type model for gas miztures 3

1 Introduction

It is well known that the relevant mathematical equation for the evolution of rarefied or high
altitude gases is the Boltzmann equation .

Since this equation is rather complex, various simpler models have been introduced and are
widely used. The most famous one is the BGK model [BGK], [W] which replaces the collision
operator with the relaxation towards a Maxwellian and verifies some basic properties of the
Boltzamnn equation. Moreover an amelioration of the BGK model, the so called ES-BGK
model (see [ALPP] for a recent complete study) gives the correct thermoconductivity and
viscosity coeflicients in the fluid limit.

Most of these models have nevertheless been considered in the case of a single species gas.
This seems an important limitation recalling for example that the atmosphere must at least
be considered as a binary mixture of Oxygen and Nitrogen. As recent applications where
gas mixtures are considered on the basis of kinetic theory, let us mention the evaporation-
condensation problems where species behave differently on the boundary (see Sone, Aoki
and Doi [SAD]) or the mixtures in nuclear engineering (see Dellacherie [D]).

Although the extension of the Boltzmann equation to a mixture of gases has been well
known for a long time, this is not the case for the BGK equation. In fact two of the authors
of the classical one species BGK model have also introduced a similar model for mixtures
in [GK]. But as pointed out by [GSB] their model has an important drawback: when all
the species are identical one does not recover the equation for a single component gas (this
indifferentiabily principle is verified by the Boltzmann equation). In [GSB] a model which
verifies this principle is introduced but the positivity is lost.

In this paper we propose a model which overcomes these difficulties, while recovering the
correct exchange coefficients. The main idea is that instead of approximating each of the
binary collision operators (between species ¢ and j) by a BGK-type equation, we introduce
only one “global” (i.e taking into account all the species j) operator for each species .
The outline of this paper is the following: we first recall the main properties of the Boltzmann
collision operator, we then introduce our BGK-type model and prove that it satisfies the
expected properties (positivity, exchange coefficients, entropy inequality, indifferentiability
principle). We give also the Euler and Navier-Stokes systems associated with our model.

2 Notations and properties of the Boltzmann operator

2.1 the Boltzmann equation

The Boltzmann collision operator for mixtures is written for ¢ > 0 and z € R3,

Qi(f, 1) = Qulfir fr),
k=1

Quft) = [ [ (il = fifi)BanV. IV )dudn,

RR n° 4230



4 P. Andries €& K. Aoki € B. Perthame

Here £ is the molecular velocity, & is an integration variable, n is an unit vector and B is
the semi sphere defined by n.V = 0, where V is the relative velocity

V=£-4.
The post collisional velocities are
¢=¢ - L€~ &) nl,
(2.2)
& = & + 2irp[(¢ - &) - ),
and the reduced mass is
ik = m; my [ (m; +my). (2.3)

We recall that these rules are dictated by the conservation laws for momentum and energy

m; £+mk 5* =m; £I+mk gia
(2.4)
mi [E]* +my, [&* = ma [€']7 +my |EL]7

We also recall that the micro-collision operator

Tn: (& &) = (£,€)

is an involution
ThoTl, = I6><6;

in other words (¢')" = &, (£,)' = &. This property and direct computations show the
following idendities, which are fundamental for the study of the properties of the collision
operator,

d¢ dé, = d¢' dg,,

n-(§—&)=-n-(-¢&), (2.5)

1§ =&l =16 - &l

2.2 Macroscopic quantities

We introduce notations for macroscopic quantities that will be used later on, n(¥ is the
number density, p(*) the density, v(¥) the average velocity, E(Y) the energy per unit volume,
() the internal energy per particle, T?) the temperature of species i.

w0 = [ fide pO = min,
R3

w00 = [ ¢ fide,
R3

) — % PO |2 £ @l ) = g kg TG

INRIA
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(@ — M —_o@D2 ¢,
0= s [ e Ps e
Then, we also have global quantities for the mixture, the total density p, the number density
n, the mean velocity v, the energy per unit volume E and ne the internal energy per unit
volume.

p=3 00, n=3ad 9
k=1 k=1
pv= Zp(i) v® (2.7)
k=1
P2 _m_ — i
n e+l _E_};E(). (2.8)

2.3 Indifferentiability principle

We call indifferentiability principle the following property:

When all the masses m; and cross-sections By are identical, the total distribution f =) f;
obeys the single species Boltzmann equation.

This property is satisfied by bilinearity of the collision operator.

Notice also that the macroscopic quantities associated to f are n, v, €.

2.4 conservation laws and transfer coefficients

For multispecies fluids, we have to keep in mind that for each species the usual mass,
momentum and energy are not necessarily conserved. In the present model, we suppose
that there is no chemical reaction between the species, so that the mass of each species is

conserved,
[ Quae=o.
R3

Each species may nevertheless exchange momentum and energy with the others. The ex-
change relations can be computed exactly in the case of maxwellian particles, and the com-
putations are left in appendix. See also [GS] for some extensions to other kind of particles.
One obtains

/ mi€ Qi d€ = ZQMk xir 0D nB) k) ],
R? k=1

k i) |2
2 ()i g g PO

m; + myg 2 ’

n
m; - )
s 71|§ — v D Qide = 2uin xur ' n¥)
R k=1

RR n° 4230



6 P. Andries €& K. Aoki € B. Perthame

where p;; is the reduced mass given in (2.3), and the interaction coefficient x;; is defined
by

ik = /B (cos w)? Bys(w)dw, (2.9)

where By, is related to the interaction potential between species ¢ and k.

Remark 2.1 The interaction coefficient x;r is smaller than the collision frequency vy, be-
tween species i and k, defined by

Vi = L+ sz(w)dw (210)

Especially for non cut-off models, v, might be infinite while x;,, remains finite.

2.5 Equilibrium

The equilibrium in the mixture is obtained when all J; = 0. Then a classical result is that
every (Q;; = 0. In appendix 2 we give a proof of the following:

If for two species © and j Q;; = Qj; = 0 then f; and f; are mazwellians with common velociy
and temperature.

The conclusion is that at global equilibrium, all distributions are

_o@(mi 2 malf =
fi=n (27rkBT) T (2.11)

for some common velocity v and temperature T'.

2.6 Entropy inequality

In the case of a mixture, the entropy inequality (H theorem) is

> / Qilnf;d¢ < 0.

3 The BGK-type model

Here, we propose a relaxation model which satisfies the properties
e the non-negativity of densities is satisfied,
e the exchange relations are those of the Maxellian particle model,
e the ‘indifferentiability principle’ holds,

e the equilibrium distributions are maxwellians with common velocities and internal
energies,

e the H theorem holds true.

INRIA



A consistent BGK-type model for gas miztures 7

3.1 Formulation of the BGK-type model

The model is built as follows. The relaxation occurs toward a maxwellian distribution M;
i.e.

0
afi"‘g'vwfi:Qi =v; [M; — fi], (3.1)
with the notation 3 € |2
Mi _ (4) m; _mz’ — U 2
" (27rkBTi) exp(=—g ) (3.2)

where v; is a collision frequency and its choice is crucial (see theorem 3.1 below).
The macroscopic parameters v; and €; = %kBTi are chosen to recover the exchange relations.
This gives

n
miv; v; = miv; v+ 22“““ xir B ) — @7 (3.3)
k=1

m;v;

. . n . (K) _ (D)2
vigr = v €® =T 0P £ Y 2 i n® — 2 (e RO Uit Y

k=1 mi +my, 2
(3.4)

Theorem 3.1 The internal energy €; is positive as soon as

zn: n(k), (3.5)

k=1

In particular the model is well defined with the total collision frequency (see remark (2.1))

n
v; = E Vik n(k)
k=1

Proof of theorem 3.1 The first condition for the positivity of ¢; is, taking the coefficient
in front of () in (3.4),

- 2
E _ 3.6
e /jfzk Xik n mi + mp ( )
Next we have to check
- (k) _ 2M (k) _ (D2 (i)12
) " 2k X 7|v [* = vimglv; — o2 > 0. (3.7)
i+ my

For this we use the formula for the exchange of momentum

n
v; mi(v; — o) = ZQHik xix nF) [ulk) — @], (3.8)
k=1

RR n° 4230



8 P. Andries €& K. Aoki € B. Perthame

and a Cauchy-Schwarz inequality
(Z ab)? < Za2 Zb2.

Taking a = \/Q/Mk Xir nk) %:”c and b= \/2uik Xir n®) 2:’};% [v(¥) — v(?)] one obtains

m

. “ m; +my 2my, ;
|vimi(vi — 1}(1))|2 < ; ZMilXiln(l);T 1;1 2pik xikn®) m|v(k) — o2,

The inequality (3.7) is satisfied if

m;v; le

n
2m ;
22“ik Xik (k) 7’“@(1@) _ v(’)|2 1—
et mi + my

S m; +m

> 2ui xu nt 17l> >0
=1

which gives

(k) Mk M

n
m; vy > 2k Xk
k3 1 ; 1 1 ka

and the second condition

v; > ink n(k), (3.9)
k=1

To conclude, remark that
Api _ dm;my,
m; + my (mz + mk)z -

so that the first condition is always verified when the second one is.
The last proposition of the theorem is only a consequence of the inequality ;1 < v, see
remark 2.1.

3.2 Indifferentiability principle

Proposition 3.2 Suppose that all masses are equal to m, all transfer coefficients are equal
to x and choose the collision rates v; all equal tov = x 3, n®) = xy n. Then the total distri-
bution f =, fr verifies a BGK equation with collision rate v. Thus the indifferentiability
principle holds.

proof of proposition 3.2
We first rewrite (3.3) in this case and obtain

n
mv v; =mv v + Zm x nt®) [pF) — (@],
k=1

INRIA
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Recalling the choice of v, one obtains

n

poi=y p® ok,
k=1

so that each velocity v; is equal to the “mean” velocity v (see section 2.2).
Next, the same computations for the energy give

(k) _ (3)|2
— e NI () — ) 4P =001
VE; = VE | |© + Zm x n®) =(e e +m 5
(k) — ()2
mn v v
L, mn (i) (k) (k) [0t —o]2
ne; + 5 v — 92 Z n +m 2
Since
n
3 a®p®y) = ol
k=1
we obtain

n

oy ey (k) ((k) o T (k)2
n(az+2|v|)—2n (e +2|v 1%).

k=1

This means that the internal energies ¢; are identical to €. To conclude, we can now write

2
@ m N mE =
Mi=n (zkaT) P ks T

_ 2 e —of?
M=y Mi=n(gg) ew - T
Summing the equations (3.1) gives
0
5 TE Vel =Q=v M~ f]
3.3 Equilibrium

At global equilibrium, it is evident that all distribution functions are maxwellians, but it is
not so evident that velocities and internal enregies are all the same.

Proposition 3.3 The equilibrium distributions for the model (3.1) are mazwellians with
common velocity and internal energy.

RR n° 4230



10 P. Andries €& K. Aoki € B. Perthame

Proof of proposition 3.3
From the definition of v; (3.3) we obtain

1 & ,
v; = > 2ui xin n® o®) 4+ (1 -
=1

n
Zzuik Xik n(k))v(i)-
mai | k=1

miv;

This means that the velocity v; is a strictly convex combination of the velocities of the
species.

At equilibrium v® = v; and each velocity is a strictly convex combination of all the others,
it is easy to conclude that the v(9) (and thus v;) are all equal.

Then rewriting in this case (3.4)

2

(e — ()
m; + my ’

n
viei = vie® + D 2uik xin n(®)
k=1

we obtain again that ¢; is a strictly convex combination of the internal energies, and the

same argument applies.

3.4 Entropy inequality

We begin with a lemma,

Lemma 3.4 The following inequality holds

n n
Z n® vilneg; > Z n(i)yi Ine®®,
=1 =1

To prove this inequality, let us recall the formula (3.4) for ¢;

viles + Mo — o2 — 0 = zn:QM i n® 2 (9 ) ¢ g, PO
K3 2 K3 - IR R v
2 Pt m; + myg 2

The contribution of the velocity terms is positive (with the condition on (3.5) on ;) and
one obtains

1 « 2 . ,
> L3 2pyann® — 2 () — ) 4 0,
& 2 i e 2ﬂszzkn m; + my, (5 € ) +e€

The right hand side is a convex combination of the energies. Because the logarithm is a
concave increasing function, we can write

1 & 2 . .
1 i>_§ :2 axien® — = (lne® —1neg®) 4+ 1ne®.
ne % ik Xik T = k(na ne'W)+lne

INRIA
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Then

Zn(’)yi Ing; > Z Z u,kxikn(’)n(k) m(ln e®) —1n a(z)) + Zn(z)l/i Ine®.
. i=1 : K3 i=1

It is straightforward to verify that the double sum vanishes (exchanging the indices and
using the symmetry of x) and the result follows.

Theorem 3.5 The following entropy inequalities hold true

> het Jrs v My, InMj, d€ <oy Jrs v M) InM ) ge,
Shet Jos vk ME) InM® dg <SR [os v fi, Inf, dE,

) — () (mi \*? _mle o
with M '\ e T exp[ T ], and the equality holds only in the situation

of a global equilibrium. Solutions of (5’ 1 ) satisfy the H theorem

a n n
= fr Infr d€ + div, £ fr Infy dé < 0.

Proof of theorem 3.5
The first inequality can be written, after explicit calculations,

n

my 3/2 ) ’ ) my, 3/2 )
Z vin®ln[n(" (27rkBTk) J=n® <) ven®inp® (27rkBT(k)) ] —n®

which is also equivalent to

Z an(k)lnTk > Z l/kn(k)lnT(k),
k=1 k=1

a consequence of lemma 3.4.
The second inequality is in fact true term by term:

/ M® I ® ge < / fr Infy, dé
R3 R3

is the H theorem for the standard monospecies BGK equation.
To conclude

%I;/RC‘ fklnfkd§+divz;/w§fklnfk d¢ = ;/R“ v (Mg — fi) In frdg

Denoting H(z) = zlnz — z and using the convexity relation

H'(f)(9—f) < H(g9)— H(f),

RR n° 4230
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it is sufficient to prove

> [ et as) - Hie <o

> [ w0~ HQI®) + HOI®) — 1 ()i < 0.
k=1

This is a consequence of the first inequalities.

4 Chapman Enskog expansion

This section is devoted to the derivation of the Navier-Stokes system in the compressible
regime (we refer to [BGL] for other possible regimes in the one species case and [So] for a
complete discussion and references).

In order to derive the Navier-Stokes system, we assume there is a small parameter A such

that every v; = O(%) and we study the expansion of macroscopic quantities in term of .

Proposition 4.1 The solutions of (3.1) verify the system of n + 4 equations

8ipD + +(pv) = — + (Jy), (4.1)
O(pv) + =(P+pv@v) =0, (4.2)
OE++(Ev+P-v+q)=0, (4.3)

where p, v and E are given by (2.6), (2.8), (2.8), and

Ji = m; / fi( —v)de = pO D — ), (4.4)
R3
P=Y /R mifi€—v) @ (€ - )z, (4.5)
_ e e
0= [ misie vt gt (46)

The system is closed in the first order of X as a system of the n + 4 unknowns p¥, v, T by
the following relations:

- Vo (n®kgT) )

Ji = _;LikT +O0(A%), (4.7)

P = nksTId - (Vou + (Vou)! §(+u)@ +0(02), (4.8)
5 J; ,

q= EkBTZi:E — &V, T + 0()\?). (4.9)

INRIA
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where L is a symmetric matriz whose coefficients depend only upon the masses and densities,
1 and K are the viscosity and thermal conductivity coefficients

@)
n=kgTy ny_ : (4.10)

5 9 n(z)
nzikBT; , (4.11)

m;v;

Remark 4.2 In classical manuals (see for example [GM]), w is denoted by the x

derivative at constant temperature of the chemical potential:

kB_T(ln ntk) _ §1n 2ksT
my, mg

).
The symmetry of L is also called Onsager relation.

Remark 4.3 The system we obtain is exactly the same as the system obtained in [GSB]. In
the case of the Boltzmann equation with Mazwellian particles, one obtains the same system,
but with different coefficients n, & and L, (see [GM]).

proof of proposition 4.1.

The system can always be written by integration of the kinetic equation (3.1) and is the
conservation of the mass of each species, the total momentum and the total energy.

Thus we aim to prove the closure relations, this is done in the following subsections.

4.1 Euler limit

At equilibrium the Euler system holds for the densities, common velocity and common
temperature defined by (2.6), (2.8), (2.8),

8ip' + +(pDv) =0, (4.12)
Oy(pv) + +(nkpTId + pv ® v) =0, (4.13)
OE + +((E+ nkgT)v) = 0. (4.14)

4.2 First order expansion of the distribution function

At 0 order in A, the system is at equilibrium and all f; are maxwellians with the same
velocity and temperature. We can thus write

fi=M;+ O()) (4.15)

RR n° 4230
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where M; is the maxwellian with moments n(?), v, T (remember from the definition (2.6),
(2.8), (2.8) that v and T are the averaged quantities of the mixture).
Now, rewriting (3.1)

ﬂzm—%mm+evmx (4.16)

and using (4.15) we can write

i = My = - (Ouls + £ Vo IT3) + O(2). (4.17)

4.3 First order expansion of partial momentums

Integrating (4.17) over m;£d€ gives
mvin Do = muyn Dy, — mi/ (&gMi +£- VwMi)gdg +0(\?). (4.18)
R3

To go further we need a preliminary computation

Lemma 4.4

(2)

m; / (00 + - VM)t = ValnVkaT) - 2
R3

Vm(nkBT).

Proof of lemma 4.4.
This quantity I can be computed explicitely,

I=3(pv) + +(nDkpTId + pDv @ v),
pI = pVo (D kpT) + pvd;ip'™) + ppD 00 + p(v @ v) V. p + pp'*) + (v @ 0).
Subtracting p(*) times the equation (4.13) we obtain
pI = pVo(nDkpT) — p'OV, (nkpT) + prdyp' — p'Dvdyp + p(v @ V) Vop' — pl) (v @ V) Vyp.
Also, rewriting (4.13), it is easy to check
v8,p) + (v @ V)V p'D = —vp) = o,
and the same formula is true for p (because the total mass is conserved as well). Then
pl = pVo(nDkpT) — pIV, (nkpT) — pop® + v + pDuvp + v,

and the result follows.

Now we rewrite (4.18) and use the lemma, this rises

N ) ) (i)
— mvn Do + mym Dy, = T = Vz(n(’)k‘BT) — pTVz(nkBT) +0()\?). (4.19)

INRIA
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The right hand side can be written

RONELG (DkpT) p(’)z (0 Ve (nFkpT)

pQ pG (4.20)
Therefore, denoting by €2 the symmetric matrix
(4) (k)
Qi = p 63, — L
p
and, for simplicity
o V. (n®kgT)
E=E Ty
p(k)
we have
I= Z Qiroy,. (4.21)
k=1
The left hand side of (4.19) can be written, using the definition of v; in (3.3):
. n .
I=n® Z 2piexirn® (v*) — (),
k=1
n
- Z 2k (o) kT _ iy
7 M + mk p(k) p(i) ’
So that we can write
1= MyJy, (4.22)
k=1
where M is the matrix defined by:
2xikp'?) = 2k pK)
My, = “XikP 7 XK P s
* s + (1912:1 m; + mk,) ik
Now we conclude from the two expressions (4.22) and (4.21) that
M-J=0Q-a. (4.23)

At this point it is useful to notice that the matrix M is not necessarily invertible. In fact,
denoting for simplicity by A;; the symmetric coefficient

2Xik
Ay = ———,
m; + mg

RR n° 4230



16 P. Andries €& K. Aoki € B. Perthame

the matrix M is the following

Mir = - Z A p®)if i =k
k' i
My, = Aup'D if i # k.

We want to use the following classical property:
The matrices T with the following property

| T3] > Z |Tki| for every i (4.24)
k#i

are always inversible.
Here we are in the case of

| M| = Z | My;| for every i,
k#i
M;; <0, My, >0if i £k

Thus, taking a small parameter 0 < K < minimum;z,M;;, the matrix M defined by
M, = My, — K

verifies the property (4.24) and is invertible.
Now we remark that
Y Ji=0,
2

which is a straightforward consequence of the definition of J; and v and expresses the
conservation of total momentum.
It is easy to check from this that adding a constant to M everywhere does not change the
result,

M-J=M-J=Q-«

and we conclude by the inversability of M that
J=(M1Q)- a

This prove the relation (4.7) with L = —M Q. }
To prove the Onsager relation, that is the symmetry of L = —M~'Q we first prove that
M - Q is symmetric.

= ((Agp®? Z Ao p*631) (00 815 — N

k=1 k'=1

k k')

k’l k

TR

INRIA
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n
(M -Q);; = Az’jp(i)P(j) - (Z Aik'P(k,))P(j)&j
K=1
which is symmetric.
Next we remark that x-Q = 0 (where k denotes here the matrix with all terms equal to k).
This is a simple computation:

) ) \Zud®

(5 Q)ij = D w(p V85 — p ) = kpt — kpl 5
k

We thus conclude that M-Q=M-Qis symmetrical. Recalling that (2 is also symmetrical,
and denoting by M? the transposed matrix of M,

O-M=M-Q

gives ~ . .
Mta=qQ -(M)t=01"- Q)

And we conclude that M1 - Q is symmetrical, and thus L is symmetrical.

4.4 First order expansion of the total stress and heat flux

The development of P is obtained in a similar way. From (4.17) one obtains
P=P-3 00 [ (O + € V.I5) (€ ) (€ - v)dE + O(?)
—~ V; JRrs

where
pP= M;(E—v)® (E—v)d
5 [ mide -0 (€~ vy
A computation (see for example [ALPP] for a similar computation) gives

mi / (8:M; + & -V, M;) (€ = v) ® (€ —v)dE = n kT (Vou + (Vou) — §(+u)Id)
R3

and
P=P—n(Vou+ (Vou) §(+u)@ +0(02) (4.25)

where 7 is the viscosity coefficient

n(®
n= ksT E o
: T
K3

Now we compute P

_ 2 . .
P= Z(gn(’)silzd—}— P (v; —v) @ (v; — v)).

i

RR n° 4230



18 P. Andries €& K. Aoki € B. Perthame

Since at equilibrium v; = v, we have v; — v = O()) and thus we deduce that P is diagonal
at first order,

_ 2 .

P= (Z gn(’)si)g + 0(N\?).

i
Now we can take the trace in (4.25), and remark that the viscosity term has a nul trace.
Thus we have . -
S e, = T a0 4 002).

4 4

From the definition of €, we obtain

ne = Z( (g 4 27 |v @ _ Zn @+ 02,
and we conclude that 5
P = gnEI:Li+0(A2),

P = nksTId — n(Vau + (Vo) §(+u)@ +0(02). (4.26)
For the heat flux, one obtains in a similar way
q=3q—kV,T + 0(\?), (4.27)
where £ is the heat flux )
= —kBT; s

and

_ |2
1= [ mimnce -0 e

e e — o2
qzz miMi(g—vi—{—'ui—v)'g Vit vi = vl d¢.
i RS

2

Since M; is an even function of (£ — v;), in the expansion the terms of first and third order
in (¢ — v;) vanish, and the term of zero order is p(9|v; — v|> = O(A3). We thus obtain:

1= Y (14 D)nOe(o; ) + 00?).

i

To conclude, we use ¢; = £ + O()) and n')(v; —v) = i = O(A), this gives

q—z E—+O 3,

and finally 5 ;
q= 5kBTZ E — &V, T + O(\?). (4.28)

INRIA



A consistent BGK-type model for gas miztures 19

5 Appendix 1

We compute here the exchange coefficients which arise in the various ‘conservation laws’
that can be deduced from the Boltzmann equation.

0
afz-.f.f-vgﬂfi:Qi(f:f)'

As usual, these are obtained in multiplying the Boltzmann equation by 1, £ and |£|? and
integrating d¢. We first obtain, thanks to (2.5), the conservation of mass

o . L
i () = (D) 58y = A 1
5" + (@Y W)=0 (5.1)

The second balance law concerns momentum and contains exchange terms. For maxwellian
molecules i.e.

with B;j, an even function, we find

O N _— ,
E(P(z) v) ++ 20 = Z2Nz’k xik 2t 0 ) — 0], (5.2)
k=1

where xir = Xk; is a proportionality factor between forces

nV. ., = nV
Xik = /B () Badpin (5.3)

To see this, we just compute the righthand side which is given, thanks to the relations (2.5),
by
mi [ [ [ €= £ BanV/IVI) d deudn
r3 JR3 /B,
—mi [ [ ] B € = OB/ IV) de deean
r3 JR3 /B,
~2p [ [ [ fifien (€~ O mBaV/V]) d€ deudn
r3 JrR3 /B,
“2pa [ [ [ fiile - 00NV Bun VIV de déuin,
r3 JrR3 /B,

and the result follows.
As for the energy balance, we obtain

n
% B 4+ ¢ = 3 215 i ) n® [(Um EONIO)
k=1

RR n° 4230
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. (k) _ y(0)]2
(e®) — g0) g T Z VO ).

5.4
m; +my 2 ( )

The derivation is again based on the use of relations (2.5). We have

B @ el g o3
mz/Rs ~/1R3 </B+ 2 (fz'fk* fifk*)sz(nVAV') df dé'*dn

m e e, i
_’17’L1/R3/R3 5, fifrx ( 2 - 7)sz(nV/|V|) dé dé.dn =

mi [ [ [ e [GE =0 0P+ e (6 = ) -] Bus(n1V ) dudn

m;

—omixa [ [ G [Pl - e + B (6. - ) de e,
R3 JR3 m; m;
. “ o (k) (i) i N (i)

= 2maixae D n® [(M)zqv(w D2 g S 1 9%y 4 Bk (@) () _ oS
m; my m; m; m;

)]

and the result follows from algebraic relations between m; and fu;.

6 Appendix 2

This appendix is dedicated to the proof of the equilibrium result of section 2.5, following
the ideas of [Pe].
We first recall the notations (2.2)

¢ =¢ - Binl(¢-¢) -,

(6.1)
i
€ = &+ Liin|(¢ ~ &) ).
We also recall that the micro-collision operator
T" : (675*) = (glaé‘i)
is an involution and
d€ d€, = d¢' dE.. (6.2)

Proposition 6.1 We suppose that f; and f; are distributions such that
fifi« = fifjs  fifix = [} i,

for all m in B,. Then f; and f; are mazwellians with same velocity and temperature.

INRIA



A consistent BGK-type model for gas miztures 21

proof of proposition 6.1.
We denote by g;, g; the fourier transforms of f;, f;.
With the above hypothesis we can write

gi(k)g; (k) = / L€ (€ ek € g,

Now we change the notation £’ by &, use the involution property and dé'd€, = d€d€, st to
obtain

gi(k)g; (k) = / FAO) F5(E) e E R dee,

2;.11-]' b 2
i

= [ f@ (et CRER Eem ggge,

Now we can consider this as a formula in n (this is true for all n) and make a Taylor
expansion around ng where ng is orthogonal to 2:;—]19 — QT‘n‘—]Jk* We write n = ng + n and
the first term of the Taylor expansion is

0= / € fi(gaeithstiy 2t 2Mp (6 g ) ngdgd,.

m; m;
This gives
) k kost
/ Fi(E)F5(6) k&R &) (€ — £,) - modédEast = 0, Wng L — — ",
m; m;
wich also reads
k kqst
no - (Vkgigjx — Vi, 9igjx) =0, Vng L mi T my (6.3)

Now, by galilean invariance, we may assume that the mean velocity of f; vanishes, that is

JEGE B!
Then taking k£ = 0 in (6.3) gives for all k, st
9i(0)ng - Vi, gjx =0, Vng L kgst.
This means that Vi, g;« is proportionnal to k,st, and thus that g; is a radial function
9jx = 9i(|kast]*).

Now, if ko5t = |kost|n where n is a unit vector, Vi, g« is parallel to n, and taking k,st = 0,
V. 9jx(0) is parralel to any unit vector thus vanishes,

k. 9+(0) = 0.
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Remark that this gives the first result that f; has the same zero bulk velocity as f;.
We can now take k,st = 0 in (6.3) to obtain g; = g;(|k|?).
;From now on we denote |k|> = r and |k,st|> = r., and compute from (6.3):

gi(r) i)

9i(r) "7 gj(ry)
is orthogonal to ng and thus proportional to
1 1
—k— —k.
m; m;
Thus one obtains that ) )
(T4 !
m; gj =m; 9i (Ir) . (6.4)
95(4) gi(r)

We conclude that Z—f = (In(g;))" is independant of r, so that

g(k) = CjelM"

and in the same way
2
gz-(k) = Cieia"‘k‘ .

Moreover we also deduce from (6.4) that

Then since the Fourier transform of a gaussian law is a gaussian law, we obtain that f; and
f; are maxwellians with nul velocity and same temperature.
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