N

N

Many TCP User Asymptotic Analysis of the AIMD
Model
Dohy Hong, Dmitri Lebedev

» To cite this version:

Dohy Hong, Dmitri Lebedev. Many TCP User Asymptotic Analysis of the AIMD Model. [Research
Report] RR-4229, INRIA. 2001. inria-00072390

HAL Id: inria-00072390
https://inria.hal.science/inria-00072390
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://inria.hal.science/inria-00072390
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--4229--FR+ENG

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Many TCP User Asymptotic Analysis of the AIMD
Model

Dohy Hong & Dmitri Lebedev

N° 4229
July, 2001

THEME 1

apport
derecherche







Zd I N RIA

ROCQUENCOURT

Many TCP User Asymptotic Analysis of the AIMD Model

Dohy Hong & Dmitri Lebedev*

Théme 1 — Réseaux et systémes
Projet TREC

Rapport de recherche n® 4229 — July, 2001 — 14 pages

Abstract: A simple fluid model for the joint throughput evolution of a set of TCP sessions
sharing a common bottleneck router has been introduced in [2] based on products of random
matrices. This paper studies the asymptotics of the aimd model when the number of TCP
sessions N goes to infinity. We show that this limit process can be defined by a recurrence
relation in R and we show how to characterize its stationary behavior very simply based on
the recurrence relation. We study the accuracy of this limit model and the impact of the
synchronization effect not only on the mean throughput but also on its QoS.
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Analyse asymptotique du modéle AIMD pour plusieurs
connections TCP

Résumé : Un modéle fluide simple pour I’évolution jointe des débits d’un ensemble de
sources TCP partageant un routeur commun a été introduit dans |2] basé sur des produits de
matrices aléatoires. Cet article étudie les asymptotiques du modéle AIMD lorsque le nombre
de sources TCP N tend vers 'infini. Nous montrons que ce processus limite peut étre défini
par une relation de récurrence dans R et nous caractérisons son comportement stationnaire
trés simplement & partir de cette récurrence. Nous étudions la précision de ce modéle limite
et "impact de la synchronisation non seulement sur le débit moyen mais aussi sur la QoS.

Mots-clés : TCP/IP, accroissements additifs et décroissance multiplicative, QoS, synchro-
nisation, analyse asymptotique, relation de récurrence.
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1 Introduction

In [2], a simple model for the joint evolution of TCP controlled N FTP sessions sharing a
single bottleneck router was given based on products of random matrices. In this model (as in
[2] we will call it the AIMD - Additive Increase, Multiplicative Decrease - model), TCP is not
represented at packet level, but via simple fluid equations that describe the joint evolutions
of the windows in the congestion avoidance phase. The assumptions of the AIMD model were
motivated by the small time scale analysis and in particular by the fact that even in this
simplified model fractal behavior of aggregated traffic was already present.

The present paper studies the asymptotic AIMD model when the number of sessions N
goes to infinity. The main advantage of such a consideration is that this limit process is very
easily defined by a one dimensional recurrence relation, even when the loss probability is rate
dependent. This enables us to study in particular how the stationary law of the window de-
pends on the synchronization rate.

In §2, we recall briefly the AIMD model. In §3, we present limit theorems when the loss
probability is rate independent and in §4 we consider the rate dependent case.

2 The AIMD Model

The AIMD model is a fluid approximation of window evolutions in congestion avoidance
phase for N FTP sessions. We recall that slow start and timeout are not taken account
in this model. However, timeout is indirectly present by the fact that the throughput can
be arbitraly close to 0 (cf. [2]). Besides RTT is assumed to be constant in time and the
same for all sessions (homogeneity). If the window size of session i at time ¢ is W% (¢),
its instantaneous throughput or local throughput at time ¢ is approximated by the quantity
XN (t) = WHN () /RTT.

The n-th congestion time is defined as the n-th epoch at which one loss or several simul-
taneous losses may occur on the shared router. We use the following notation:

e N is the number of parallel FTP sessions, which we assume to be constant in time;
e C(N) = cN is the capacity of the bottleneck router;

e RTT = R (constant in time and equal for all sessions);

e T, is the n-th congestion time;

o Tnt1 = Tpy1 — Tp, is the time between the n-th and the (n + 1)-st congestion times;
o XN = XN (T:F) is the throughput of session i just after the n-th congestion time;

N N 2, N
LI Zzi:1Xn ;

n

o YN = xiN (T,,) is the throughput of session i just before the n-th congestion time;

e synchronization probability: +:[y] is {1/2,1}-valued random variable. It is equal to 1/2
is the session ¢ experiences a loss at T;,. Its law is assumed given and depend a priori
on y which is the throughput of the session ¢ just before T),.

We set f(y) = P(vi[y] = 1/2). If X" is stationary, the stationary probability that
7i1-] = 1/2 defines the synchronization rate that we denote by IE[f].

RR n® 4229



4 Dohy Hong & Dmitri Lebedev

Here we allow that 7, = 0. This implies that we may have X AN 1= Xn LN , but what is
interesting is the property that given y, %[y] does not depend on 4. If we impose 7, > 0, given
Y, ¥4 [y] does not depend on 4 conditional on the fact that there is at least one loss. Allowing
T, = 0 simplifies moments calculation and has no impact on the asymptotic analysis: indeed,
we will see that in the limit model 7, > 0 with probability 1.

Then, we have

XY = RV x YN (1)

with
. . N
YN = XN o T

For simplicity, we assume that the initial distribution of Xé’N € [0,] is given and taken
independently for all 4, such that ]E[XS’N] does not depend on (i, N). As we will see this is
not restrictive since for all NV, X5V is ergodic.

3 Independent losses
3.1 Asymptotic model characterization
Here we assume that v} [y] is independent of y and that P(yf, = 1/2) = p = E[f].

Theorem 1. We have the following L1 and a.s. limit:

SN Z (o]

N—o00
2,00 - . 2,N
where Xy~ is an a.s. limit of Xy .

The proof of the above theorem is given in the next section in a more general context. The
above theorem implies that lim,_, th_mo = (1-p/2)c.

Theorem 2. VK €N, V(ly,--- ,lg) € NK

K
]E[H(X““ ] H]E[X““ )] = O(1/N), (2)

k=1

where i1,--- ,ix are K different elements of N.

Proof. The proof is by induction on the degree [ = Zszl li,. For | = 2, we have:

1,N y-2,N - 1 2 1,N yv2,N (SN)2 2,NS7]7,V
E[Xn—f—an—f—l] - E[’Yn—l—l'Yn—l—l] E[X X ] +c + E N2 - 2E[Xn W]

= ©0)? (@ + XYY - B0V

= (B[(XM)D?+0(NT

INRIA
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Now for a given (l1,--- ,lx):
K r K S,N
kNl _ k,N n \l
o] - e[ s
k=1 k=1
= e [T X () -S| |
[ k=1 \jr=0 Jk

where a = HszllE[('yf)lk]. For the product of the moments, the expressions follow in the

same way
o kN \lg o kN Sy W
B:H]E[(Xn’ ) ] a[TE| (X5 +c- =
k=1 k=1
K Iy ik . gN -
= oL [ 3 () mict - Sy
k=1 \jx=0

Now one can easily prove the relation:

N m
E[(XN)a . (XkN)a (SW") | = B[(XMya | (xkNya x kLN xktm N (N1,

for all g;,m,k € N. Since the coefficients of the expansion of A and B are all equal, A — B
gives terms of the form:

K’ K’
E (H(XS’N)"k> - TIE (),
k=1

k=1

with K' > K and ng <l if K < K, >, ng <. For the terms such that ), ny <[, we use
induction assumption to bound it by O(1/N). The term such that ), ny =1 and K' = K is
equal to a(A — B) with a < 1, hence this term can be moved to the left hand side. For the
terms such that ), ny =1 and K’ > K, we reapply the above expansion method. In a finite
number of steps, we find on the right hans side only terms of the form

l l

E (H(Xs’N)"%> - T E (k)
k=1 k=1

with Y-, nj, < L. O

Corollary 1. IfS and S’ are two fized disjoint subsets of {Xf{N}Z-:l__N, then they are asymp-

totically independent.

Corollary 2. The stationnary limit process is characterized by:

pc
X911 = M1 (X0 + E) (3)

or equivalently by:

X Z%ZH%i

n=11i=1

RR n® 4229



6 Dohy Hong & Dmitri Lebedev

Using the recurrence relation (1) and (3), on can easily get all moments of X3 and X
by induction. Here are the 3 first moments:

EXZ] = EXZ]=(1-2)e

2
B(X5)] = 30-D)a-0)e
EBI(XE] = BIGE0+ 5 )
. C3
BIX5) = S6-pC-p6E-p)
¢ 3(8 —Tp)(2 —p)(8 —p) + (1 —p)(8 — Tp) (6 — bp + p°)

E[(X5)") =

821+ 3 (1 —p)+ 25— )1 —p) + & (1 —2p)(1 —p)?’

3.2 Stationary distribution plots

Figure 1 shows the relative difference between X&OO and X&N with N = 10,100 for the 2nd
and 3rd moments using the analytic formulas given above and simulation results. We see that
for the 2nd and 3rd moments, the limit N = oo gives upper bound estimation for all values of
p. The difference decreases almost proportionally to 1 — p and 1/N and p = 0 gives a bound
on the relative difference: for the 2nd moment, the bound is 3% + o(1/N), and for the 3rd
moment, the bound is 232 + o(1/N).

The comparison with simulation shows that 107 iterations give a quite good approximation.
This gives an idea of the number of iterations that is needed to have relevant results from
simulations in the rate dependent synchronization case.

0.12

0.1

' Rel. error‘(meary), M‘Z
Rel. error, N=100 M2 ------- . Rel. error(theory), M3 -------

T
Rel. error, N=10 M2 ——

Rel. error, N=1000 M2 ------- 0.09 g "o X, Rel. error (simulation 1M), M2 ---+-- -
01 b Rel. error, N=10 M3 ] T Rel. error (simulation 1M), M1 -
- Rel. error, N=100 M3 -~ Tl Rel. error (simulation 10M), M2 —-x-—
Rel. error, N=1000 M3 -~~~ 0.08 % Tslg. Rel. error (simulation 10M), M3 ~-&-- |
0.08 0.07 B
0.06
X
0.06 ~.
0.05 e
B
Wi
0.04 S
0.04 g

L L L L L L L L L L L L
0 0.2 0.4 0.6 0.8 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 1: Theoretical relative error plot(left) & Comparison with simulation (right, 106 and
107 iterations)

Figure 2 shows the empirical distribution (ED) plot and the cumulative distribution func-
tion (CDF) plot of the continuous time stationary state of the throughput that we approximate
by 108 iterations of (3) with ¢ = 10 and granularity on = = 0.01 for p € {0.1,0.3,0.5,0.7,0.9, 1}.
It roughly shows three typical shapes of the ED functions depending on p: p < 0.5,0.5 <p <1
and p = 1.

INRIA
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Figure 2: ED and CDF plot

Figure 3 shows the QoS curve plot as a function of p. The definition of QoS a% is defined as
the maximum instantaneous throughput (for the continuous time process) that one gets a%
of time:

QoS a% = sup {z : P(X(t) > =) > «/100}
z€RT
(cf. 3] for more details on this definition). It is surprising that when the synchronization rate
increases, the QoS a% curves for hight value of « is increasing whereas the mean throughput
is decreasing. This can be partially explained by the fact that the variance of the throughput
is a decreasing function of p and this has a major impact on higher QoS. In such a context,
the synchronization has a positive effect on the high QoS! One can also note that the region
a ~ 0.7 is almost insensitive to the synchronization effect.

10 =

T T
QoS 50%
Q0S 60% -------

N QS 70% -------

ol e QoS 80% ]

QoS 90% ---—
QoS 95% -~~~
mean -

. . . . . . . . . . . . . . . . . .
0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1 0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1
x=synchronization rate x=synchronization rate

Figure 3: QoS plot

In Figure 3, we also see that for all values of p, the mean throughput is between QoS 40%
and QoS 50%. We already know that it cannot be better than the deterministic case p = 1
which corresponds to QoS 50%. For p < 0.8, the mean throughput is guaranteed 40% of time.

RR n® 4229



8 Dohy Hong & Dmitri Lebedev

4 Dependent losses

4.1 Asymptotic model characterization

In this section, we give results based on classical analysis for Markov processes on general
state space: the basic notions on irreducibility and Harris recurrence can be found in (cf. [6]).

Theorem 3. XY = (X3, -+, XN is a Markov process.
If infycr+ f(y) = f > 0 and supyer+ f(y) = f <1, thenVN €N, XN = {XN1, cn is positive
Harris and therefore it is ergodic.

Proof. The Markov property is clear. X% is ¢-irreducible (cf. [6], p.87), where ¢ is for instance
the Lebesgue measure on R*. To prove this, it is sufficient to show that from any state X,
XX comes back to any given open interval containing (c/2,--- ,c¢/2) with positive probability:
if all sources experience a loss at Ty, then S /N = ¢/2, and
1
N N
| Xt — /2| = SIXi —c/2l.
This event occurs with probability larger than iN and can be repeated any finite number of
times with positive probability.
Finally, X% is positive Harris by application of Foster’s criterion on X2 (cf. [6], p.262).
O

Theorem 4. If infycp+ f(y) = f > 0, supyer+ f(y) = f < 1 and if f is continuous non-

decreasing, then:
N

lim —% =s,, 4n L and a.s.
N—o0
where s, = ]E[XOO] = limpy 00 B[ X
Vn € N, XN — X5 a.s. and this limit process satisfies the recurrence relation:

X7Z7,—T—Ol = ’Y:'L+1[Xf{oo +c— sn](X;‘;Oo + ¢ — sp).

{X,iz’oo}bo are i.i.d. and X*° = {X}nen is stationary ergodic, hence its stationary law is
characterized by the relation

Xt = a1 [Xn® + al(X;° +a),
where a = ¢ — E[XZ].
Proof. We first show limits of XN and S by induction. For n = 0, Xé’N = Xé’oo by
construction and by assumption {XO’ }1:1’__’N is i.i.d., hence % — ]E[Xé’oo] a.s. by law of

i,N 3,00 SN xR -x0N
large numbers. Assume that X,” — X, and N — 0 a.s. We have

N i N1 (v 6N
X7ZL+1 = Yn Yo 1Y)
Since YV — X5 + ¢ — s, as. we have X.Y, — X299 as. (the as. convergence for
7;+1[Y7§’N] is due to the continuity of f).

For the a.s. limit of ”“ , we use the inequality:

X050 — Xl < Vel (1Y = YoN)) + [y [V ] = v [V N VY
< e = YN+ V] = v [V MY

INRIA
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Therefore
N 2,00 2,N N 2,00 i,N N 1
D1l e Ny
Now we show by weak induction that LTS N — 0 a.s. For the initial con-

dition: sg — ﬂ — 0 a.s., hence almost surely we have for all ¢ > 0, for N large enough (s.t.
150 /N — 0] <o)

1 <1

Yy CE e N = Tyl Yy Pl Yy +e) T Lyi voorai v —e]

Using the law of large numbers,

N )
2= 17 HYy @iy ™

] ‘! "
o < FOP™ 4+ e) = FYP™ =€) as.
Then one can conclude using the fact that f is continuous and Yoi "° bounded.
N
i=1 1
Now we assume that TtV TX, 1t i —0as. forl <m<n-—1. Then

Z]\i 1 i 1,00 i i, N
1=1 ’Yn+1[Yn ]75’Yn+1[Yn ]

<
N >
Zi:l 17;+1[Y;’m]757;+1[Y£)N] HJ:O 17]1‘+1[YV]'1,00]:7;+1[Y;’N] ZZ 1 EJ 0 '7 [Y‘Z,oo] J+1[Y7‘ N}
+
N N
N n—1

. A 1 . - . i N
=1 =0 ' 72,00 i 7,
=0 Tyt )Nt PN
N

We have

SN
for 0<j<n,l|s; — F|<e

— 0 by assumption and as for the initial condition if

N ) ) ) n—1
Ei:l 172+1[Y;’w]¢7}z+1[Ynl’N] HJ 0 17]+ [Yl 00] 7]+1[YZ N} <
N >
N N
ZZ 1 1’7n+1[ ]¢7n+1[Y7’ P+ (n+1)e] + Zi:l 17n+1[ #7““[),1 *—(nt1)e]
N N '

Xz ,00 Xz N
We can then conclude that Zisl nil 1l — 0 a.s.

The ergodicity of the limit process is as in Theorem 3: the difficulty here is the irreducibil-
ity. Define {ay, }nen by the recursion:

an + Sp,
2 )

an+1 = ag € R. (4)

Let V' be the adherent point set of a. First it is clear that V' does not depend on the choice
of ag nor on the changes of a finite number of s,. Therefore, if v € V, from any point Xy,

iterating (4) with initial condition a,, = 420 g, will in a finite number of steps fall in any
open set containing v. Hence, {X7*}nen is irreducible. And s, = E[X7;™] converges to
= E[X&5°], where Xo5° is the stationary state of X™. a

RR n° 4229



10 Dohy Hong & Dmitri Lebedev

Comparison with the 1/,/p formula Let p; be the stationary probability that one packet
is lost. This can be expressed as the ratio between the number of packets lost and the number
of packets sent:
_ El]

E[r]E[X (¢)]

Based on the approximation (6) below, we have the relation:

bi

Throughput ~ 2(;T_T]E\)/[£/4). (5)

As we will see by simulations, the formula (6) is very robust, thus the coefficient 1/2(1 — E[f]/4)
gives a good idea of how, given RTT and p;, the throughput depends also on the synchro-
nization rate, even if one does not know the exact synchronization probability function. The
relation (5) is an equality if the synchronization probability does not depend on the rate.

4.2 Stationary distribution plots

We call MOD1 the case with rate independent synchronization probability. In the following,
the value of ¢ has been fixed to 10.

00012 . ; ; ; 1 o

0.001 |- e 470,99 —=-= |
e 08

0.0008 |
0.6
0.0006

04
0.0004

02
0.0002

TH == 0 L o) - T _
20 25 0 5 10 15 20 25

Figure 4: ED and CDF plot

Figure 4 shows the ED plot and the CDF plot of X (¢) when the synchronization probability
is given by p = 1 — ¢* with ¢ = 0.1,0.5,0.7,0.9,0.99 (case MOD2). In Figure 5, we chose
p= MIN(z/K,0.9) with K = 5,6,10,100 (case MOD3). We see that we find again the 3
typical curve shapes of case MOD]1. _ _

Figure 6 shows the relative difference between X35> and X% with N = 10 for the 3 first
moments as a function of the synchronization rate. Plots are obtained by simulation of 107
iterations of the recurrence relations. We see that for the 2nd and 3rd moments, the limit
N = oo does not always give an upper bound (only for p < 0.5). Note that for N = 10,
differences are less than 4% for the 3rd moment and less than 1% for the 2nd moment, which
is better than MOD1 case. Since the relative differences should decrease with N, this means
that the limit model offers a very good approximation even if N is not that large, at least for
the three synchronization probability models we proposed.

INRIA
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0.001 T T
P = MIN(x/5,0.9) —— p = MIN(x/5,0.9)
P = MIN(x/6,0.9) ————-—- p = MIN(x/6.0.9) -
0.0009 - p = MIN(x/10,0.9) ------- | p=MIN(x/10,0.9) -~
p = MIN(x/100,0.9) p = MIN(x/100,0.9)
0.0008 | 08 -
0.0007 -
0.0006 06 [
0.0005 -
0.0004 - 0.4 -
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0.0002 - 02
0.0001 |
0 L 0 1 1 Lo .
0 25 30 0 5 10 15 20 25 30
Figure 5: ED and CDF plots.
0.04 T — T 0.035 T T T T T — T
Rel. error (simulation 10M), M1 —+— o Rel. error (simulation 10M), M1 —+—
Rel. error (simulation 10M), M2 ---%--- p X*;* Rel. error (simulation 10M), M2 ---x---

0.035 [ex Rel. error (simulation 10M), M3 ---%--- | 0.03 [-% " * Rel. error (simulation 10M), M3 ---%--- 4

. . . . . . . . . . . . . .
0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9
x=synchronization rate x=synchronization rate

Figure 6: Relative error plot by simulation (MOD?2 left, MOD3 right) after 107 iterations.

Figure 7 shows comparison of QoS plots between MOD1, MOD2 and MOD3 as a function
of the synchronization rate. For high value of «, the QoS a% are better than MOD1: this
can be explained by the fact that rate dependent case tends to reduce the fluctuations of
throughput, therefore its variance. Besides, the high QoS is still an increasing function in the
synchronization rate, but its slope is much smaller than the case MOD1 and QoS 90% is quite
insensitive w.r.t. the synchronization rate.

One can also see that should one know the synchronization rate, the mean throughput is
very well approximated using the formula:

E[X,] ~ (1 - E[f]/2)c (6)
and the relation
E[X (t)] = E[(X, + ¢)/2] ~ (1 — E[f]/4)c. (7)

The mean throughput is guaranteed about 45% of time (for p < 0.9, both for MOD2 and
MOD3), which is 10% less than the best one can hope (50% for p = 1).

Figure 8 shows comparison of distribution plots between MOD1, MOD2 and MOD3 when
we choose parameters of synchronization probability such that the synchronization rate E[f]

RR n® 4229
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10

r‘nodl QoS 66%

%

mod1: QoS 95%

mod1: mean -

mod2: QoS 60% -
mod2: QoS 80%
==mod2: QoS 90%

mo %, -

mod1: QoS 95%
mod1: mean -
mod3: QoS 60% -
mod3: QoS 80
==mod3; QoS 90%

0.3 0.4 0.5 0.6 0.7 0.8 0.9
x=synchronization rate

0.1

1
0.2 03 0.4 05 0.6 0.7 0.8 0.9
x=synchronization rate

Figure 7: Comparison of QoS

is equal to 0.5 and 0.8. We see that when the synchronization rate increases, the difference
between MOD1, MOD2 and MOD3 collapses. With E[f] = 0.8, we see that ED and CDF
plots are already very close. For instance, with IE[f] = 0.5, the difference of QoS 90% between
independent and dependent models is less than 20%, with E[f] = 0.8, it is less than 5%.

0.0008

0.0007

0.0006
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Figure 8: Comparison of distribution functions:
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4.3 Comparison with NS

The distribution function we obtained by iterations of the recurrence relation (1) can be
compared to that given by NS simulation.

sourcel

150ms

destN

0.025

0.015 |-

001

0.005

0 ] »"1’ L L L L eSS
0 20 40 60 80 100 120 140

Figure 9: ED of window size by NS simulation

Figure 9 shows the ED plots obtained in the following settings (simulation time = 10000s):

S1: N = 100, C = 80Mb, MSS = 1Kbytes (10000 pkts/s), Buffer Size B = 1000 pkts,
RTTmin = 0.5s (pure propagation delay) with overhead_ set to 0.01.

S2: as S1 with overhead_ set to 0.001.

It is well known that without overhead_ (which introduces an additional uniform random
delays on ACK send date and plays the role of noises that come from the other routers), NS
gives too synchronized window behavior. Table 1 gives some numerical results.

Table 1.
gput U losses(%) | timeouts(%) | E|[f]
S1 || 96.35 | 0.0365 0.32 6.0 103 0.32
S2 || 85.02 | 0.1498 0.11 6.0 10°° 0.76

gput: goodput by flow in pkts/s, U = under-utilization factor = (¢ — gput)/c, E[f] is the
synchronization rate estimated from the formula (7) replacing ¢ by ¢ + %(\/W+ d/R)

(v/2B/N /R is the window increase that fills the buffer cf.[2] and d/R? is the window increase during
the loss detection delay, here d ~ R) which leads to 4U ~ f — %(\/W+ d/R)(4 - f).

Playing with overhead—_, one can introduce more or less synchronization effect. First we
see that in these simulations, timeout probabilities are at least two orders below the loss
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probabilities and we can reasonably neglect the timeout influence (if not the comparison with
the AIMD model is not justified). The two curves we get in Figure 9 match quite well those
obtained in MOD1-MOD3 cases with the corresponding value of IE[f]. Here the buffer capacity
effect cannot be neglected. If B was small, we should have 4U ~ f. The synchronization rate
E[f] we found by the formula 4U = f — X (,/2B/N +1)(4— f) leads to a good approximation
of what we observed in the NS simulation.
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