N
N

N

HAL

open science

A Comprehensive Study of Dynamic Global History
Branch Prediction

Pierre Michaud, André Seznec

» To cite this version:

Pierre Michaud, André Seznec. A Comprehensive Study of Dynamic Global History Branch Prediction.
[Research Report] RR-4219, INRIA. 2001. inria-00072400

HAL 1d: inria-00072400
https://inria.hal.science/inria-00072400
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00072400
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--4219--FR+ENG

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

A Comprehensive Study of Dynamic Global History
Branch Prediction

Pierre Michaud — André Seznec

N° 4219
Juin 2001

THEME 1

apport
derecherche

% I N RIA

RENNES

A Comprehensive Study of Dynamic Global History
Branch Prediction

Pierre Michaud , André Seznec

Theme 1 — Réseaux et systemes
Projet CAPS

Rapport de recherche n® 4219 — Juin 2001 — 97 pages

Abstract: This report recapitulates and analyzes the most significant results on global
history branch prediction during the past decade. Most global history branch predictors
(GHBP) are implemented using one or several two-bit counter tables. The global branch
history, i.e., the outcomes of the most recently encountered branches, is combined with
the branch address to index those tables. Previous studies addressed several questions :
Why use two-bit counters ? What limit for the prediction accuracy of a GHBP ? Which
hardware budget is needed to come close to this limit ? How to better utilize a limited
hardware budget ? This study revisits these questions. First we show that a two-bit counter
is close to an optimal predictor, while allowing simple hardware implementations. Then we
use a PPM algorithm as a vehicle to understand practical prediction accuracy limits for
most GHBPs. Using PPM, we show that a long global history can potentially improve the
prediction accuracy, even though a part of this potential is offset by the impact of cold-start
misses. We observe that programs with branches that are difficult to predict are likely to
have their working set increase very fast with the global history length. These programs
experience a lot of cold-start misses and, also, require huge branch prediction tables to come
close to PPM limit. Then we study “dealiased” GHBPs, which are approximations of PPM,
given a limited hardware budget. We isolate the few dealiasing primitives constituting the
“active principles” of dealiased GHBPs previously published. We study these primitives and
show that some of them are actually similar. We show that simple combinations of these
primitives are able to exploit long global histories for realistic hardware budgets. Finally, we
conduct an experimental study on the perceptron branch predictor, which, unlike previously
published GHBPs, does not derive from BPPM. Although the perceptron alone is generally
not as accurate as a well-tuned “classical” dealiased GHBP, it sometimes succeeds where
classical GHBPs fail. This suggests that, by using the perceptron in a hybrid predictor, it
might be possible to overcome PPM limitations.

Key-words: global history branch predictor, PPM, dealiasing primitives, perceptron

Unité de recherche INRIA Rennes

IRISA, Campus universitaire de Beaulieu, 35042 Rennes Cedex (France)
Téléphone : +33 2 99 84 71 00 — Télécopie : +3329984 7171

Une étude de la prédiction de branchements par
historique global

Résumé : Ce rapport récapitule et analyse les résultats les plus importants de ces dix
dernieres années sur la prédiction de branchements par historique global. La plupart des
prédicteurs de branchements par historique global (PBHG) utilisent une ou plusieurs tables
de compteurs deux bits accédées par ’adresse du branchement et I’historique global con-
stitué des directions des branchements les plus récents. Les études précédentes ont soulevé
plusieurs questions : Pourquoi utiliser des compteurs deux bits 7 Quelle est la valeur limite
du taux de mauvaises prédictions ? Quel budget matériel est nécessaire pour approcher cette
limite 7 Comment faire meilleur usage d’un budget matériel donné ? L’étude présente se fo-
calise sur ces questions. D’abord, nous montrons que le compteur deux bits est proche d’un
prédicteur optimal, tout en permettant une mise en oeuvre matérielle simple. Puis nous util-
isons I’algorithme PPM pour étudier les limites pratiques des PBHG usuels. Nous montrons
qu’un historique global long, potentiellement, diminue le taux de mauvaises prédictions,
mais qu’une partie de ce potentiel est annulée par les défauts de démarrage a froid. Nous
observons que les programmes comportant des branchements difficiles & prédire ont un en-
semble de travail qui croit rapidement avec la longueur d’historique global. Ces programmes
subissent un grand nombre de défauts de démarrage a froid et nécessitent de tres grandes
tables de prédiction. Ensuite, nous étudions les PBHG & budget matériel limité. Nous iden-
tifions les quelques primitives anti-interférence caractérisant les principaux PBHG connus.
Nous étudions ces primitives et montrons que certaines combinaisons de ces primitives per-
mettent d’exploiter un historique global long, étant donné un budget matériel raisonnable.
Enfin, nous menons une étude expérimentale du perceptron utilisé comme PBHG. Ala
différence des PBHG précédents, le perceptron n’est pas une approximation de PPM. Notre
étude montre que le perceptron, seul, n’est en général pas aussi performant qu'un PBHG
classique. Cependant, le perceptron est capable sur certains programmes de surpasser un
PBHG classique. Cela suggere la possibilité, en utilisant le perceptron dans un prédicteur
hybride, d’obtenir un taux de mauvaises prédictions inférieur & celui de PPM.

Mots-clés : prédicteur de branchements par historique global, PPM, primitives anti-
interférence, perceptron

A Comprehensive Study of Dynamic Global History Branch Prediction

Contents
1 Introduction

2 Two-Bit Counters
2.1 The Two-Bit Counter as an Approximation to an Optimal Predictor
2.2 Splitting Two-Bit Counters
2.3 Partial Update e

3 Experimental Framework
4 Branch Prediction by Partial Matching (BPPM)
4.1 Characterization of BPPM Working Set
4.2 BPPM Branch Misprediction Ratio
5 Aliasing, and Dealiased Global History Branch Predictors
5.1 Aliasing Model
5.2 Some Dealiasing Primitives,
6 Experimental Study of Dealiasing Primitives
6.1 The Bias-Split, Bias-Agree and Bias-Inject Primitives
6.2 The Meta-Select and Majority-Vote Primitives
6.3 The Match-Select Primitive
6.4 Approximating BPPM by Cascading Several Match-Select
6.5 Conclusion
7 Experimental Evaluation of the Perceptron Predictor
7.1 Perceptron Description oL
7.2 Linear Separability and Perceptron Sharing
7.3 Injecting Address Bitsol
7.4 Injecting the Prediction from Another Predictor
7.5 Research Directions,
8 Conclusion
References
A Theoretical Study of the Growth of a Working Set
A.1 Set of Equiprobable Elements
A2 Setof k-Bit Strings
B Experimental Results

RR n°® 4219

11
12
15

16
16
17

25
25
27
31
33
34

36
36
37
38
39
41

42

42

45
46
47

51

4 Pierre Michaud , André Seznec

1 Introduction

Branch prediction is a “keystone” of high performance in pipelined out-of-order processors.
Hardware branch predictors have been studied a lot in the past decade since the introduction
of two-level branch predictors by Yeh and Patt [39]. Results of these studies are disseminated
in many publications. This study is a recapitulation of some the most significant results
published in the past decade.

We have chosen to focus our attention on a particular type of branch predictors : dy-
namic global history branch predictors (GHBP). These predictors, which are among the most
accurate, are used in several commercial processors.

Global history branch predictors were introduced in [40] and [27]. A GHBP is a two-
level predictor [40] which first history level is formed by a single shift register recording the
outcomes of branches encountered the most recently. Such predictor exploits correlations
between branches in programs.

Figure 1 depicts a typical branch prediction pipeline stage based on a GHBP. The global
branch history is maintained with a shift register. The branch address and global history bits
are hashed together to index a table of two-bit counters. Each two-bit counter is a compact
history of the outcomes of all previous (address, history) pairs that were mapped onto that
particular counter (ideally, each pair is mapped onto a distinct counter). A prediction is
obtained from a two-bit counter by reading its most significant bit.

In a GHBP, the global history can be, and should be, updated speculatively with the
predicted branch outcome [41, 14]. As long as predictions are correct, the global history
is correct. When a misprediction occurs, no matter what happens to the global history :
after detecting the misprediction, subsequent instructions are flushed and the global branch
history is restored from a copy recorded in the checkpoint [15, 19].

The organization of the present study is as follows. In Section 2, we justify the use
of two-bit counters as the basis of most GHBPs. We also introduce partial update, which
plays an important role in dealiased branch predictors (cf. Sections 5 and 6). Section 3
describes suppositions we made for evaluating predictors. In Section 4, we study branch
prediction by partial matching (BPPM), an algorithm originally used for data compression
and which was adapted to branch prediction by Chen, Coffey and Mudge [4]. We use
BPPM to characterize the working set of the benchmarks used in the remaining of this
study. Real branch predictors, of course, have to deal with limited storage capacities, and the
working set characteristics determine the storage capacity required to store branch prediction
information. A limited storage capacity for branch prediction information induces aliasing in
predictor tables. So called dealiased predictors try, using dealiasing primitives, to overcome
aliasing effects and approximate the prediction accuracy of BPPM, BPPM being a limit
for these predictors. Section 5 introduces the aliasing problem, and describes six dealiasing
primitives extracted from predictors previously proposed in the literature. In Section 6, we
perform an experimental study of these dealiasing primitives. Section 7 is an experimental
evaluation of the perceptron, which was recently proposed as a branch predictor in [18].
Unlike most GHBPs introduced previously, the perceptron is not derived from BPPM. We

INRIA

A Comprehensive Study of Dynamic Global History Branch Prediction 5

block address instruction instruction
generator cache block

branch address

——=]global history| [branch address] ———=
shift global history
S e (for updating and
HASH restoring)

\

1 1 1

1G] @), W9 (0

i update with actual outcome
predicted outcome 0/1 when the branch is executed

Figure 1: Example of global history branch predictor.

show that, for some benchmarks, the perceptron is able to succeed where classical predictors
fail.

2 Two-Bit Counters

Most GHBPs introduced previously are implemented with two-bit counter tables, as illus-
trated on Figure 1. This section presents a few reasons justifying the use of two-bit counters.
In particular, we show that a two-bit counter is close to an optimal predictor for “stochastic”
branches, while allowing simple implementations for prediction tables.

2.1 The Two-Bit Counter as an Approximation to an Optimal Pre-
dictor

Two-bit up-down saturating counters are the basis of most branch predictors [32, 40]. An
exhaustive comparison of all four-state automatons [26] showed experimentally that the

RR n°® 4219

6 Pierre Michaud , André Seznec

Figure 2: Two-bit counter as a Markov process.

two-bit up-down saturating counter is one of the best four-state automatons for branch
prediction, if not the best.

In this section, we show with a simple model that a two-bit up-down saturating counter
is close to an optimal predictor when trying to predict the outcomes of Bernoulli trials which
bias is not known a priori.

We focus on a branch which we assume can be modeled by a Bernoulli process, with a
probability p that the branch is taken and a probability 1 — p that it is not taken. A two-bit
counter used to predict that branch can be modeled as a Markov process, as depicted on
Figure 2.

Initial behavior of the two bit counter. On the first occurrence of the branch, we
have no past history. In particular, we do not know the branch bias. If we make a random
prediction, the probability m; to have a misprediction on the first occurrence is m; = 50%.
Then the counter is initialized according to this first outcome. This can be a “strong”
initialization (state 3 if the first outcome is taken, state 0 otherwise) or a “weak” initialization
(state 2 if the first outcome is taken, state 1 otherwise). A simple calculus shows that
probabilities ms and m3z to have a misprediction on the second and third occurrences,
respectively, are equal, and do not depend on the “strength” of the initialization

mg = m3 = 2p(1 —p) (1)

This means that the “strength” of the initialization has no impact on the quality of
the prediction. The only important thing is to initialize the counter according to the first
outcome.

It should be noted that the misprediction probability expressed in Formula 1 is also the
misprediction probability of a 1-bit counter which predicts the same outcome as the previous
occurrence.

Asymptotic behavior of the two-bit counter Let P, be the probability to be in state
3 or 2 after the n'® occurrence of the branch, and 1 — P, the probability to be in states 0 or
1. Let us consider two consecutive occurrences of the branch, and the counter states before

INRIA

A Comprehensive Study of Dynamic Global History Branch Prediction 7

and after these two occurrences. Crossing the dashed line (cf. Figure 2) implies that the
two consecutive occurrences have the same outcome. Hence,

P2 = p2(1—Pn)+(1—(1—p)2)Pn
= p’+2p(1-p)P,

As2p(1—p) < %, sequence P, converges quickly toward P, defined as

Py =p* +2p(1 — p)Ps

__ P
= T o) ?

Practically, for n > 2, P, is close to P,,. The misprediction probability m«, is equal to
Poo(1 _p) +(1 _Poo)p

__p(l—p)
e T T 2p(1 - p) ©

Of course, the prediction of the two-bit counter is not optimal. An optimal ! predictor
would predict the branch always in the same direction. For example if the branch bias is
not taken, the misprediction probability of the optimal predictor is mqp: = p.

Figure 3 shows the asymptotic and initial misprediction probability of the two bit counter
for p € [0..1], compared with the optimal predictor.

On the second and third occurrence of the branch, the prediction is rather far from the
optimal, as shown on Figure 3. For p < 0.1 or p > 0.9, the probability of misprediction
on the second and third occurrence is twice the misprediction probability of the optimal
predictor.

Once asymptotic probabilities are reached, the two-bit counter is very close to the optimal
predictor for p < 0.1 or p > 0.9. Considering Mmoo /Mop:, the worst case for the two-bit
counter is for p around 0.3 or 0.7. In this case, the misprediction probability is about 20%
higher than the optimal value.

Instead of two-bit counters, we could consider three-bit counters. A three-bit counter,
for a “stationary” branch, is closer to the optimal predictor. When not considering silicon
budget limitations, from our experimentations, three-bit counters are slightly better than
two-bit counters, especially when the global history is short. However, when considering
hardware constraints, three-bit counters consume 50 % more space than two-bit counters
and are more difficult to update.

IThis optimal predictor is theoretical because it knows the branch bias a priori.

RR n°® 4219

8 Pierre Michaud , André Seznec

0.5 S
0.4 | |
03} |
02t |
initial ~
01t/ / asymptotic ----——- |
Ry optimal ------- \
0 / 1 AN
0 0.5 1
p

Figure 3: Initial and asymptotic misprediction probability of the two-bit counter as a func-
tion of p (probability that the branch is taken), compared with the optimal predictor.

2.2 Splitting Two-Bit Counters

As shown on Figure 1, the two-bit counter table is simultaneously read at the prediction
pipeline stage and updated at the execution pipeline stage. Seemingly, the table ought to
be dual-ported. However, it is possible to use single-ported tables by taking advantage of
the fact that, when the two-bit counter prediction is correct, only the least significant bit
needs to be updated : we set it to the branch outcome, that is, we strengthen the counter.

The two-bit counter table can be split in two tables T1 and T0, as shown on Figure
4. The most significant counter bit is stored in T1 and the least significant bit is stored
in TO. As long as predictions are correct, the most significant counter bit by, which gives
the prediction, does not change. The least significant bit by is updated by being set to the
branch outcome. Upon a misprediction, both tables are updated : we copy by from TO to
T1 and we complement bg in 7'0. There may be a one cycle penalty for updating 7'1, but
this penalty may be overlapped with penalties already existing (pipeline flush, fetch address
and global history restoration ...).

2.3 Partial Update

This technique of split counters is possible only for certain branch predictors : predictors
using a partial update. This type of update was identified in [24] as a way to decrease the
impact of aliasing in predictors consisting of several sub-predictors :

when the overall prediction is correct, update (i.e., reinforce) only the sub-predictors
which gave a correct prediction

It should be noted that this only defines a family of update methods. There may be several
partial update methods for a given branch predictor. According to this definition, single-

INRIA

A Comprehensive Study of Dynamic Global History Branch Prediction 9

instruction two—bit counter table
pipeline
bl most b0
prediction si_gnificant i A
bit 11 :
1
1
|
least PR
outcome b0
execution significant < -~ O+
bit To________'
"HOT" “COLD"

Figure 4: Split two-bit counter table. The “cold” update path is used only upon a mispre-
diction.

table predictors, like the one described on Figure 1, use a partial update. A consequence
of partial update is that the most significant bit of a two-bit counter changes only
upon a misprediction.

3 Experimental Framework

The remaining of this study is mainly an analysis of experimental results obtained with
simulations. This section describes our experimental set-up and suppositions we made for
evaluating predictors.

Sequential-update model. In most branch prediction studies considering the branch
predictor as a stand-alone mechanism, it is assumed that the predictor is updated with
the branch outcome just after the branch is predicted, and just before predicting the next
branch. Moreover, it is assumed that this update is done in sequential order. Throughout
this study, we used this sequential-update model.

However, in a pipelined processor, there is a delay for updating the predictor. Moreover,
in out-of-order processors, the update may be done in an order different from the sequential
order.

If the predictor table is updated at instruction retirement, i.e., non-speculatively and
in sequential order, then the sequential-update model is an exact model. Predictions ob-
tained between the prediction and the execution of a mispredicted branch may differ from
the predictions obtained with the sequential-update model. But this corresponds to instruc-
tions which will be flushed from the processor after the misprediction is detected. After
resuming from the branch misprediction, the branch predictor is in a state coherent with
the sequential-update model.

RR n° 4219

10 Pierre Michaud , André Seznec

If the predictor table is updated at execution instead of retirement, the branch predictor
may be in a state non-coherent with the sequential-update model. This concerns out-of-order
processors. Previous studies have shown that speculatively updating a branch predictor may
have a beneficial effect [19], due to the reuse of control-independent work [33].

In this study, we did not evaluate the possible impact of updating the predictor out of
the sequential order.

Branch predictors hardware cost. For comparing branch predictors, we compare their
prediction accuracy for a fixed hardware cost. The hardware cost is not precisely defined :
it may be the silicon area, constraints on the branch prediction bandwidth or latency, power
consumption, a combination of all these constraints ... This depends on the context. In this
study, we have chosen, as in most previous studies, to measure the cost of a branch predictor
as the total memory capacity required for branch prediction tables (i.e., the total number
of bits).

For some experiments, we consider large hardware budgets that may exceed 100 KBytes.
In general, this is for providing insight on the impact of hardware budget limitation on pre-
diction accuracy. However, we must point out that the size of branch predictors implemented
in commercial processors increases at each technological generation.

The current trend is to have multiple levels of branch predictors, accessed at different
pipeline stages [17]. This is the case, for example on the Alpha 21264 [21], which has two
branch prediction levels: a level-zero (L0) and a level-one (L1) predictor. On the Alpha
21264, the LO predictor is a next-line predictor [3], accessed in less than one cycle. The
L1 predictor is a GHBP, more accurate than the L0 predictor, but which takes one extra
cycle to access. Once the L1 prediction is known, it is compared with the L0 prediction. If
predictions differ, the instruction flow is re-directed using the L1 prediction, which incurs a
one-cycle penalty.

It is likely that future processors will also feature a L2 predictor, pipelined over several
cycles, so that, when the L1 prediction is wrong but the L2 prediction is correct, we pay
the cost of a partial pipeline flush instead of a full pipeline flush. A L2 predictor will be
typically much larger than predictors implemented currently.

However in the remaining, we consider GHBPs without distinguishing between L1 and
L2 predictors.

Experimental set-up All experimental results in this study were obtained with a trace-
driven simulator. We used twelve benchmarks. Eight of our benchmarks are the IBS traces
groff, gs, mpeg_play, nroff, real_gcc, sdet, verilog and video_play (cf. [38]). An interesting
aspect of these traces is that they contain both user and system activity. The four other
benchmarks are taken from the SPEC CPU suite [34]. We took go from the SPEC CPU95
suite. This benchmarks was chosen because it is notoriously difficult to predict. Although
not representative of an “average” application, it is interesting as an extreme case. The
three other SPEC benchmarks are mcf, twolf and gap from the more recent SPEC CPU2000
suite.

INRIA

A Comprehensive Study of Dynamic Global History Branch Prediction 11

For SPEC benchmarks simulations, we used Simplescalar tools [1]. The three CPU2000
programs were compiled for simplescalar portable ISA with gec 2.7.2.3 “-03”. Applications
were run to completion using the test inputs. Some statistics on the benchmarks are reported
in Table 1.

As said previously, all subsequent simulation results are based on a sequential-update
model. In this study, branch prediction accuracy is represented either by the branch mispre-
diction ratio (ratio of the number of mispredictions over the number of dynamic branches)
or by the misprediction interval, defined as the inverse of the misprediction ratio. When
comparing predictors, what matters is not the absolute difference, but the relative differ-
ence. Hence these two representations are equivalent, and the choice to use one instead of
the other is just a question of aesthetic.

4 Branch Prediction by Partial Matching (BPPM)

The Prediction by Partial Matching (PPM) algorithm was introduced by Cleary and Witten
[5] as part of a data compression algorithm. It was shown to provide very good compression
ratios on English texts. More recently, Chen, Coffey and Mudge [4] have shown that this
technique can be used for branch prediction.

Actually, traces generated by programs control flow have characteristics in common with
English texts. In particular, paths in the control flow can be viewed as strings. Just
like strings, some paths have a greater probability of occurrence than others. PPM is a
useful theoretical tool for studying the limits of usual GHBPs, which approximate a PPM
algorithm, as noted in [4].

Branch Prediction by Partial Matching (BPPM) uses a set of A,q. + 1 Markov predictors
with orders ranging from h,,,, to 0. Each static branch B in the program has its own BPPM
predictor, and the string searched is the global branch history Hj, of length h < hy,q, for
dynamic instances of that branch. For each (B, Hy) pair, we record the history of branch
outcomes previously encountered in that context.

For making a prediction, we search the Markov predictor of order h,,,,. If there is a
match, which means (B, Hy,, .) was encountered at least once in the past, the history of
previous outcomes associated with (B, Hp, ..) is used to make a prediction. If there is a
miss, the Markov predictor of order h,,., — 1 is searched. If there is also a miss, the Markov
predictor of order h,,.. — 2 is searched, and so on... If there is a miss in the Markov predictor
of order 0, this is the first time branch B is encountered, and we make a static prediction
(for example we predict that the branch is taken).

There are possible variations of BPPM. In the BPPM predictor proposed in [4], the
history of previous outcomes is simply a count of 1’s and 0’s. Adaptive PPM predictors
studied in [11], on the other hand, give more weight to recent outcomes. It was shown in
[11] that adaptive BPPM gives generally slightly better results because of branches with a
non-stationary behavior.

RR n°® 4219

12 Pierre Michaud , André Seznec

In the BPPM predictor we simulated, the history of previous outcomes is maintained
with a two-bit counter 2.

Another possible variation concerns the way the BPPM predictor is updated. In [4],
update exclusion was used : if the longest match is in the Markov predictor of order h,
we do not update the counters associated with (B, H;) pairs such that ¢ < h. Update
exclusion generally gives better results when compressing English texts. However, on BPPM
predictors, we found a full update to give slightly better results.

Simulation. There are two possible simulation algorithms for BPPM. A first possibility
is to simulate A4, + 1 tables of unbounded size, each table corresponding to a different
history length, i.e., a different Markov predictor order. Entries in the tables are tagged with
(B, Hy) pairs. A second possibility is to simulate a forest of binary trees, as in [11]. There
is a binary tree for each static branch encountered in the instruction trace. We have chosen
the latter solution.

It should be noted that, with a full update, a BPPM predictor of order A is included
in all BPPM predictors of order ¢ > h. Hence we were able to collect statistics for all the
BPPM predictors of order h ranging from 0 to hp,q, With a single simulation, by going from
the root of the tree down to the maximum history length (which is the depth of the tree).

For simulations on the IBS benchmarks, we simulate global history lengths up to hmez =
64. For IBS real_gcc, we provide results only for half of the instruction trace (cf. Table 1,
half real_gcc) because the memory capacity of our machine was exceeded. For the four SPEC
benchmarks, we set hy,,, = 32 also because of memory limitations.

4.1 Characterization of BPPM Working Set

The solid curve on Figures 12 and 13 represents the number W), of distinct (B, Hy) pairs
that were encountered at least once, divided by the number of dynamic conditional branches.
The dashed curve shows the number of distinct (B, Hp,) pairs that were encountered at least
twice. Note that the solid curve can also be viewed as a miss ratio.

We observe that the working set size increases much slower than 2". Actually, for some
benchmarks, the working set size does not grow exponentially with h, but rather linearly.

A possible explanation could be that a branch can be executed only when certain branches
take a certain direction. For example, consider a branch B in the THEN or ELSE path of an
IF statement : branch B can be executed only when the IF branch takes a certain direction.
Another example : if branch B is after a loop, branch B can be executed only after the loop
branch is not taken. However, we think this cannot explain the fact that the growth is much
slower than 2". Let us consider the graph of static conditional branches. A directed edge
between branches A and B means that B may be executed after A. If we neglect the effect of
indirect jumps (like function returns), each node has 2 output edges, corresponding to taken
and not-taken (with indirect jumps, the average number of output edges is greater than

2BPPM using three-bit counters gives slightly better results, but using two-bit counters eases the com-
parison with hardware predictors of following sections, which are based on two-bit counters

INRIA

A Comprehensive Study of Dynamic Global History Branch Prediction 13

2). In any directed graph, the average number of input edges equals the average number of
output edges. Hence, branches have two input edges on average, and for high values of h,
the number of paths leading to a branch is 2".

Actually, there are paths that will never be taken. Some conditional branches behave like
unconditional branches. Roughly, 30% of dynamic branches are instances of static branches
that always took the same direction during a particular program execution [10]. We can
remove 30% of branches from the global history without losing path information.

Second, there are correlations between branches. This concerns IF statements, but also
loop branches. For example, consider a loop with a fixed number N of iterations. After
exiting the loop, we can remove the N instances of the loop branch from the global history
because they carry no path information. If the number of loop iterations is variable but
always greater than or equal to N, then, after exiting the loop, we can still remove N
instances of the loop branch without losing path information. Even if there are x instances
of a loop branch in the global history that cannot be removed because the loop is not
finished, instances of the loop branch carry only logaz bits of path information.

A global history Hj, can be reduced to a history Hj, of k branches without losing path
information. The number of possible global histories is 2%, with k < h.

Figures 14 and 15 show the curve of W}, /Wy on a logarithmic scale, as a function of the
global history length h. For h not exceeding 10 or 15, depending on the benchmark, W}, /W
can be approximated by a a” model, which corresponds to a straight line on the graph. For
longer global histories, the o model diverges from the experimental curve.

For the IBS benchmarks, « is mostly between 1.20 and 1.25. For the SPEC benchmarks,
« is higher : close to 1.4 for go and close to 1.3 for the 3 others. From the value of a, we
can deduce k

h — 2k
In particular, for the IBS,

k= h xlogy(a) ~ h/3

This corresponds typically to 30% of branches being totally biased and 60 % of remaining
branches removed by correlations. This explains why the number of paths grows much
slower than 2", however this does not explain why the growth is no longer exponential for
long global history lengths. We have to consider the following two points :

e some paths have a greater probability of occurrence than others.

e the number of paths that have been taken at least once increases with the trace length
n (second column of Tablel), and it cannot be greater than n.

A model is developed in Appendix A for providing a better understanding of the dynamic
growth of a working set. The model studies the theoretical case of a set of k-bit strings
generated by a Bernoulli process.

RR n°® 4219

14 Pierre Michaud , André Seznec

Here we are modeling the behavior of a single “average” branch. Parameter k is the
length of H'. Parameter n is the number of dynamic occurrences of this “average” branch.
Parameter p is the probability that a branch in H' takes the direction opposite to its bias.
Some curves obtained with the model are plotted on Figure 10. The model is able to
reproduce the shape of some of the curves on Figures 12 and 13.

The model is, of course, a simplification of reality. This “average” branch is artificial, all
static branches are not executed with the same frequency. Nevertheless, the model provides
a support for a qualitative analysis of the experimental results of Figures 12 and 13.

In the following p represents the branch predictability. It is roughly correlated with
numbers in the sixth column of Table 1. Parameter n represents the number of dynamic
instances of the “average” static branch. It is correlated with the number of dynamic
branches (second column of Table 1) over the number of static branches (fourth column of
Table 1).

General behavior. The working set, once gathered, grows exponentially with h. How-
ever, a larger working set takes longer to gather. Hence, at a fixed time, the working set is
exponential with h up to a certain h. Beyond this h, the working set is not gathered yet,
and the curves looks like a polynomial which degree increases logarithmically with n.

The model defines the “useful” working set as the working set gathered until the instan-
taneous miss ratio becomes negligible. The model shows that the useful working set size
depends on p and that, for long global histories, a small increase of p leads to a large increase
of the useful working set. Practically, this means that for a high p and a long global history,
there is a residual miss ratio which will take a very long time to decay.

In other words, programs with branches that are “difficult” to predict are likely to
experience a lot of cold-start misses and will require large branch prediction tables.

IBS benchmarks. Benchmarks real_gce, mpeg_play and nroff exhibit behaviors different
from the 5 other IBS benchmarks.

The behavior of real_gce (at this point of execution) is characterized by a small n value.
A small n means that the working set of each static branch is growing rapidly and represents
a significant fraction of n (the shape of the curve, quasi linear, is typical of this state). Hence
the overall miss ratio is high.

The behavior of nroff is opposite to that of real_gcc. It is characterized by a relatively
high n value and a very good branch predictability. A high n and a small p means that the
working set accumulated on each static branch is small compared with n. This explains why
the overall miss ratio is low.

The behavior of mpeg_play is also interesting. Its n value is of the same order of magnitude
as that of other benchmarks like groff, verilog or video_play. But mpeg_play is characterized
by a high p value : it has branches more difficult to predict than other IBS benchmarks,
even considering a long global history. The model in Appendix A highlights the fact that a
small increase of p increases significantly the working set accumulated at a given time (cf.
curves of Figure 10 and Formula 17). The curve of mpeg_play is typical : for a fixed n, a

INRIA

A Comprehensive Study of Dynamic Global History Branch Prediction 15

higher p is characterized by a more pronounced curvature. The result is a high global miss
ratio.

SPEC benchmarks. The four SPEC benchmarks are characterized by a high n (mcf,
twolf, gap) and a high p (go, twolf, mcf). This results in a miss curve with a strong curvature
(Figure 13).

The high n makes the solid and dashed curves on Figure 13 diverge for a global history
longer than the IBS. The high n and p also makes the a” model diverge for a global history
longer than the IBS (mcf and twolf, Figure 15).

The behavior of gap is characterized by a very high n and a relatively small p, hence a
low miss ratio (somewhat similar to IBS nroff). For go, the high value of p, combined with
a relatively small value of n, incurs a very high miss ratio.

4.2 BPPM Branch Misprediction Ratio

The solid curve on Figures 16 and 17 represents the misprediction interval of BPPM, that
is, the number of dynamic conditional branches per misprediction (higher is better). The
dashed curves represent the inverse of the misprediction probability on (B, Hy) pairs that
were already encountered at least one time and three times respectively.

The solid curve represents a limit for predictors derived from BPPM, whereas the dashed
curves represent a limit for global history branch prediction. The difference between the solid
curve and the dashed curves shows the impact of misses on BPPM prediction accuracy.

For small global history lengths, the solid curve and dashed curves are very close. This is
because the miss ratio for small history lengths is negligible. However, as the global history
becomes longer, the number of misses becomes significant, and the prediction is often given
by lower order Markov predictors.

If there were no misses, the misprediction interval would increase roughly linearly with
the global history length. A significant part of this potential is offset by misses. Nevertheless,
very long global histories (h > 20) are able to improve the prediction accuracy substantially,
as was already observed in [18].

Several reasons can explain this. It was observed in [10] that correlated branches are
generally close to each other in the source code of a program. Dynamic instances of correlated
branches may be separated, in the instruction stream, by a function call, or by a tight loop.
A long global history is needed to capture the correlation.

Self correlation is another reason. A long global history is able to capture a significant
fraction of self correlations. For example, consider a loop with two conditional branches in
its body, one being the loop branch. If the global history is longer than twice the number
of iterations, it is able to capture the self correlation of the loop branch.

RR n°® 4219

16 Pierre Michaud , André Seznec

5 Aliasing, and Dealiased Global History Branch Pre-
dictors

Real branch predictors have to deal with strong hardware constraints, in particular a limited
hardware budget. We must use the storage capacity available as efficiently as possible.

We may distinguish two types of predictors : single-table and multi-table predictors.
Example of single-table predictors are bimodal, gshare, gselect [23].

Previous studies have shown that single-table predictors suffer from aliasing (a.k.a. inter-
ferences between branches) [42, 30, 37]. Aliasing is analogous to cache misses : it comes from
conflicts, capacity constraints, and cold-start effects. Aliasing can be harmless or destructive
[42]. Destructive aliasing has a detrimental effect on branch prediction accuracy.

5.1 Aliasing Model

It was shown in [24] that, in a single-table predictor, a large fraction of aliasing is conflict
aliasing. This is a manifestation of the so-called birthday “paradox”, which observes that the
probability, in a group of 23 people, that two people share the same birthday is approximately
50% [6].

Let us consider a program with n static branches ® and a branch predictor table with N
entries. We try to find the number of branches that are mapped on a table entry. We define
a g-load entry as an entry onto which exactly ¢ static branches are mapped.

This problem # , although presented differently, is similar to the problem discussed in
Appendix A.1, and we can use Formula 11. The average fraction Fj of g-load entries in the
table is

o 2!
q!

(4)

Fy=vg-1(z) —ve(z) =€

with £ = n/N, i.e., the number of static branches over the number of predictor table entries.
One will recognize a Poisson distribution. The average fraction f, of static branches that
are mapped on a g-load entry is

_FyNxq

f q n o (5)
In particular, the fraction of static branches mapped on an aliased entry (¢ > 1) is
1—f1:1—e_zz% when n < N (6)

3For easing the discussion in Section 5.1, we consider static branches (i.e., h = 0), but the model applies
also to (B, H},) pairs.
4This problem is sometimes referred to in the literature as the classical occupancy problem [12]

INRIA

A Comprehensive Study of Dynamic Global History Branch Prediction 17

To derive a misprediction ratio from this model, we introduce the fraction b of static
branches having bias taken, and we assume a one-set model such that all static branches
contribute equally to dynamic branches.

For small z values, most aliased entries are 2-load entries. The probability that two
branches mapped on a 2-load entry have opposite biases is 2b(1 — b). As the two branches
are supposed to contribute equally to dynamic branches, the two-bit counter stored in that
2-load entry “sees” a stream of outcomes with 50% of 1’s and 50% of 0’s. We will assume
that the probability to mispredict a branch when using this entry is 50%. Considering only
mispredictions resulting from aliasing, the overall misprediction probability can be estimated
as

n
Malias ~ b(l - b)ﬁ (7)
In particular when b = 50%,

n
N (8)

-
Malias =

This model shows that, even when the number of entries is much larger than the number
of branches in a program (in a function, in a loop ...), the impact of aliasing on prediction
accuracy is still significant. For example, let us suppose a misprediction probability of 5%
when there is no aliasing (intrinsic misprediction probability). If the number of table entries
is 10 times the number of static branches, aliasing incurs 50% extra mispredictions according
to Formula 8 (for a total 5% + 1/(4 x 10) = 7.5%) while more than 90% of the predictor
table space is not used.

Of course, this model is too simple to reflect the exact behavior of programs. In partic-
ular, a one-set model with all static branches contributing equally to dynamic branches is
obviously not valid for complex programs.

Multi-set model. The program behavior could be better modeled by considering multiple
static branch sets (S;) such that S; C S; for i < j, each set featuring n; static branches and
contributing to a fraction d; of dynamic branches. For example, a program consisting of a
double-nested loop would be modeled with two sets S; C Ss, S featuring branches in the
inner loop and Ss featuring the whole loop nest.

5.2 Some Dealiasing Primitives

In a single-table GHBP like gshare [23], a lot of the available space is wasted, as shown by
the previous model. This observation led to proposing ways to better utilize the predictor
space and overcome aliasing effects. In a GHBP, the aliasing problem is amplified in two
ways :

RR n°® 4219

18 Pierre Michaud , André Seznec

e The working set size increases with the history length, hence the probability of destruc-
tive aliasing. There is a history length h,,: beyond which, instead of improving the
prediction accuracy, we degrade it. This history length h,,: depends on the predictor
size. It depends also on the application, and it may even vary during the execution of
a single application [20]. In the remaining, we will refer to this problem as the history
length dilemma.

e As we increase the history length, we decrease the intrinsic misprediction probability
(i.e., without aliasing). Consequently, the impact of aliasing becomes more important.
For example, let us consider 1% of destructive aliasing. If the intrinsic misprediction
probability is 10%, removing aliasing means removing 10% of mispredictions. On the
other hand, if the intrinsic misprediction probability is 2%, removing aliasing means
removing 50% of mispredictions.

Several “dealiased” GHBP have been proposed in the literature, among which McFar-
ling’s bimodal/gshare hybrid [23],, e-gskew and 2BC-gskew [24, 31], bi-mode [22], YAGS [T7].
Other predictors have been proposed that use profile information passed to the hardware
by compiler hints (see [28] for example). In this study we focus our attention on purely
dynamic GHBPs. Also, we consider conditional branch predictors independently from the
branch target buffer (some processors do not have any BTB). Previously proposed dealiased
predictors share common characteristics :

e They use multiple tables and multiple global history lengths
e Prediction information may be redundantly replicated across tables
e They use a partial update (cf. Section 2.3)

e Tables are indexed with different hashing functions

The reason for using multiple global history lengths is to decrease cold-start and capacity
aliasing effects (history length dilemma) : if an entry is aliased in a table because the working
set is too large, we will take the prediction from a table with a shorter global history and
hence a smaller working set. The cost of redundant information is a problem in dealiased
predictors, and the goal of partial update is to minimize redundancy without impairing
the prediction accuracy. However, we have seen in Section 5.1 that the space of a single
table is very poorly used. Then we can afford a certain amount of redundancy if this
redundancy allows to overcome aliasing effects. Often, dealiased predictors use different
hashing functions to index different tables. This decreases the impact of conflict aliasing by
decoupling conflicts : if a table entry is aliased because of a conflict, there is a good chance
that the entries read in other tables are not aliased. It should be noted that indexing tables
with different global history lengths is often sufficient for decoupling conflicts.

From dealiased predictors previously proposed, we extracted a few dealiasing primitives
that are listed on Figure 5. A primitive describes a way to obtain a new predictor from
input predictors. In particular, it gives a method for obtaining the overall prediction and

INRIA

A Comprehensive Study of Dynamic Global History Branch Prediction

RR n°® 4219

BIAS-SPLIT

e predictor

MATCH-SELECT

tag

BIAS-AGREE

ro
o
12bc;
r

bias bias
predictor

2be 1 pred, ‘pred
|
1 predictor X |

|
default 11 : 2 : 13 :
|

Figure 5: Dealiasing primitives

MAJORITY-VOTE

BIAS-INJECT

bias
predictor

META-SELECT

20 Pierre Michaud , André Seznec

24-bit global history

evict insert
ity = LLLLLLTTTPILTTTTTTRIT DT T b= piex

9-bit folded history

Figure 6: Global history compression : example of a 24-bit global history folded onto 9 bits.

a method for updating the input predictors. In the following, dealiased predictors will be
described by specifying two-bit counter tables and using the primitives depicted on Figure
5.

Two-bit counter tables are defined either by describing a hashing function, or as the
result of a primitive on a two-bit counter table. Two-bit counter table predictors often used
are :

bimodal[A,m] = A mod 2™
gshare[A, Hp,m] = (A @ (H x 2m_h)) mod 2™

with A the branch address, Hy the global history of length h, and @ the bit-wise XOR
operation.

Global history hashing. When h > m, it is necessary to compress the global history. In
this study, we compressed the global history in the following way :

fold(Hy,m) = @ Hy x 27™ mod 2™
Jj=0

It should be noted that global history folding is simple to implement. Updating the com-
pressed history involves only two input bits : the bit inserted in the global history and the
bit evicted from it. Figure 6 shows an example of a 24-bit global history folded onto 9
bits. This implementation requires to maintain and checkpoint both the non-compressed
and compressed versions of the global history.

Note that when h > m, global history aliasing may occur, i.e., two distinct global history
values may result in the same compressed value. Whatever hashing function, we cannot avoid

INRIA

A Comprehensive Study of Dynamic Global History Branch Prediction 21

aliasing. A good hashing function must be simple to implement and distribute global history
values seen by a static branch evenly onto table entries

An interesting property of history folding is that, when considering two distinct global
history values, if these values only differ at bit positions located within a group of m con-
secutive bits, compressed values are distinct (path locality). A possible weakness of history
folding concerns regular patterns with period equal to m. Another possible weakness con-
cerns history values generated by bit rotations on a given value. This may happen for
example on loop branches. To overcome this problem, it may be useful to add a level of
hashing, like for example

hash_fold(Hy, m) = fold(Hp,m) & (2 x fold(Hp,m — 1))

Unless otherwise specified, we used a simple fold(Hp,m) in our simulations.

The bias-split primitive. The bias-split primitive is extracted from the bi-mode predic-
tor [22] (cf. Figure 5). It takes as input a two-bit counter table T and a bias predictor, and
it returns T :

bias-split(bias_predictor, table)

The bias-split primitive duplicates the two-bit counter table given as input. Both copies use
the same hashing function, hence, physically, this is implemented with a single table (the
multiplexor depicted on Figure 5 can be viewed as part of the addressing logic).

The bias prediction is used to select which half of the table will be used for the final
prediction. The two-bit counter selected for the overall prediction is always updated with
the branch outcome. If the overall prediction is correct but the bias prediction disagrees
with the branch outcome, the bias predictor is not updated. Otherwise, the bias predictor
is updated with the branch outcome. Hence, assuming the bias predictor implements a
partial update (which is the case if the bias predictor is a single-table predictor), the overall
predictor implements a partial update.

The bi-mode predictor [22] can be described as

Ty = bimodal[A, m)

T5 = gshare[A, H,,m — 1]
bi-mode[h, m] = bias-split(Ty, T>)
size: 2™ x 4 bits

The bias-agree primitive The bias-agree primitive was introduced in [35]. It takes as
input a bias predictor and a two-bit counter table T, and it returns T :

bias-agree(bias_predictor, table)

The bias-agree primitive simply changes the way information is coded. Instead of predicting
directly the outcome of the branch, the two-bit counter table predicts whether or not the

RR n°® 4219

22 Pierre Michaud , André Seznec

branch outcome will agree with the bias prediction. This can be done, for example, by an
XOR with the bias prediction.

The two-bit counter is updated accordingly : if the prediction is correct, it is strength-
ened, else it is weakened.

If the overall prediction is correct but the bias prediction disagrees with the branch
outcome, the bias predictor is not updated. Otherwise, the bias predictor is updated with
the branch outcome. Hence, assuming the bias predictor implements a partial update, the
overall predictor also implements a partial update.

One of the simplest predictor based on this primitive is agree-pu (pu means partial update)

T, = bimodal[A, m)

Ty = gshare[A, Hy,,m)

agree-pulh, m] = bias-agree(Ty,Ts)
size: 2™ x 4 bits

The majority-vote primitive. The majority-vote primitive takes as input three predic-
tors :

majority-vote(predictorl, predictor2, predictor3)

The overall prediction is obtained by a majority vote on the three predictions. Upon a
misprediction, the three predictors are updated with the branch outcome. The majority-
vote primitive implements a partial update : upon a correct prediction, we only update
predictors which gave a correct prediction, i.e., if two predictors are correct but the third is
wrong, the third predictor is not updated.

The majority-vote primitive was first used in the gskew family of predictors [24, 31], which
perform a majority vote on three two-bit counter tables. In practice, for these predictors
to be efficient, the tables indexed with the same global history length must use different
hashing functions. We define 3 extra hashing functions gsharel, gshare2 and gshare3. For a
fixed table size, it is not difficult to find three good hashing functions that will not increase
significantly the predictor access time (for example, one can use the functions defined in [24]).
For the purpose of simulation, wishing to obtain good results on a wide range of predictor
table sizes and global history lengths, we defined the following three hashing functions :

gsharel[A, Hy,m] = gshare[A @ (A/2%), fold(Hp, m), m]

gshare2[A, H,,m] = gshare[A @ (A/28), fold(Hp,m — 1), m)]

gshare3[A, H,,m] = gshare[A & (A/2'?), fold(Hp, m — 2),m]
From our experimentations, these functions have a good average behavior. The e-gskew
predictor [24] can be described as follows :

INRIA

A Comprehensive Study of Dynamic Global History Branch Prediction 23

T, = bimodal[A, m]

Ty = gsharel[A, Hy, m]

Ts = gshare2[A, Hy, m]

e-gskew[h, m] = majority-vote(Ty, T, T3)
size: 2™ x 6 bits

The meta-select primitive. The meta-select primitive was introduced in [23]. It takes
as input two predictors and a two-bit counter table :

meta-select(predictorl, predictor2, meta_table)

The two-bit counter table delivers a meta-prediction. The meta-prediction is used to select
which of the two predictors will give the overall prediction.

Unless stated otherwise, the meta-select we use in the remaining implements a partial
update : upon a correct prediction, we update only the predictor which was
selected.

As in [23], the meta-predictor is updated only when the two predictors give different
predictions : in this case, if the prediction was correct, the two-bit selector is strengthened,
else it is weakened.

As in [23], we define a bimodal/gshare hybrid in the following way :

T1 = bimodal[A, m)

T, = gshare[A, Hy,m)|

Tmeta = gshare3[A, Hy, m)

bimodal-gshare[h, h',m] = meta-select(Ty,Ta, Tmeta)
size: 2™ x 6 bits

One should note that this predictor is not the usual bimodal/gshare hybrid. First we use
a partial update, whereas in [23] both predictors are always updated. Second, the hashing
function used on the meta-predictor is different from those used on the two predictors (in [23]
the meta-predictor uses the same index as the bimodal predictor; in the hybrid predictor of
the Alpha 21264 [21], the meta-predictor uses the same index as the global history predictor).

Actually, for partial update to work well, it is necessary to use a different hashing func-
tion. For example let us consider two branches that are in conflict in the bimodal predictor.
This conflict may be solved by predicting one branch with the bimodal predictor and the
other branch with the gshare predictor. Thanks to partial update, the bimodal predictor
entry will be dealiased. But for this to be possible, the two branches must be mapped on
different meta predictor entries.

The 2bc-gskew predictor introduced in [31] also uses the meta-select primitive :

RR n® 4219

24 Pierre Michaud , André Seznec

Ty = bimodal[A, m)

T, = gsharel[A, Hy, m)

T3 = gshare2[A, Hy, m)

Tmeta = gshare3[A, Hp,m]

2bc-gskew[h, m] = meta-select(majority-vote(T1,T2,T3), T1, Tmeta)
size: 2™ x 8 bits

The match-select primitive. The match-select primitive is extracted from the YAGS
predictor [7]. A quite similar primitive was used in the hybrid next-trace predictor proposed
in [16] for the trace processor [29].

The match-select primitive takes as input a two-bit counter table and a default predictor :

match-select(table, de fault_predictor)

This primitive augments each entry of the input two-bit counter table with a tag. This tag
represents a few bits from the branch address. Upon a match with the branch address, the
corresponding two-bit counter is used as the final prediction, else the default prediction is
used. If there was a match, the corresponding two-bit counter is updated with the branch
outcome else, if the default prediction is wrong, the missing tag is written in the table and
the corresponding counter is initialized according to the branch outcome.

Note that match-select implements a partial update : no entry is allocated in the tagged
table as long as the default prediction is correct (also, when the default prediction agrees
with the branch outcome, it is updated with the branch outcome, else if it disagrees with
the branch outcome, it is updated only if the overall prediction is wrong).

In practical implementations of the match-select primitive, tags are short. Theoretically,
with ¢ tag bits, the probability of aliasing on the tag value is 2.

Unlike in [7], to prevent any problem, we will hash the address bits for obtaining the
tags. Low-order address bits are often used as index bits (typically, gshare with a short
global history) and a conflict on a table index may coincide with a conflict on the tag value.

The original YAGS predictor as described in [7] is not the simplest utilization of the
match-select primitive. A simpler one, which we define as gtags, is

T, = gshare[A, Hp,,m)|

T> = bimodal[A, m)

tag = gshare3[A,0, 6]

gtags6h, m] = match-select(T1,T>)
size: 2™ x 10 bits

The “6” appended to gtags means that we use 6-bit tags. The YAGS predictor [7] can be
described as

INRIA

A Comprehensive Study of Dynamic Global History Branch Prediction 25

T, = gshare[A, Hy,m — 1]

T> = bimodal[A, m)

tag = gshare3[A,0, 6]

Y AGS6[h, m] = match-select(bias-split(T2, T1), T2)
size: 2™ x 10 bits

6 Experimental Study of Dealiasing Primitives

In this section, we conduct an experimental study of the dealiasing primitives described in
Section 5.2. Unless stated otherwise, two-bit counter table entries were initialized randomly,
50% in state 0 and 50% in state 3.

6.1 The Bias-Split, Bias-Agree and Bias-Inject Primitives

The bias-agree and bias-split primitives are very close in the way they are used and behave.
The bias-split and bias-agree primitives tackle the aliasing problem with the same lever :
turning destructive aliasing into harmless aliasing [35, 22].

The bi-mode and agree-pu predictors provide, in general, a better prediction accuracy
than a single gshare table. This can be understood with Formula 7 : mgias = b(1 — b)n/N.
With b = 0.5, we have mgi.s = 0.25n/N. If we double the size of a gshare table, we divide
destructive aliasing by two. On the other hand, if instead of doubling the gshare table we
implement a bias predictor so that b = 0.1, then mg;.s = 0.09n/N. We divide destructive
aliasing by almost three.

In this section, we compare the bias-split and bias-agree primitives. We show experi-
mentally that bias-split is slightly more efficient than bias-agree. Figures 18 and 19 show
the misprediction percentage for a bi-mode and an agree-pu predictor having a fixed gshare
table (4k entries, h = 10) and a bimodal table which size is varied from 256 to 32k entries
The gshare table was initialized optimistically both for bias-split and bias-agree.

We observe that aliasing in the bias predictor impairs significantly the overall prediction
accuracy for both primitives. However, agree-pu is more sensitive to aliasing in the bias
predictor than bi-mode (Figure 18, small bimodal predictor size). Also, it can be observed
that, even when there is little aliasing in the bimodal table, bi-mode keeps an advantage
over agree-pu (mcf, twolf).

Analysis. Sometimes, the bias predictor mispredicts the bias of a branch. Bias mispre-
diction happens mainly upon destructive aliasing in the bias predictor and for branches that
are weakly biased. In general, a bias misprediction is a branch misprediction (note that
branch mispredictions occur more often than bias mispredictions, my, > Ps when p < 0.5,
cf. Section 2.1). However, this does not mean that the branch is unpredictable. It may be
predicted correctly using a different hashing function or a longer global history.

RR n°® 4219

26 Pierre Michaud , André Seznec

On the bi-mode predictor, upon a bias misprediction, the gshare predictor is able to give
a correct prediction, at the cost of using two table entries instead of one. On the other
hand, the agree-pu predictor is able to correct a bias misprediction only if the occurrence of
a global history value always coincides with a fixed bias prediction (either correct or wrong).

To show that this analysis is correct, we have performed two experiments. Figures 20 and
21 show the results obtained when two-bit counters in the bimodal predictor are replaced
with three-bit counters. The use of three-bit counters in the bimodal predictor decreases the
number of bias mispredictions. Now bi-mode and agree-pu have very close behaviors. Said
differently, the use of three-bit counters in the bias predictor benefits more to bias-agree
than to bias-split.

Figures 22 and 23 show the results obtained when we use a gshare[A, Hig, m] table for
the bias predictor instead of a bimodal table, with m varied from 13 to 19. Now the behaviors
of bias-split and bias-agree are very close because the occurrence of a global history value
often coincides with a fixed bias prediction.

A new primitive : bias-inject. A possible weakness of bias-split is that, if branch biases
are not distributed evenly between taken and not-taken, one half of the split table will be
less used than the other half. This is not a problem with bias-agree. This weakness of bias-
split does not appear on our benchmarks because the bias distribution is nearly balanced.
However, an optimizing compiler may organize the program control flow so that branches
are more often not-taken than taken [2]. For codes produced by such compiler, the behavior
of bias-split may be degraded

It is possible to combine the strength of bias-split and bias-agree in a new primitive :
bias-inject. This primitive is depicted on Figure 5. It takes as input a bias predictor and a
two-bit counter table T, and it returns T :

bias-inject(bias_predictor, table)

Like bias-agree, bias-inject records in the table whether or not the branch direction agrees
with the bias prediction. It uses a partial update, like bias-agree and all the primitives
introduced previously. The difference with bias-agree is that the bias prediction is concate-
nated with the global history so that it is hashed like a global history bit. We define the
agree-bimode predictor :

Ty = bimodal[A, m)

T, = gshare[A, Hy, m]

agree-bimode[h, m] = bias-inject(Ty,T»)
size: 2™ x 4 bits

Like bias-agree and bias-split, bias-inject turns aliasing harmless in the gshare table. Like
bias-split, it is able to correct a bias misprediction even if the occurrence of a global history
value does not always coincides with the same bias prediction. But unlike bias-split, bias-
inject makes no assumption on the bias distribution.

INRIA

A Comprehensive Study of Dynamic Global History Branch Prediction 27

Figures 24 and 25 compares bi-mode and agree-bimode predictors. As can be observed,
bias-split and bias-inject have very similar behaviors.

Conclusion. We have shown that the bias-split and bias-agree primitives are very similar,
with bias-split being slightly more efficient than bias-agree. We introduced a new primitive,
bias-inject, which combines the strength of bias-split and bias-agree. These primitives allow
to build simple 2-table dealiased predictors like bi-mode.

6.2 The Meta-Select and Majority-Vote Primitives

The meta-select and majority-vote primitives are methods for choosing between two predic-
tors P1 and P2. Generally, predictor P2 uses a global history shorter than P1. We want to
determine which of P1 or P2 is likely to give the more accurate prediction for a particular
branch. Meta-select uses a two-bit meta predictor for choosing between P1 and P2, whereas
majority-vote uses a third predictor P3.

The differences between meta-select and majority-vote are subtle. We try in this section
to characterize them.

Experiment 1. Figures 26 and 27 show the result of an experiment emphasizing one of
the difference between meta-select and majority-vote. Here we are simulating three 4k-entry
tables

T; = bimodal[A, 12]
T, = gsharel[A, Hp, 12]
T5 = gshare2[A, Hy,12]

And we compare the following predictors

meta-select(Ty, Ty, T3)

majority-vote(T, T, T3)

majority-vote(Ty, T», bias-agree(Ty,T3))
As can be observed, when the global history is small, meta-select and majority-vote behave
similarly. However, as the global history is increased beyond 10 bits, the misprediction
percentage is degraded faster with majority-vote than with meta-select. With meta-select,
as most branches are predicted correctly with the bimodal table 77, aliasing in the meta-
predictor T3 is mostly harmless. On the other hand, with majority-vote, aliasing in table
Ts is 50% destructive. By applying bias-agree on table T3, majority-vote becomes almost as
good as meta-select. The equivalence can be easily verified with boolean identities :

Pmeta = P3P1 + D3P2

Now let us consider a majority-vote

Dyote = P1P2 + P1Ds + P2ps

RR n°® 4219

28 Pierre Michaud , André Seznec

where pf is obtained by a bias-agree of p; over ps (let us assume bias-agree is implemented
with an exclusive-or)

Py =p1 ®ps

If p3 =1, pé =p1 and Pmeta = P2 = Puote- 1f p3 =0, P’3 = p1 and pmeta = Pl = Pyote- This
shows that prediction information is coded exactly in the same way.

After applying bias-agree on table T3, majority-vote and meta-select differ only in the
way tables are updated. Meta-select updates the tables less often than majority-vote. This
concerns tables T} and T» (on a correct prediction, majority-vote reinforces both predictors if
they both gave a correct prediction, whereas meta-select reinforces only the predictor which
was selected) as well as table T3 (when 77 and T» give identical predictions, meta-select
does not update 73). This “minimal” partial update in meta-select helps decrease aliasing
effects.

Experiment 2. Figures 28 and 29 show another experiment highlighting the differences
between meta-select and majority-vote. Here, the global history length is kept fixed to 10
on table T5, and it is varied from 0 to 10 on table T5.

The interesting point is for A = 0 on table 73. As expected, majority-vote has a bad
behavior. On the other hand, meta-select is able to take advantage of the 10-bit global
history on T5.

When we apply bias-agree on table T3, the behavior of majority-vote is greatly improved.
It should be noted that this effect does not come from a reduction of destructive aliasing :
with h = 0, there is little aliasing on table T5.

Let us consider a branch which is perfectly predicted by gshare and often mispredicted
by the bimodal predictor. On a simple majority-vote, we would like table T3 to give a
prediction different from table T4, so that the overall prediction is decided by the gshare
table T5. Such state is a stable state thanks to partial update. However, with h = 0 on
table T3, majority-vote alone is not able to reach such stable state because 17 and T3 always
deliver identical predictions. By utilizing a primitive like bias-agree ® on table T3, we skew
the updating of 77 and T3. For branches which are often mispredicted by the bimodal table,
there is statistically a good chance to succeed in obtaining different predictions from 77 and
T3 and put the predictor in a stable state.

As can be observed on Figure 28, even improved with a bias-agree, majority-vote is still
slightly less efficient than meta-select. Let us consider a branch which is perfectly predicted
by gshare and sometimes mispredicted by the bimodal table. For reversing the prediction of
T, or T3, we need consecutive mispredictions (partial update, on majority-vote, reinforces a
predictor when it gives a correct prediction). For some branches, this may never happen. In
this case, majority-vote cannot reach the stable state. On the other hand, meta-select does
not update 73 when 77 and 7% give identical predictions, in particular correct predictions :
on each misprediction, the predictor gets closer to the stable state.

5we observed a similar effect with bias-split

INRIA

A Comprehensive Study of Dynamic Global History Branch Prediction 29

Now let us analyze the impact of the global history length on table T3. As expected,
on majority-vote, increasing the global history on table 73 increases the chance to reach a
stable state. However, it also improves the behavior of meta-select (cf. video_play on Figure
29). The following experiment allows to better understand this observation.

Experiment 3. In this experiment, we study the behavior of meta-select(T1,T>,Ts),
with Ty = bimodal[A, m], T> = gsharel[A, Hip,m] and T3 = gshare2[A, Hy, m], for m = 12
(3x4k) and m = 16 (3x64k).

Figures 30 and 31 show the misprediction percentage when h, i.e., the global history
length on the meta-predictor, is varied from 0 to 10. The meta-select primitive described in
this study uses a partial update, whereas the original meta-select [23] uses a total update
(both predictors are always updated). On Figure 30, we show results for both partial update
(“pu”) and total update (“tu”).

When aliasing is significant (3x4k), partial update is better than total update because
it decreases aliasing. However, when there is little aliasing (3x64k), total update is better,
especially for small h values (video_play).

Let us consider a branch which is perfectly predictable by gshare. Let us assume the
branch is currently predicted by bimodal (for example 90% correctly), and bimodal mispre-
dicts the branch for a certain global history value. With h = 0, it is theoretically possible
to predict the branch 100% correctly by changing the meta-predictor state so as to select
gshare instead of bimodal for that static branch.

However, with partial update, gshare will be updated only when the bimodal predictor
mispredicts the branch. This means that gshare will be updated only for the global history
value corresponding to bimodal predictor failures, but will not be updated for other global
history values. Hence, with h = 0, the meta-predictor is not able to select gshare for that
static branch because bimodal is correct more often than gshare. On the other hand, with
total update, the meta-predictor is able to change its selection.

With partial update, this problem can be partly solved by using the same global history
length on the meta-predictor and on the gshare table (cf. video_play on Figure 31). In this
case, the meta-predictor selects gshare only for the global history value corresponding to
bimodal predictor failures.

More generally, as aliasing in the meta-predictor is mostly harmless, increasing the global
history length on the meta-predictor is often beneficial. A given branch may be better
predicted by gshare for certain global history values, and better predicted by bimodal for
others, either because of aliasing in the gshare table or because of periodic branch behaviors.

The 2bc-gskew predictor. The 2bc-gskew predictor (cf. Section 5.2), is a 4-table pre-
dictor combining the meta-select and majority-vote primitives. On Figures 32 and 33, we
compare a 4-KByte 2bc-gskew (“meta/vote”) predictor with a simple 4-KByte hybrid pre-
dictor (“meta”) . More precisely, the 2bc-gskew predictor is

meta-select(majority-vote(Ty,To,T3), T1, Theta)

RR n°® 4219

30 Pierre Michaud , André Seznec

with

T, = bimodal[A, 12]

Ty = gsharel[A, Hp,12]

T3 = gshare2[A, Hy,12]
Timeta = gshare3[A, Hy, 12]

The hybrid predictor is

meta-select(Ty, Ty, Ts)
with

T, = gsharel[A, Hy, 13]

We observe that a 4-table 2bc-gskew is slightly better than a simple 3-table hybrid. This
slight improvement comes from a better identification of (B, Hp) pairs with a long reuse
distance, these branches being then predicted with the bimodal table.

To understand this, let us consider a gshare table, and a branch with a long reuse distance.
This branch has a high probability of being mapped on an aliased entry of the gshare table.
Let us assume this probability is close to 1. The probability to get a wrong prediction from
the gshare table is roughly 1/2 (destructive aliasing). Now, we split the gshare table in two
half-smaller tables, and we decide to use the gshare prediction only when the two tables give
identical predictions (this is what is done in 2bc-gskew). The probability of aliasing for a
branch with a long reuse distance is close to 1 on both tables. But the probability to get a
wrong prediction from the gshare tables is only 1/4. As can be seen on Figures 32 and 33,
this is useful when the global history is long.

Note that it is possible to replace the majority-vote in 2bc-gskew by a meta-select
(“meta/meta”) :

meta-select(meta-select(T1, T, T3), T1, Trneta)

As can be observed on Figures 34 and 35, “meta/vote” is practically equivalent to
“meta/meta”. The first meta-predictor Ty,eto detects branches that really need to be pre-
dicted with gshare. However, because of aliasing in Tes,, certain branches that would
be better predicted by the less-aliased bimodal table are inopportunely steered to gshare.
The second meta-predictor T3 acts as a corrector for the first one, by putting back into the
bimodal table branches which were inopportunely evicted from it by the first meta-predictor.

Conclusion. Meta-select seems a more general primitive than majority-vote. We were
able to find configurations (3-table predictors) where replacing majority-vote by meta-select
is clearly advantageous, but no configurations where majority-vote is clearly advantageous.

INRIA

A Comprehensive Study of Dynamic Global History Branch Prediction 31

6.3 The Match-Select Primitive

The match-select primitive performs roughly the same work as meta-select, but in a very
different way.

Figures 36 and 37 show the misprediction percentage of Y AGS6[h,12] and gtags6[h, 12]
for a global history length h varying from 0 to 64 bits. It can be observed that these two
predictors, both based on the match-select primitive, have very similar behaviors, gtags
being marginally better than Y AGS.

In fact, there is no clear justification for combining match-select with bias-split, as in
YAGS. The purpose of bias-split is to make aliasing harmless. However, as a 2-bit counter
in the tagged table is owned by a single branch at a time (provided tags are long enough),
bias-split is practically useless.

Global history aliasing. As noted previously in Section 5.2, when the global history
length is greater than the number of indexing bits, global history aliasing may occur. Ex-
amples of global history aliasing appear on Figure 37 on wideo_play for h = 50 and on
verilog for h > 44. For video_play, it is possible to remove this particular instance of global
history aliasing by changing the hashing function, for example using gshare2 instead of
gshare (note that this instance of aliasing concerns gtags[50, 12], but we also observed it on
Y AGS[50,13)).

The instance of global history aliasing observed on wverilog concerns a loop branch which
“sees” global history values generated by bit rotations. As noted previously in Section 5.2,
this type of aliasing can be removed by replacing fold(Hp,m) with hash_fold(Hy,m). In
all subsequent simulations, we used hash_fold ©.

Match-select vs. meta-select. To better understand what distinguishes match-select
and meta-select, we compare a gtags4 predictor

Ty = bimodal[A, m]

Ty = gshare[A, Hp,m)|

tag = gshare3[A,0,4]

gtagsd[h, m] = match-select(Ts, T1)

with a meta/meta predictor

T, = bimodal[A, m)]

Ty = gsharel[A, Hy, m]

Tmetar = gshare2[A, Hy,m]

Tmeta2 = gshare3[A, Hy,m]
meta-select(meta-select(Ty, Ta, Tmeta1), T1, Tmeta2)

Note that these two predictors are comparable. First they have equal size. Second, they
feature the same quantity of “bimodal” prediction, “gshare” prediction, and “selection”

Swe did not observe a significant impact on benchmarks other than wverilog

RR n°® 4219

32 Pierre Michaud , André Seznec

information. For example, with a total 4-KByte budget, meta/meta and gtags4 both fea-
ture 1 KB of “bimodal” prediction, 1 KB of “gshare” prediction, and 2 KB of “selection”
information.

The result of this comparison is presented on Figures 38,39, 40 and 41, for a total budget
of 4 KBytes (m = 12) and 64 KBytes (m = 16). We also show the misprediction percentage
of a gtags6 (i.e., 6-bit tags), for a budget of 5 KBytes and 80 KBytes.

On Figures 40 and 41, we show two versions of meta/meta : one initializes the meta-
predictors randomly (“rand”, i.e., the default initialization), the other initializes table Ty, ¢sq2
so that T is selected and table Tyetq1 S0 that T is selected (”bim/gsh”).

Match-select and meta-select differ in the way they behave under aliasing. The advantage
of match-select appears on cold-start and capacity aliasing.

e Cold-start aliasing. On the first occurrence of a global history value, match-select
naturally selects the bimodal table, which delivers a reasonably accurate prediction.
Meta-select, on the other hand, may incur a significant fraction of cold-start mispre-
dictions (“bim/gsh” vs. “rand”). However, it should be noted that the “rand” version
of meta/meta is overly pessimistic : unless the program previously running on the
machine was badly predicted with the bimodal table, table T)y¢¢q2 should be in a state
in which the bimodal table is selected for a majority of branches.

e Conflict aliasing. Conflict aliasing corresponds to a situation such that only a small
fraction of static (B, Hy) pairs are mapped on 2-load entries. This corresponds to a
small z in Formula 6. In this situation, a meta-predictor is able to identify aliased
entries and discard them, keeping the benefit of a majority of entries that are not
aliased. Moreover, being adaptive, the meta-predictor is able to take advantage of
harmless aliasing. It can be observed on Figure 38 that when the predictor does
not suffer too much from cold-start and capacity aliasing, a double meta-predictor
(“meta/meta”) may be more efficient than a 4-bit tag (nroff, sdet, video_play).

e Capacity aliasing. Capacity aliasing corresponds to a situation where a significant
fraction of static branches are aliased. Temporal locality is crucial in this situation.
An entry may be aliased at some times, and not aliased at other times. Referring to
the multi-set model suggested at the end of Section 5.1, a branch may be aliased in set
S and not aliased in set S; C S3. Capacity aliasing occurs when set Ss is large and
contribute to a significant fraction of dynamic branches. As long as the z in Formula
6 is greater than 4, doubling the table size, i.e., dividing = by 2, hardly decreases the
number of aliased branches. In this situation, match-select is very efficient because it
is able to detect when an entry can be used safely. On the other hand, meta-select is
not very efficient because it does not know when an entry should be used or not. This
weakness of meta-select appears on Figures 38,39, 40 and 41 when the global history
is long. It also appears very clearly for real_gcc.

To corroborate the analysis, Figures 42 and 43 show the percentage of dynamic
branches which use the gshare predictor on a 4-KByte meta/meta and a 5-KByte

INRIA

A Comprehensive Study of Dynamic Global History Branch Prediction 33

gtags6. The figure also shows the percentage of Tpeto1 updates in meta/meta that
result in a change of the meta-prediction. First, we observe that match-select often
permits using the gshare predictor more often than meta-select. For example, with a
10-bit global history, almost 50% of predictions are obtained from the gshare predictor
when match-select is used, which is roughly twice higher than when meta-select is
used. As can be observed, for real_gcc, go and twolf, table Ty,¢141 €xperiences a signifi-
cant fraction of meta-prediction transitions. This is a symptom of the meta-predictor
hesitating between bimodal and gshare, gshare being more accurate than bimodal at
certain times (non aliased entry), and less accurate at other times (aliased entry).

Conclusion. The match-select primitive is characterized by its ability to obtain accurate
predictions out of aliased entries. Practically, match-select can only improve the prediction
accuracy : in the worst case, all accesses to the tagged table are misses, and predictions are
given by the default predictor. An other advantage of match-select is that it is very effective
after context switches [31].

6.4 Approximating BPPM by Cascading Several Match-Select

From Figures 40 and 41, even with a large hardware budget, it is difficult to exploit a global
history greater than 30 with a gtags or a 2bc-gskew, especially for benchmarks with a large
working set like real_gce, go and twolf. From our experiments, even with a larger hardware
budget and wider tags, gtags is limited.

One limitation is the huge number of misses for very long global history lengths. These
are cold-start misses (cf. Figures 12 and 13). and capacity misses. For example, let us
assume 10% of dynamic branches miss the gshare table. If the default prediction is obtained
from a bimodal table having a 90% prediction accuracy, then 1% of dynamic branches are
mispredictions on misses. If the misprediction ratio is already very low, for example 2%,
misses contribute to 50% of mispredictions.

This problem can be alleviated by using, as default predictor, a predictor more accurate
than a bimodal table, for example a gtags using a moderately long global history. One could
view such predictor as a “second order” approximation of BPPM.

On Figures 44 and 45, we compare a BPPM predictor and a predictor obtained by
cascading two match-select :

T, = gsharel[A, Hy, m)

Ty = gsharel[A, Hy 4, m]

T3 = gsharel[A,0,m)

gtagslh, h/4, m] = match-select(Ty, match-select(T2,T3))

The “middle” table T5 uses a global history length which is one fourth the global history
length h used on table Ti. We simulated three hardware budgets : 208 KBytes (m = 16,
10-bit tags), 20 KBytes (m = 13, 7-bit tags) and 9 KBytes (m = 12, 6-bit tag). With a 9 KB
budget, it seems difficult to exploit global histories longer than 20. With a 20 KB budget,

RR n® 4219

34 Pierre Michaud , André Seznec

we can exploit global histories up to 40 bits on the IBS. As we increase the hardware budget,
we are able to exploit even longer global histories and get closer to a BPPM predictor.

Figure 46 compares BPPM and cascaded match-select when the maximum global history
length is fixed to h = 64. On the x-axis, we vary the logs of the number of entries per table.
The tag width is fixed to 10 bits. Three configurations are displayed : a 3-table configuration
using global history lengths (64, 16,0), a 4-table (64, 16,8,0) and a 5-table (64, 32,16, 8,0).

Figure 47 shows the same comparison for the SPEC benchmarks with a maximum global
history h = 32. The configurations simulated are a 3-table (32,8,0) , a 4-table (32,8,4,0)
and a 5-table (32,16,8,4,0)

As can be observed, the gap between BPPM and cascaded match-select diminishes as
we increase the number of tables and the number of entries per table. However, it seems
difficult to close this gap with reasonable hardware budgets. Referring to the multi-set model
suggested at the end of Section 5.1, the program can be modeled with several branch (more
precisely “static” (B, Hp) pairs) sets (S;)i=1..n contributing to a fraction d; of dynamic
branches. In general, the overall set S, is very large, requiring a huge table. Although
contribution d,, is usually negligible compared with 1, it may not be negligible compared
with the misprediction ratio.

Remark. In principle, if we use a sufficient number of tables, we can get as close to BPPM
as wished. However, in our experimentations, we observed that, as we increase the number
of tables, cascaded match-select suffers from partial update. By running simultaneously
partial update and total update on 65 tables, we observed a pathological behavior due to
partial update.

For example, consider a branch which is strongly biased, but sometimes takes the direc-
tion opposite to the bias. As long as the branch is correctly predicted with h = 0, no entries
are allocated in the other tables for this branch. When the branch takes the “bad” direction,
it is mispredicted : entries are allocated in other tables, the corresponding two-bit counters
being initialized with the “bad” outcome. This corresponds to a certain global history value
Hgy. If the next match is on Hgy, a single misprediction is generated, and all counters with
a “bad” prediction are corrected at once. However, if the next (longest) match is on level
H;, we correct only levels j < i, leaving the possibility of extra mispredictions generated by
subsequent matches on levels j > i. When using few tables (for instance 3), partial update
is not really penalizing, even for large budgets. When using many tables, total update is
asymptotically better but requires very large hardware budgets.

6.5 Conclusion

We studied in this section six dealiasing primitives extracted from GHBPs previously pro-
posed in the literature. Three of these primitives, bias-agree [35], bias-split [22], and bias-
inject, are nearly equivalent. These three primitives allow to build simple dealiased predic-
tors using only 2 tables, like the bi-mode predictor [22]. Such 2-table predictors are worth
considering as L1 predictors.

INRIA

A Comprehensive Study of Dynamic Global History Branch Prediction 35

More accurate (and more complex) dealiased predictors can be built using the selection
primitives, majority-vote, meta-select and match-select. We have studied the differences
between majority-vote [24] and meta-select [23], and we have shown that meta-select is
generally a slightly more efficient selection primitive than majority-vote, because there is a
bias-agree hidden in meta-select. Like for majority-vote, the dealiasing power of meta-select
relies on the use of different hashing functions and a partial update [24].

The match-select primitive, extracted from the YAGS predictor [7], performs a selection
like majority-vote and meta-select. Match-select is particularly effective at overcoming cold-
start and capacity misses. We have shown that cascading two match-select allows to use
very long global histories, such predictor being an approximation of BPPM. Practically, with
such 3-table predictor, we overcome the history length dilemma [20, 36].

Directions for future studies. This section was focused more on studying predictor
primitives than finding the “best” predictor. Existing publications, like the one previously
cited, already provide a lot of experimental data.

Finding the more cost-effective way, given hardware constraints, to combine these prim-
itives requires further research. One could consider, for example, a systematic approach like
the one proposed in [8]. The set of dealiasing primitives we isolated is by no mean complete.
It may be interesting to study 2-table and 3-table predictors in an systematic way, like was
done for two-bit automatons in [26].

All the predictors studied in this section are approximations of BPPM, but the BPPM
predictor studied in Section 4 can only react to the information it receives. In this study, we
assumed the global history was a fixed input parameter, defined as the sequence of directions
of dynamic branches encountered the most recently (as in most previous studies). But this
is mainly for practical reasons. For example, we could use instead the global history of
previous branch target addresses, as was proposed in [25, 16, 36].

Branch target addresses convey a priori more path information than branch directions.
It would be interesting to determine, in the context of a BPPM predictor, whether or not
a global history of target addresses really contains more information or is just equivalent to
taking a longer global history of branch directions.

Also, it is generally assumed that the global history is continuous, i.e., represents con-
secutive branches. Indeed, all path information is not interesting. Actually, only certain
branches convey interesting path information, i.e., information which helps predicting sub-
sequent branches [9]. Other branches degrade the predictor behavior, increasing the working
set unnecessarily and contributing to the discrepancy between the dashed and solid curves
on Figures 16 and 17.

It might be possible, based on static analysis and profile information, to identify branches
which do not contribute to interesting path information, so that these branches do not
“pollute” the global history.

Trying to do this dynamically, based on general code properties, seems more difficult
a priori, but may be interesting too. Experimentations on using a return history stack to
restore, partially or totally, the global history after a function return [10, 16] seem to indicate

RR n°® 4219

36 Pierre Michaud , André Seznec

that it might be possible to introduce efficient discontinuities in the global history. It should
be noted that, in the context of two-level predictors using per-branch local histories [41, 23],
a local history can be viewed as a discontinuous global history.

7 Experimental Evaluation of the Perceptron Predictor

The idea to use neural network models for dynamic branch prediction is recent, mainly
because their implementation in current commercial processors is not realistic.

It was argued in [18] that one of the simplest neural network model, the perceptron, may
be considered for a feasible implementation. The authors studied a table of perceptrons used
as a GHBP and showed that the perceptron is able to exploit very long global histories.

The perceptron works in a way very different from BPPM and predictors derived from
it. This section provides new experimental results on the perceptron predictor.

7.1 Perceptron Description

The perceptron tries to learn the branch outcome for each global history value seen by the
branch. In other words, it tries to determine for which global history values it should predict
taken, and for which it should predict not-teken.

Information learned about the branch behavior is maintained in a set of n + 1 weights
(w;)i=0..n- Each weight is a signed integer value, coded on a few bits. These n + 1 weights
are recorded in the entry corresponding to the branch in a perceptron table. Ideally, there
is an entry (i.e., a perceptron) for each static branch. However in practice, the number of
table entries is limited, so several branches may share the same perceptron.

In the following description, the global history is coded as a sequence (g;)i=1..» of branch
outcomes being either 1 (taken) or —1 (not taken). For ¢ = 0, we have

g =1
The following description is taken directly from [18].

Obtaining a prediction. To obtain a prediction, we index the perceptron table with
the branch address, and we get the set of n + 1 weights defining the perceptron state for
that branch. From these weights (w;) and the current global history (g;), we compute the
perceptron output as follows :

n
y= Zgi X Wy
i=0

and the final prediction is given by the sign of y, i.e., we predict taken if y > 0 and not-taken
if y < 0. Note that when n = 0, the prediction is given by the sign of the bias weight wy.

INRIA

A Comprehensive Study of Dynamic Global History Branch Prediction 37

Updating the weights. Once the branch outcome ¢ is known (t = —1lor¢ = 1), then+1
weights are updated as follows :

if sign(y) #t or |y| < 6 then

Vi€ [0.n] w; < w;+tXg;

In other words, a weight w; is incremented when the branch outcome ¢ is equal to g;, else it
is decremented. Parameter 8 is the threshold. The threshold decides when enough training
has been done for a particular global history value.

Threshold value. In [18], the best threshold value § was determined experimentally as a
function of the number of weights

6 = |14+ 1.93n)] 9)

As in [18], weights are coded on 1 + [log26] bits. Notice that when n = 0, the perceptron
table is equivalent to a bimodal predictor using 5-bit up-down saturating counters (there is
a single weight wq per entry).

Initialization of weights. In all experimental results presented here, all perceptron
weights were initialized to 0. When running the benchmarks without resetting the per-
ceptron weights between benchmarks, we observed a slight degradation of the prediction
accuracy for some benchmarks. However, it is possible to reset perceptrons before running
an application, and we think initializing with zeros, as in [18], gives more general results.

7.2 Linear Separability and Perceptron Sharing

Each perceptron table entry holds n + 1 weights. If we use h = 64 global history bits as
perceptron inputs, we have n = 64 and weights coded on 9 bits, for a total of 585 bits per
entry. For example, a 64-entry table requires a 4.6 KBytes budget, not counting the logic
for computing the perceptron output. Hence a realistic perceptron predictor will have only
few entries, and many branches will have to share a perceptron with other branches. Like
aliasing in classical branch predictors, perceptron sharing degrades the prediction accuracy.

A perceptron is able to learn a boolean function perfectly only if this function is linearly
separable. 'We define the function f, of a branch as the boolean function which maps
each global history value in the working set of that branch onto the corresponding branch
outcome, either taken or not taken.

Each global history value corresponds to a point in a n-dimensional space, which coor-
dinates are given by the n global history bits (+1 or —1). We distinguish two sets : global
history values H for which f,(H) = 1 and those for which f,(H) = —1. If these two sets can
be separated, in the n-dimensional space, by a hyperplane, then the function f, is linearly
separable.

RR n°® 4219

38 Pierre Michaud , André Seznec

global history bits address bits
| I N
ected perceptron Index
perceptron table

Figure 7: Using address bits as extra perceptron inputs

Branches that are strongly biased are mostly linearly separable. Problems arise for
branches that are weakly biased and branches that share a perceptron. In the case of
perceptron sharing, we can define a function f, by merging the working sets of these two
branches, assuming their working sets have a null intersection. If the two branches have
the same bias, function f, is roughly like that of a single branch with a working set twice
larger. This is equivalent to harmless aliasing in classical predictors. On the other hand, if
the two branches have opposite biases, the perceptron may fail to separate the two branch
sets perfectly, thus generating mispredictions.

7.3 Injecting Address Bits

There are several ways to solve the perceptron sharing problem. We can increase the number
of table entries. However, recalling the birthday paradox (cf. Section 5.1), this may not be
the most cost-effective solution. A possible way to decrease perceptron sharing effects is to
use a few address bits as extra inputs to the perceptron.

For instance, let us consider a perceptron table with 64 entries. This table is indexed with
6 low-order address bits. For some applications, there will be a lot of perceptron sharing.
If the perceptron works on h = 64 bits of global history, each weight being coded on 9 bits,
this requires a 4.6 KBytes budget. Now if we double the number of entries, we can hope to
halve the number of conflicts, but this requires doubling the budget.

Another possibility is to concatenate some address bits with global history bits and use
a slightly wider perceptron, as illustrated on Figure 7. In the remaining, we will denote a
perceptron as

perceptron[m, Hp, A,, ...]

where m is the logs of the number of table entries, Hy, represents h global history bits, A,
represents a address bits, and the “...” represents any additional inputs.

INRIA

A Comprehensive Study of Dynamic Global History Branch Prediction 39

On the previous example, if we concatenate a = 8 address bits to the global history bits,
we have n = h + a = 72 inputs, and the budget increase is only +12 % (73/65).

Figures 48 and 49 show the misprediction interval of a perceptron predictor using a fixed
number h = 64 of global history bits. We show four perceptron configurations

perceptron[m, Hgq, A,]

with a being the number of address bits used as inputs (these are address bits not used
for indexing the table). Configuration a = 0 is the “normal” perceptron (65 weights per
entry). Configuration a = 12 uses 12 address bits (77 weights per entry). The number
of table entries is varied between 64 (m = 6) and 64k (m = 16). Perceptron weights are
coded on 9 bits. For the IBS benchmarks, we also show the misprediction interval of BPPM
with h = 64. For comparison with BPPM on the SPEC benchmarks, we show a similar
experiment on Figure 50 using a global history length h = 32.

As can be observed, increasing the width of the perceptron is more cost-effective than
increasing the number of table entries. Each address bit added in the inputs improves the
linear separability. However, this solves the problem only partly.

Moreover, as was pointed out in [18], even when there is no perceptron sharing, the
function f, of certain branches (in particular branches that are weakly biased) is not linearly
separable, which can explain the discrepancy between the perceptron and BPPM.

7.4 Injecting the Prediction from Another Predictor

It was proposed in [18] to solve the problem of linearly inseparable branches by combining
a perceptron and a “classical” predictor, like gshare for example. In [18], a meta predictor
was used to form a hybrid perceptron.

In this section, we use as “classical” predictor P; a bimodal/gshare using 10 bits of global
history

T) = bimodal[A, m]

Ty = gsharel[A, Hip,m]

T5 = gshare2[A, Hip,m]

P, = meta-select(Ty, T2, T3)

We will use the following hybrid perceptron :

Ty = gshare3[A, Hip, m]
P, = perceptron|m — 6, Hgq, As)
perceptron-hybrid = meta-select(Py, Py, Ty)

Note that the perceptron budget is roughly half the total budget, as in [18]. Figures 51
and 52 show the misprediction interval of the hybrid perceptron defined above, compared
with that of a single perceptron[m’, Hgs, As]. Parameter m is varied from 12 to 18. On the
graphs, we show two versions of the hybrid perceptron. One uses a partial update (“pu”),
and the other a total update (“tu”, P, and P, are always updated).

RR n°® 4219

40 Pierre Michaud , André Seznec

predictor
P1

prediction
gio IStor bit p1

perceptron
P2

i

Figure 8: Example of a perceptron cascaded with a predictor P,

Our results corroborate those of [18] : certain branches are better predicted with a
classical predictor than with a perceptron. Figures 51 and 52 also show that partial update
is better for “small” budgets and total update better for large budgets. Recall that a similar
behavior was observed for a classical meta-select based predictor (cf. Figure 30).

Using a meta-select is not the sole way to combine the perceptron with another predictor
Py. Another way is to use the prediction p; from P; as an extra input to the perceptron,
as illustrated on Figure 8. It should be noted that, in a processor using a perceptron as a
L2 predictor, it is natural to use the L1 prediction for p;. However, for comparisons, we
will count both P; and P, in the hardware budget. Figures 53 and 54 compare the hybrid
perceptron defined above with the following cascaded perceptron :

Pj = perceptron|m — 6, Hgs, As, p1]

Both the hybrid and the cascaded perceptron use a total update, i.e., P, and P»/P, are
always updated. As can be observed, cascading is roughly equivalent to using a meta-
predictor. Sometimes cascading is better (verilog), sometimes a meta-predictor is better
(twolf). The advantage of cascading is that we do not need to implement a separate table
for the meta-predictor.

Injecting prediction p; in the perceptron inputs may be analyzed from the point of
view of linear separability. Originally, we have points of coordinates (z1,---,z,) in a n-
dimensional space. Then we inject p;, adding one dimension and one coordinate z,1.
Hyperplane z,,.1 = 0 separates the (n+1)-dimensional space in two half spaces. On one
side of the hyperplane, we have (B, H) points predicted taken by P;, and on the other side
(B, H) points predicted not taken by P;. This is, to some extent, analogous to the function
performed by the bias-split primitive in a bi-mode predictor.

INRIA

A Comprehensive Study of Dynamic Global History Branch Prediction 41

Generally, the cascaded perceptron P, is more accurate than the input predictor P,
which corroborates the intuition that the perceptron is able to predict certain branches that
classical predictors fail to predict correctly. Actually, the prediction accuracy of a cascaded
perceptron depends on the prediction accuracy of P,. If P, is the L1 predictor and the
cascaded perceptron P, is the L2 predictor, then improving P; improves both prediction
levels.

To illustrate this, we combine a perceptron with a 2-table gtags P, and a 3-table gtags
P/ defined as

Ty = gsharel[A, Hgq, m]

T> = gsharel[A, Hig,m]

T3 = gsharel[A,0,m]

P, = gtags8[16, m| = match-select(Ts,Ts)

P} = gtags8[64, 16, m] = match-select(Ty, P;)

and we study the cascaded perceptrons

P, = perceptron|m — 6, Hgs, As, p1]
P; = perceptron[m — 6, Hea, Ag, pi]

with p; and p) the predictions from P; and P; respectively. Both P;/P] and P,/Pj are
always updated (total update for the whole predictor), but predictor P;/P; uses a partial
update. It should be noted that the size of P; + P» is approximately the size of P;. Hence
we can compare directly the cascaded perceptron P, with the 3-table gtags P/, and evaluate
the ability of the perceptron to improve over P;.

Results are displayed on Figures 55 and 56. For allowing the comparison with BPPM
on the SPEC benchmarks, we also simulated a global history h = 32, doubling the number
of perceptron entries to keep approximately the same perceptron budget (Figure 57).

First, we observe that P| is often better than P,. In these cases, for a fixed hardware
budget, match-select is better than the perceptron at improving over P; by looking at a
longer global history. However for some benchmarks, especially mpeg_play, mcf and twolf,
P, is better than P/.

Second, we observe that Pj is generally asymptotically better than P| : given the same
global history information, the perceptron is able to improve over a classical predictor.

It is interesting to note that, for some benchmarks, the perceptron helps bringing the
prediction accuracy closer to that of BPPM. This is particularly striking on mpeg_play, which
is, among the IBS benchmark, the most difficult to predict with classical predictors.

7.5 Research Directions

The perceptron offers a new way to tackle the branch prediction problem. Unlike most
GHBPs proposed previously, the perceptron does not belong to the family of predictors
derived from BPPM. On BPPM, if two global history values H and H’ differ only at a
single bit position, this is a miss, even if this bit corresponds to a branch bringing no

RR n® 4219

42 Pierre Michaud , André Seznec

correlation information. On a perceptron, on the other hand, it is possible to predict H'
with prediction information recorded for H.

The perceptron seems to be very sensitive to bit locality in the global history, that is,
the fact that global history values differ only at certain bit positions. A strong hashing of
global history values (i.e., a hashing which breaks bit locality), has no significant impact on a
predictor derived from BPPM. On the perceptron, a strong hashing degrades the prediction
accuracy significantly.

Further analysis is required to better understand the impact of bit locality on the per-
ceptron ability to learn branch behaviors.

8 Conclusion

This study was a recapitulation of recent research on global history branch prediction. We
emphasized the fact that most GHBPs previously proposed are approximations of BPPM.
Dealiasing techniques, in this context, are necessary to bring storage capacities required
to store branch prediction information down to reasonable sizes. We isolated six dealias-
ing primitives from GHBPs previously proposed and studied the characteristics of these
primitives.

At last, we compared the perceptron, a technique adapted from neural networks, with
predictors derived from BPPM. Our study, confirming that of [18], shows that the perceptron
has a potential for improving the prediction accuracy given a fixed hardware budget.

Further studies are necessary to find other dealiasing primitives and new ways to combine
these primitives. The use of the perceptron as an efficient branch predictor is still a research
issue. This concerns both its feasibility in hardware and its ability to improve the prediction
accuracy.

One aspect of global history prediction which is less understood (and which was not the
concern of this study) is what information we should put in the global history, and how to
represent this information. This concerns both the perceptron and predictors derived from
BPPM.

References

[1] Doug Burger and Todd Austin. The Simplescalar toolset. Technical Report TR-97-1342,
University of Wisconsin, Madison, June 1997.

[2] B. Calder and D. Grunwald. Reducing branch costs via branch alignment. In Pro-
ceedings of the 6th International Conference on Architectural Support fro Programming
Languages and Operating Systems, 1994.

[3] B. Calder and D. Grunwald. Next cache line and set prediction. In Proceedings of the
22nd International Symposium on Computer Architecture, 1995.

INRIA

A Comprehensive Study of Dynamic Global History Branch Prediction 43

[4] I.-C.K. Chen, J.T. Coffey, and T.N. Mudge. Analysis of branch prediction via data com-
pression. In Proceedings of the 7th International Conference on Architectural Support
for Programming Languages and Operating Systems, October 1996.

[56] J.G. Cleary and I.H. Witten. Data compression using adaptive coding and partial string
matching. IEEE Transactions on Communications, 32(4):396-402, April 1984.

[6] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to algorithms. MIT Press,
1990.

[7] A.N. Eden and T. Mudge. The YAGS branch prediction scheme. In Proceedings of the
31rst Annual International Symposium on Microarchitecture, 1998.

[8] J. Emer and N. Gloy. A language for describing predictors and its application to
automatic synthesis. In Proceedings of the 24th Annual International Symposium on
Computer Architecture, 1997.

[9] M. Evers, S.J. Patel, R.S. Chappell, and Y.N. Patt. An analysis of correlation and
predictability: what makes two-level branch predictors work. In Proceedings of the 25th
International Symposium on Computer Architecture, 1998.

[10] Marius Evers. Improving branch prediction by understanding branch behavior. PhD
thesis, University of Michigan, 1999. CSE-TR-417-99.

[11] E. Federovsky, M. Feder, and S. Weiss. Branch prediction based on universal data
compression algorithms. In proceedings of the 25th Annual International Symposium
on Computer Architecture, 1998.

[12] W. Feller. An introduction to probability theory and its applications, volume 1. Wiley,
second edition, 1957.

[13] R.L. Graham, D.E. Knuth, and O. Patashnik. Concrete mathematics. Addison-Wesley,
19809.

[14] E. Hao, P.-Y. Chang, and Y.N. Patt. The effect of speculatively updating branch
history on branch prediction accuracy, revisited. In Proceedings of the 27th International
Symposium on Microarchitecture, 1994.

[15] W.W. Hwu and Y.N. Patt. Checkpoint repair for out-of-order execution machines. In
Proceedings of the 14th Annual International Symposium on Computer Architecture,
1987.

[16] Q. Jacobson, E. Rotenberg, and J.E. Smith. Path-based next trace prediction. In
Proceedings of the 30th International Symposium on Microarchitecture, 1997.

[17] D.A. Jiménez, S.W. Keckler, and C. Lin. The impact of delay on the design of branch
predictors. In Proceedings of the 33rd International Symposium on Microarchitecture,
2000.

RR n°® 4219

44 Pierre Michaud , André Seznec

[18] D.A. Jiménez and C. Lin. Dynamic branch prediction with perceptrons. In Proceed-
ings of the Tth International Symposium on High-Performance Computer Architecture,
January 2001.

[19] S. Jourdan, T.-H. Hsing, J. Stark, and Y.N. Patt. The effect of mispredicted-path exe-
cution on branch prediction structures. In Proceedings of the International Conference
on Parallel Architectures and Compilation Techniques, 1996.

[20] T. Juan, S. Sanjeevan, and J.J. Navarro. Dynamic history-length fitting: a third level
of adaptivity for branch prediction. In Proceedings of the 25th Annual International
Symposium on Computer Architecture, 1998.

[21] R.E. Kessler. The Alpha 21264 microprocessor. IEEE MICRO, 19(2), March 1999.

[22] C.-C. Lee, I.-C.K. Chen, and T.N. Mudge. The bi-mode branch predictor. In Proceedings
of the 30th Annual International Symposium on Microarchitecture, December 1997.

[23] Scott McFarling. Combining branch predictors. Technical note TN-36, DEC WRL,
June 1993.

[24] P. Michaud, A. Seznec, and R. Uhlig. Trading conflict and capacity aliasing in condi-
tional branch predictors. In Proceedings of the 24th Annual International Symposium
on Computer Architecture, 1997.

[25] R. Nair. Dynamic path-based branch correlation. In Proceedings of the 28th Interna-
tional Symposium on Microarchitecture, 1995.

[26] R. Nair. Optimal 2-bit branch predictors. IEEE Transactions on Computers, 44(5):698—
702, May 1995.

[27] S.T. Pan, K. So, and J.T. Rahmeh. Improving the accuracy of dynamic branch pre-
diction using branch correlation. In Proceedings of the 5th International Conference on
Architectural Support for Programming Languages and Operating Systems, 1992.

[28] H. Patil and J. Emer. Combining static and dynamic branch prediction to reduce
destructive aliasing. In Proceedings of the 6th International Symposium on High-
Performance Computer Architecture, 2000.

[29] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J.E. Smith. Trace processors. In Proceed-
ings of the 30th International Symposium on Microarchitecture, 1997.

[30] S. Sechrest, C.-C. Lee, and T. Mudge. Correlation and aliasing in dynamic branch
predictors. In Proceedings of the 23rd Annual International Symposium on Computer
Architecture, May 1996.

[31] André Seznec and Pierre Michaud. De-aliased hybrid branch predictors. Research
report PI-1229, IRISA, France, February 1999.

INRIA

A Comprehensive Study of Dynamic Global History Branch Prediction 45

[32] J.E. Smith. A study of branch prediction strategies. In Proceedings of the 8th Annual
International Symposium on Computer Architecture, May 1981.

[33] A. Sodani and G.S. Sohi. Understanding the difference between value prediction and
instruction reuse. In Proceedings of the 31st International Symposium on Microarchi-
tecture, 1998.

[34] http://www.spec.org.

[35] E. Sprangle, R.S. Chappell, M. Alsup, and Y.N. Patt. The agree predictor: A mech-
anism for reducing negative branch history interference. In Proceedings of the 24th
Annual International Symposium on Computer Architecture, 1997.

[36] J. Stark, M. Evers, and Y.N. Patt. Variable length path branch prediction. In Pro-
ceedings of the 8th International Conference on Architectural Support for Programming
Languages and Operating Systems, 1998.

[37] A.R. Talcott, M. Nemirovsky, and R.C. Wood. The influence of branch prediction table
interference on branch prediction scheme performance. In Proceedings of the 3rd Annual
International Conference on Parallel Architectures and Compilation Techniques, 1995.

[38] R. Uhlig, D. Nagle, T. Mudge, S. Sechrest, and J. Emer. Coping with code bloat. In
Proceedings of the 22nd Annual International Symposium on Computer Architecture,
June 1995.

[39] T.-Y. Yeh and Y.N. Patt. Two-level adaptive branch prediction. In Proceedings of the
2/th International Symposium on Microarchitecture, November 1991.

[40] T.-Y. Yeh and Y.N. Patt. Alternative implementations of two-level adaptive branch
prediction. In Proceedings of the 19th Annual International Symposium on Computer
Architecture, May 1992.

[41] Tse-Yu Yeh. Two-level adaptive branch prediction and instruction fetch mechanisms
for high performance superscalar processors. PhD thesis, University of Michigan, 1993.

[42] C. Young, N. Gloy, and M.D. Smith. A comparative analysis of schemes for correlated
branch prediction. In Proceedings of the 22nd Annual International Symposium on
Computer Architecture, June 1995.

A Theoretical Study of the Growth of a Working Set

Let S be a set of N elements. We consider a sequence of n elements chosen from S according
to a certain probability function. We define the working set s, of rank g as the subset of
elements that have been chosen more than g times in the sequence. Its size is wq(n) < N.
In particular, wg(n) represents the number of unique elements in a sequence of length n.

RR n® 4219

46 Pierre Michaud , André Seznec

A.1 Set of Equiprobable Elements

We assume all the elements in S have an equal probability to be chosen. Let us define
z =n/N and vy(z) = we(n)/N.

First, we seek to evaluate vo(z). Let us increase the sequence by one element. There is
a probability vo(z) that an element chosen randomly in S already belong to so. We have

wg(n)
N

wo(n +1) —wo(n) =1—wo(z) =1—

which can be written

[wo(n + 1) — N] = [wo(n) — N| x (1 — l)
then
wo(n) — N = [w(0) — N x (1 _ l)n

For N > 1, we have (1 — 1/N)" ~ e~"/N hence

wo(n) ~ N(1 —e ™M)

vo(z) ~1—e™" (10)

We can deduce v, recursively for ¢ > 1. Let us increase the sequence by one element.
The probability to increase s, is equal to the fraction of elements that have already been
encountered exactly ¢ times

wy(n + 1) —wy(n) = vg—1(z) — vy()

N [vq (a: + %) — vq(x)] = vg_1(x) — vg(x)

We can approximate v,(2) by turning this difference equation into a differential equation

dv,
g VT Ve
It can be verified that
4 m
vy(m) =1—e > — (11)
m=0

INRIA

A Comprehensive Study of Dynamic Global History Branch Prediction 47

Figure 9: Curves of vg(z) (solid line), v1 (z), and va(z)

is a solution to this equation. In particular, the fraction of elements that have been encoun-
tered at least twice is

vi(@) = 1— (1+2)e™" (12)

Figure 9 shows the curves of vo(z), vi(z) and va(z). For z < 1, set so increases fast
(wo(n) ~ n). Approximately, when the sequence length is two times the size of S, sq is
almost 90% of S. For z < 1, v;(x) ~ 22, and set s; is quasi empty. The sequence length
must be roughly four times the size of S for s; to be 90% of S.

A.2 Set of k-Bit Strings

We assume S is now the set of all k-bit strings. There are N = 2* strings in S. A string
is chosen from S by generating k bits with a Bernoulli process, with a probability p for a
bit to be 1 and a probability 1 — p to be 0. We will assume p < 1 in the remaining of this
section. We seek to model the growth of wy.

The set of k-bit strings can be partitioned into k + 1 subsets (S;);=o..x such that all the
elements in a given S; are equiprobable : S; is the set of strings with ¢ bits equal to 1, its

size is
)

and the probability P; that a string belong to S; is

P = (?)p"(l —p)t

RR n® 4219

48 Pierre Michaud , André Seznec

70 T T T T T T T

1400 :
60 I 1200
50 E 1000 |
40 E
30 E
20 E

10 + /NN“"“»_/“/ A

35 T T T T T T T 160 T T T T T T T 500 T T T T T

30 | - 140
120
100
80
60
40

25 —
20 g
15 —

T T T T T T T

10 - /N«/”““”“”"”wA

0 1 1 1 1 1 1 1 0 ! 1 1 1 1 1

o
N
N
o

0 2 4 6 8 10 12 14 16
k k

Figure 10: Curves of wg(k) (solid line) and w;(k) (dashed line) for n = 100, n = 1000,
n = 10000 assuming p = 0.1 (upper graphs) and p = 0.05 (lower graphs)

We apply the model of Section A.1 on each set S; separately. In a sequence of length n,
there are approximately P;n strings from S;. Hence, defining

1 1 i
ni=————~—"—FF—"=2\|\—— epk 13
p(1—p)k—i (p) (13)
we have
k
wy(k,n) = qu(n/ni) x N; (14)
1=0

Figure 10 shows, for p = 0.1 and p = 0.05, the curves of wo(k) and w; (k) for n = 100,
n = 1000 and n = 10000.

Some observations. We try to understand the following observations :

o For small values of n, the curve of wg looks linear (p = 0.05, n = 100). As n increases,
so does the the curvature, and the curve looks more like a parabola (p = 0.05, n =
1000). The curve of w; seems to behave similarly, but with a delay (w; looks linear
for p = 0.05 and n = 1000, then like a parabola for n = 10000).

INRIA

8 10 12 14 16 0 2 4 6 8 10 12 14

A Comprehensive Study of Dynamic Global History Branch Prediction 49

e The working set grows slower with n for smaller values of p.

e For small values of k, the curves of wy and w; are very close. They diverge beyond
k = kv, with kg, increasing logarithmically with n (roughly).

The first observation can be explained as follows. As p is small, sequence (n;) increases
very fast. We have vg(n/n;) = 1 for n; < n/2 and vo(n/n;) < 1 for n; > 10n. Similarly,
vi(n/n;) = 1 for n; < n/4 and v;(n/n;) < 1 for n; > 2n. Hence the working set is roughly
a sum of binomial coefficients

wilhi) ~ 3 () (15)

i=0

with j depending on ¢, n, p (and also on k when k is high, c¢f. Formula 13). There is
no closed form for the partial sum of binomial coefficients [13], but we can have a rough
approximation for small values of j because in this case, the main contribution to the sum
comes from the last two coefficients

wara= (1) ()= ()

For a fixed j, this is a polynomial of k of degree j. When j = 1, wy(k) looks linear, then
when n is multiplied by 1/p, j = 2 and w4 looks like a parabola.

The second observation is closely related to the first one. From Formula 13, the value of
j may be estimated as

1 — pk
log(1/p—1)
Parameter z, depends on gq. For ¢ = 0, we found that xp = 1.5 associated with the

approximation of Formula 16 gives good results for large values of n (when j is not an
integer, we used the gamma function). For ¢ = 1, we found z; = 4.5 to give good results
(the higher n, the better). In general pk is negligible compared with log(n/z,). When we
decrease p, we increase j, which explains the second observation. Note that when j > 1,
a variation of p (e.g., a division by 2) has more effect on j than a variation of n (e.g, a
multiplication by 2).

The third observation can be explained as follows. As vg(x) increases faster than v (z)
(Figure 9), when n is large enough for set S; to be almost totally included in s, so already
contains a non-negligible number of elements from set Sj11. As long as j < k/2, (j_’f_l) is
significant compared with Zgzo (’;), and the difference between wg and w; is non negligible.
When j > k/2, this is no longer the case. Hence we have approximately kq;, = 2j.

RR n°® 4219

50 Pierre Michaud , André Seznec

T T T T | | | 7] 10000 T T T T T T T
100000 |t : S
1000
10000
1000 100
100 10
10
1
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
k k

Figure 11: Left graph : value n = n,, beyond which sg increases slowly with n. Right graph :
useful working set wo (1., k)

The “useful” working set. Let us consider the following sum

XJ:P = zj: <k>pi(1 p*

(2 .

=0 i=0 ¢

This sum is approximately the probability that a string belongs to the working set already
gathered. When this sum is close to 1, we can consider that the “useful” working set is
gathered. Of course, the working set will continue to grow, but very slowly.

We search the approximate value n = n,, beyond which }>7_, P; is close to 1. This
sum is the distribution function of a binomial distribution. This binomial distribution can
be approximated by a normal distribution centered on kp and with standard deviation
o = \/kp(1 —p). The area under a gaussian is negligible after 3¢, hence we can consider
that the working set is gathered when

Jj=kp+3vkp(1-p)

that is

log(n.) = (kp + 3m) log(% — 1) + pk + log(zo)

The left graph on Figure 11 shows the value of n, (k) on a log;, scale for p = 0.05 and
p = 0.1. The “time” necessary to gather the useful working set grows (roughly) exponentially
with k. Using Formula 14, we verified that, for n > n,,, the instantaneous miss ratio
wo(n + 1, k) — wo(n, k) is less than 1%.

The right graph on Figure 11 shows the useful working set wg(n,, k). The useful working
set increases (roughly) exponentially with k. However, its size also depends on p. The useful

INRIA

A Comprehensive Study of Dynamic Global History Branch Prediction 51

working set is larger for higher values of p. It can be noticed that for £k = 16, going from
p =0.05 to p = 0.1 incurs a ten fold increase of the useful working set.

B Experimental Results

benchmark | # dyn br | # inst/dyn br | # stat br | 90 % | % misp 2bc
IBS
groff 1.16 x 107 7.5 5633 437 4.4
gs 1.43 x 107 7.1 10933 932 6.6
mpeg-_play 8.11 x 108 10.2 4752 419 8.1
nroff 2.14 x 107 4.9 4480 199 4.0
half real_gcc | 6.88 x 10° 6.4 11551 | 2107 8.0
real _gcc 1.39 x 107 6.6 16712 | 3021 9.5
sdet 5.22 x 108 6.2 4583 376 4.7
verilog 5.69 x 108 7.3 3916 673 6.7
video_play 5.18 x 108 8.5 3977 597 6.4
from SPEC CPU95
go | 1.60 x 107 | 8.3 | 5102 | 1092 | 20.9
from SPEC CPU2000

mcf 3.23 x 107 5.4 844 42 12.3
twolf 3.22 x 107 6.7 2652 177 22.3
gap 1.27 x 108 7.3 4081 421 7.1

Table 1: Benchmarks statistics. Number of conditional branches executed, number of dy-
namic instructions per conditional branch executed, number of unique static branches en-
countered, number of static branches that contributed to 90% of conditional branches exe-
cuted, percentage of conditional branches mispredicted with two-bit counters (one for each
static branch).

RR n® 4219

52

Pierre Michaud , André Seznec

7%

6% -
5% -
4%
3%
2% -
1%

0%

16 %
14 %
12%
10 %
8 %
6 %
4%
2%
0%

16 %
14 %
12%
10 %
8 %
6 %
4%
2%
0%

Figure 12: BPPM working set.

ratio).

10 20 30 40
global history

mpeg_play

global history
half real _gcc

10 20 30 40
global history

gs

9% T T T T T
8%
7%
6%
5%
4%
3%
2% T
1% T

0% == L L L L
0 10 20 30 40 50

global history
nroff

2% T T T T T
1.8%
1.6%
14%
12%

1%
08% |-
0.6%
04% | T
02% | LT

0%
0 10 20 30 40 50

global history
sdet

7%
6 %
5%
4%
3%
2%
1%

0%

global history

The solid curve represents the number W) of distinct
(B, H}) pairs that were encountered at least once. The dashed curve represents the number
of distinct (B, H}) pairs that were encountered at least twice. Values on the y-axis are
expressed as a percentage of dynamic branches (the solid curve can be viewed as a miss

INRIA

A Comprehensive Study of Dynamic Global History Branch Prediction 53

verilog video_play
7 % T T T T T T 7 % T T T T T T
6% |- - 6% |-
5% - B 5% E
4% - e 4% - g
3% |- - 3% B
2% | T 2% [
1% | . 1% b .
0% ~1 1 1 1 1 1 0% //‘T// 1 1 1 1 1
0 10 20 30 40 50 60 0 10 20 30 40 50 60
global history global history
go mcf
20 % T T T T T T 6 % T T T T T T
18 %
16 % |- 5%
14% 4% -
12%
10% 3%
8%
6% 2%
4% 1% L
2%
0% 0% L
0 0 5
global history global history
twolf gap
45 % T T T T T T 1% T T T T T T
4% a 09% [
35% - e 0.8% |-
3% - F 0-7:‘/" "
25% e 0.6 % |-
o L p 05% -
’ 0.4% -
15% - 7 0.3% |
1% 7 0.2% -
05% | 8 01% -
0% L 1 L 1 1 0%
0 5 10 15 20 25 30 0
global history global history

Figure 13: BPPM working set, Cf. Figure 12. The global history length is limited to 32 on
the four SPEC benchmarks.

RR n°® 4219

54

Pierre Michaud , André Seznec

groff
1000 T T T T T T 3
100 3
10 3
1 1 1 1 1 1 1
0 10 20 30 40 50 60 70
global history
mpeg_play
1000 T T T T T T 3
100 3
10 3
1 1 1 1 1 1 1
0 10 20 30 40 50 60 70
global history
half real_gcc
100 F T T T T T E
10 ¢ 3
1 1 1 1 1 1 1
0 10 20 30 40 50 60 70
global history
Figure

gs
1000 3 T T T T T
100 3 4
10 E_ -
l 1 1 1 1 1
0 10 20 30 40 60 70
global history
nroff
100 T T T T T
10 | E
1 1 1 1 1 1
0 10 20 30 40 60 70
global history
sdet
100 T T T T T
10 E
l 1 1 1 1 1
0 10 20 30 40 60 70

global history

14: BPPM working set : Wy, /Wy on a logarithmic scale, as a function of h.

INRIA

A Comprehensive Study of Dynamic Global History Branch Prediction

55

verilog

100 — T T T T
10F 3
l 1 1 1 1 1 1
0 10 20 30 40 50 60 70
global history
go
1000 T T T T T T
100 ¢ 3
10 ¢ 3
1 1 1 1 1 1
0 5 10 15 20 25 30 35
global history
twolf
1000 T T T T T
100 ¢ 3
10 ¢ 3
l 1 1 1 1 1
0 100 15 20 25 30 35

global history

video_play

100 T T T T T T
10 E
1 1 1 1 1 1 1
0 10 20 30 40 50 60 70
global history
mcf
10000 T T T T T
1000 _
100 E
10 E
1 1 1 1 1 1
10 15 20 25 30 35
global history
gap
1000 3 T T T T T
100 3 A
10 4
1 1 1 1 1 1
0 10 15 20 25 30 35

global history

Figure 15: BPPM working set : Wp, /Wy on a logarithmic scale, as a function of h.

RR n°® 4219

56 Pierre Michaud , André Seznec

140 T T T T T T 120 T T T T T T

120 - = 100 +

0 1 1 1 1 1 1 0 1 1 1 1 1 1
0 10 20 30 40 50 60 0 10 20 30 40 50 60
global history global history
mpeg_play nroff
60 T T T T T T - 140
120
100
80
60
40
20 B
0 1 1 1 1 1 1 0 1 1 1 1 1 1
0 10 20 30 40 50 60 0 10 20 30 40 50 60
global history global history
half real _gcc sdet
120 T T T T T T 140 T T T T T T
100 + A 120
100
80
60
40
20
0 1 1 1 1 1 1 0 1 1 1 1 1 1
0 10 20 30 40 50 60 0 10 20 30 40 50 60
global history global history

Figure 16: BPPM misprediction interval. Represented on the y-axis is the number of dy-
namic conditional branches per branch misprediction (higher is better). The solid curve
represents overall mispredictions. The dashed curves represent the inverse of the mispredic-
tion probability on (B, Hy) pairs that were already encountered at least one time and three
times respectively.

INRIA

A Comprehensive Study of Dynamic Global History Branch Prediction

57

verilog video_play
180 T T T T T T 180 T T T T T T
160 - g 160 .-
140 140
120 120
100 100
80 80
60 60
40 40
20 20
0 1 1 1 1 1 1 O 1 1 1 1 1 1
0 10 20 30 40 50 60 0 10 20 30 40 50 60
global history global history
go mcf
30 T T T T T T 30 T T T T T T

O 1 1 1 1 1 1 0 1 1 1 1 1 1
0 5 10 15 20 25 30 0 5 10 15 20 25 30
global history global history
twolf gap

1 1 1 1 1 1 0 1 1 1 1

0 5 10 15 20 25 30 0 5 10 15 20
global history global history

Figure 17: BPPM misprediction interval, cf. Figure 16.

RR n°® 4219

25 30

58

Pierre Michaud , André Seznec

7% T T T T T T
6 %
5%
4%

3% |- -
2% —
1% bi-mode

O% 1 1
256 512 1k 2k 4k 8k 16k 32k

bimodal entries

mpeg_play
9 % T T T T T T
8%
7%
6 %
5% B
4% - .
3% B

2% - -
1% bi-mode
jagree-pu -

0% 1 1
256 512 1k 2k 4k 8k 16k 32k

bimodal entries

real_gcc

12 % T T T T T T

10 %

8 %

6% - -
4% - -

2% - bi-mode 7
agree-pu -----——-

O% 1 1
256 512 1k 2k 4k 8k 16k 32k

bimodal entries

7%

6 %
5%
4%
3%
2%
1%

0%

256

512

1k 2k 4k 8k 16k 32k
bimodal entries

nroff

4.5%
4%
3.5%
3%
25%
2%
15%
1%
05% [
0%

bi-mode

) agree-pu -

256

7%

512

1k 2k 4k 8k 16k 32k
bimodal entries

sdet

6 %
5%
4%
3%
2%
1%

0%

bi-mode

. agree-pu ——-—-—

256

512

1k 2k 4k 8k 16k 32k
bimodal entries

Figure 18: Comparison of bias-split and bias-agree. Misprediction percentage of bi-mode
and agree-pu predictors which gshare component is fixed (4k entries, h = 10) and bimodal

component is varied from 256 to 32k entries.

INRIA

A Comprehensive Study of Dynamic Global History Branch Prediction

59

7%

verilog

6 %
5%
4%
3% -
2% -
1%

0%
256

512 1k 2k 4k 8k
bimodal entries

go

30 %

25 %

20%

15% |

10% |

5%

0%

bi-mode

1 1 1 Iagree_Pu

256

18 %

512 1k 2k 4k 8k
bimodal entries

twolf

16 % |
14%
12%
10% |
8% -
6%
4%
2%
0%

bi-mode

1 1 1 Iagree_Pu

256

RR n°® 4219

512 1k 2k 4k 8k
bimodal entries

16k 32k

9%

video_play

8%
7%
6 %
5%
4%
3%
2%
1%
0%

256 512 1k 2k 4k 8k

10 %
9 %
8 %
7%
6 %
5%
4%
3%
2%
1%
0%

256 512 1k 2k 4k 8k

6 %

5%

4%

3%

2%

1%

0%

bimodal entries

mecf

bi-mode
agree-pu -----——-

bimodal entries

gap

1 1
256 512 1k 2k 4k 8k
bimodal entries

Figure 19: Cf. Figure 18.

16k 32k

16k 32k

16k 32k

60

Pierre Michaud , André Seznec

6 %

5%

4%

3%

2%

1%

bi-mode 3bc
agree-pu 3:bc e

%

(]
256 512 1k 2k 4k 8k

16k 32k
bimodal entries
mpeg_play
8 % T T T T T T
T% s E
6% —
5% B
4% -
3% B
2% B
1% bi-mode 3bc 4
agree-pu 3bc -~
0 % 1 1 1 1 1
256 512 1k 2k 4k 8k 16k 32k
bimodal entries
real_gcc

12 % T T T T T T
10 %

8%

6% [E

4% - E

2% bi-mode 3bc 7

0%)) , agree-pu 3|bc T

(]
256 512 1k 2k 4k 8k

16k 32k
bimodal entries

7%

6 %
5%
4%
3%
2%
1%

0%

bi-mode 3bc
agree-pu 3bc --—--—-

256

512

1k 2k 4k 8k
bimodal entries

nroff

4%
3.5%
3%
25%
2%
15%
1%
0.5%
0%

bi-mode 3bc _
_ agree-pu 3bc -

256

7%

512

1k 2k 4k 8k 16k 32k
bimodal entries

sdet

6 %
5%
4%
3%
2%
1%

%

bi-mode 3bc
agree-pu 3bc ----——-

256

512

1k 2k 4k 8k
bimodal entries

16k 32k

Figure 20: Same experiment as on Figure 18, but two-bit counters in the bimodal predictor

have been replaced with three-bit counters.

INRIA

A Comprehensive Study of Dynamic Global History Branch Prediction 61

7% T

verilog

6 %
5%
4%
3% -
2% -
1%

bi-mode 3bc
agree-pu ?:bc

0% .
256 512

1k

2k 4k
bimodal entries

go

8k

30 % T
25 %
20 %
15% |
10% |

5%

0% .

bi-mode 3bc
, agree-pu 3|bc

256 512

16 %

1k

2k 4k
bimodal entries

twolf

8k

14 %
12% |
10%
8% -
6% r
4%
2%
0% .

bi-mode 3bc
, agree-pu 3|bc

256 512

RR n°® 4219

1k

2k 4k
bimodal entries

8k

16k 32k

8 %

video_play

7%
6 %
5%
4%
3% [
2%
1%

bi-mode 3bc —— -
agree-pu 3bc -

0%
256

512

1k 2k 4k 8k 16k 32k
bimodal entries

mecf

9%
8% F—
7% |
6% |
5% |
4% -
3% [
2% |
1% |
0%

bi-mode 3bc
agree-pu 3bc ----——-

256

5%

512

1k 2k 4k 8k 16k 32k
bimodal entries

gap

4.5%
4%
35%
3%
25%
2%
15%
1%
05%
0%

bi-mode 3bc
, agree-pu 3bc ---—----

256

512

Figure 21: Cf. Figure 20.

1k 2k 4k 8k 16k 32k
bimodal entries

62

Pierre Michaud , André Seznec

4%

35%
3%
25% -
2% -
15%
1%
05% -

bias-split 4
 bias-agree ----—---

0%
8k

16k 32k 64k 128k 256k 512k
bias predictor entries

mpeg_play

7%
6 %
5%
4%
3% -
2%
1%

0%

bias-split
) bias—qgree T

8k

10 %

16k 32k 64k 128k 256k 512k
bias predictor entries

real_gcc

9%
8 %
7%
6 %
5%
4%
3%
2%
1%
0%

bias-split
| bias-agree ------—-

8k

16k 32k 64k 128k 256k 512k
bias predictor entries

5%
4.5%
4%
3.5%
3%
25%
2%
1.5%
1%
0.5%
0%

3.5%
3%
25%
2%
1.5%
1%
0.5%
0%

4.5%
4%
3.5%
3%
25%
2%
15%
1%
0.5%
0%

bias-split
 bias-agree -----—--

8k

16k 32k 64k 128k 256k 512k
bias predictor entries

nroff

bias-split

bias—agree fffffff
1 1 1

8k

16k 32k 64k 128k 256k 512k
bias predictor entries

sdet

bias-split
 bias-agree -----——-

8k

16k 32k 64k 128k 256k 512k
bias predictor entries

Figure 22: Same experiment as on Figure 18 but the bimodal table has been replaced with

a gshare[A, Hyg, m] table, with m varied from 13 to 19.

INRIA

A Comprehensive Study of Dynamic Global History Branch Prediction

63

5%

verilog

45% =
4% -
35% -
3% -
25%
2%
15%
1%

0.5%

bias-split
) bias—agree T

0%

8k

16k 32k 64k 128k 256k 512k

bias predictor entries

go

25 %

20 %

15%

10% |

5% -

0%

bias-split
))) bias—algree o

8k

14 %

16k 32k 64k 128k 256k 512k
bias predictor entries

twolf

12% |
10%
8%
6% -
4%
2%

0%

bias-split
))) bias—algree o

8k

RR n°® 4219

16k 32k 64k 128k 256k 512k
bias predictor entries

4.5%
4%
3.5%
3%
25%
2%
15%
1%
0.5%
0%

video_play

bias-split
Ibias—agree T

8k

16k

32k 64k 128k 256k 512k
bias predictor entries

mecf

8 %

7%
6% -
5% r
4%
3% [
2%
1%
0%

bias-split .
)) bias—a}gree T

8k

4%
3.5%
3%
25%
2%
15%
1%
0.5%
0%

16k

32k 64k 128k 256k 512k
bias predictor entries

gap

bias-split .
bias—agree fffffff
1 1 1

8k

16k

Figure 23: Cf. Figure 22.

32k 64k 128k 256k 512k
bias predictor entries

64

Pierre Michaud , André Seznec

6 %

5%

4%

3%

2%

1%

bi-mode ——
) agrele-bimolde ,,,,,,,

0% L
256 512

1k 2k 4k 8k 16k 32k
bimodal entries

mpeg play

8 %
7%
6 %
5% -
4%
3% -
2%
1%

bi-mode ——
) agrele-bimolde ,,,,,,,

0% L

256 512

1k 2k 4k 8k 16k 32k
bimodal entries

real_gcc

2% :
10%
8%
6% -
4% |

2%

bi-mode
) agre?-bimolde S

0% 1

256 512

1k 2k 4k 8k 16k 32k

bimodal entries

7%
6 %
5%
4%
3%
2%
1%

bi-mode
) agrele-bimolde S

0%
256

4%
3.5%
3%
25%
2%
15%
1%
0.5%

%

7%

512

1k 2k 4k 8k
bimodal entries

nroff

bi-mode ——
I'clgreel-bimoclje ,,,,,,,

(]
256 512

1k 2k 4k 8k
bimodal entries

sdet

6 %
5%
4%
3%
2%
1%

%

bi-mode
) agrele—bimolde S

256

512

1k 2k 4k 8 16k 32k

bimodal entries

Figure 24: Comparison of bias-split and bias-inject. Misprediction percentage of bi-mode
and agree-bimode predictors which gshare table is fixed (4k entries, h = 10) and bimodal
table is varied from 256 to 32k entries.

INRIA

A Comprehensive Study of Dynamic Global History Branch Prediction

65

7%

verilog

6 %
5%
4%

3% -
2%

1%

bi-mode
) agrele-bimolde S

0%

256 512 1k 2k 4k 8k 16k 32k

30 %

25 %

20 %

15%

10 %

5%

0%

256 512 1k 2k 4k 8k

18 %
16 %
14 %
12 %
10 %
8%
6%
4%
2%
0%

256 512 1k 2k 4k 8k

RR n°® 4219

bimodal entries

go

bi-mode

agree-bimode -—----—-
Il Il | T (X

16k 32k
bimodal entries

twolf

bi-mode

agree-bimode -—----—-
Il Il | T (X

16k 32k
bimodal entries

8 %

video_play

7%
6 %
5%
4%
3% [
2%
1%

bi-mode ——— 4
agrele—bimolde ,,,,,,,

0%
256

512

1k 2k Ak 8k
bimodal entries

16k 32k

mecf

9%

8%
7%
6%
5% -
4%
3%
2%
1%
0%

bi-mode
) agrele—bimolde S

256

5%

512

1k 2k Ak 8k
bimodal entries

gap

16k 32k

4.5%
4%
35%
3%
25%
2%
15%
1%
05%
0%

bi-mode i
Iagreel—bimozlje S

256

512

Figure 25: Cf. Figure 24.

1k 2k 4k 8Kk
bimodal entries

16k 32k

66

Pierre Michaud , André Seznec

7%

6 %
5%
4%
3%

2% -
1%

0%

meta
vote ------- _
) votellagrele .

12%

10 %

8 %

6 %

4%

2%

0%

14 %
12%
10 %
8 %
6 %
4%
2%
0%

10 15 20 25 30 35 40
global history

mpeg_play

meta
vote -------
. votellagrele e

5

10 15 20 25 30
global history

real_gcc

meta
vote ------- _
. votellagrele e

10 15 20 25 30
global history

7%‘
6 %
5%
4%
3%
2%
1%

meta
vote ------- 4
) votel/agrele e

0%
0

4.5%
4%
3.5%
3%
25%
2%
15%
1%
0.5%
0%

6 %

10 15 20 25 30 35 40
global history

nroff

meta .
vote -------
. vote/lagreeI ,,,,, -

10 15 20 25 30 35 40
global history

sdet

5%
4%
3%
2%

1%

meta
vote -------
) voteI/agrele e

0%
0

5

10 15 20 25 30 35 40
global history

Figure 26: Misprediction percentage of meta-select(Ty,T»,T3), majority-vote(Ty,Ts,Ts)

and

majority-vote(Ty, T», bias-agree(Ty,Ts)),

Ty = gsharel[A, Hy,12] and T3 = gshare2[A, Hy,12]

with T, = bimodal[A,12],

INRIA

A Comprehensive Study of Dynamic Global History Branch Prediction 67

video_play

meta
vote ------- 4
) votel/agrele e

10 15 20 25 30 35 40

global history
mcf

meta
vote ------- 4
. voteI/agrele S

10 15 20 25 30 35 40
global history

gap

meta
vote ------—- i
) voteI/agrele e

verilog
8% T T T T . : 7%
7% L
6 % o
5%
: 4%
4%
3% 3%
(]
I 2%
i meta
1% vote - 1o L
vote/agree --—------
0% 1 . 2 ¢ | oo
0 10 15 20 25 30 35 40 0
global history
go
30 % "
25% 125
20 % 10%
8 %
15% | o
6%
k i -
10 % el
meta
T vote -——---—- B S0 b
vote/agree --—------
0% 1 . ! ; | -
0 10 15 20 25 30 35 40 o
global history
twolf
0% ' T T T T T 8%
0,
25% 79
6 %
0,
20 % o
15 % v
0,
10% 1 3%
2%
% |
5% 2
vote/agree -—------
0% 1 ! ; vor
0 10 15 20 25 30 35 40 o

RR n° 4219

global history

Figure 27: Cf. Figure

10 15 20 25 30 35 40
global history

68

Pierre Michaud , André Seznec

45%
4%
35%
3%
25%
2%
15%
1%
0.5%
0%

meta
vote
votellagree

4 6
global history

mpeg_play

10

8%
7%
6 %
5%
4%
3%
2%
1%
0%

meta
vote
volte/agree

10 %

4 6
global history

real_gcc

10

9%
8 %
7%
6 %
5%
4%
3%
2%
1%

0%

meta
vote
votle/agree

4 6
global history

10

6% f-
5%
4%
3%
2%

1%

0%

meta
vote ————---

volte/agree e

4%

35% [

3%
25%
2%
15%
1%
0.5%
0%

4.5%
4%
3.5%
3%
25%
2%
15%
1%
0.5%
0%

g

4 6 8 10
lobal history

nroff

meta ——
vote ------- i
voteI/agree o

4 6 8 10
global history

sdet

meta -
vote -------
voteI/agree o

4 6 8 10
global history

Figure 28: Misprediction percentage of meta-select(Ty,T»,T3), majority-vote(Ty,Ts,Ts)
and majority-vote(Ty, T», bias-agree(Ty,Ts)),
Ty = gsharel[A, Hi0,12] and T5 = gshare2[A, Hy,12], with h varied from 0 to 10

with

T, = bimodal[A,12],

INRIA

A Comprehensive Study of Dynamic Global History Branch Prediction

69

verilog

6 %

5%

4%

3% -

2%

1%

meta ——
vote --

volte/agree e

0%

25 %

20 %

15%

10 %

5%

0%

25 %

20 %

15%

10 %

5%

0%

RR n° 4219

4 6 8 10
global history

go

meta i
vote -------
votle/agree R

4 6 8 10
global history

twolf

4 6 8 10
global history

Figure 29: Cf. Figure 28.

video_play

6 %

5% |

4%

3%

2%

1%

meta
vote
volte/agree

0%

14 %
12%
10 %
8 %
6 %
4%
2%
0%

4 6
global history

mecf

8 10

meta
vote
votle/agree .

4 6
global history

gap

8 10

7%
6 %
5%
4%
3%
2%
1%

0%

meta
vote
volte/agree

4 6
global history

8 10

70

Pierre Michaud ,

André Seznec

groff
35 % == . . ;
3 -
2.5 O [FI i -
2% e
15% -
1% 3x4k pu B
3x4ktu -------
05% 3x64k pu -+ -
3x64k tu -
0 % 1 1 1
0 2 4 6 8 10
global history
mpeg_play
6 %
5%
4% —
3% - -
0, - -
2% 3x4k pu
3x4ktu -------
1% - 3x64k pu -------- 7
0%)) :Iix64k tu ;
0 2 4 6 8 10
global history
real_gcc
8 % T T T T
L e
6% - -
5% I =
4% | .
3% -
L 3x4k pu i
2% 3x4ktu -------
1% 3x64i<kpu rrrrrrrr u
0% . . Poakw |
0 2 4 6 8

global history

10

4.5%

4% F

3.5%
3%
25%
2%
15%
1%
0.5%
0%

3%

25%

2%

15%

1%

0.5%

0%

4%
3.5%
3%
25%
2%
15%
1%
0.5%
0%

global history
nroff

gs
T T T T
3x4k pu 7
3x4k tu -----—-- b
3x64k pu --------
. 33(64k tu A
2 4 6 8 10

3x4k pu
3x4k tu
3x64k pu
33(64k tu A

2 4 6

global history

sdet
3x4k pu |
3x4k tu -----—--
3x64k pu -------- 4
. 33(64k tu -
2 4 6 8 10

global history

Figure 30: Impact on prediction accuracy of partial update (“pu”) vs.
(“tu”) on meta-select(Ty,T,Ts), with Ty = bimodal[A,m], Ty = gsharel[A, Hi9,m] and
Ts = gshare2[A, Hy, m], with h varied from 0 to 10, and for m = 12 (3x4k) and m = 16

(3x64k)

total update

INRIA

A Comprehensive Study of Dynamic Global History Branch Prediction 71

verilog video_play
4% ——— T T T T 5% T T T T
5%~ A 4.5%
e [4%
3% : k= 3.5 %

25% T 3% k...

2% - e 2.5 % | itz]

15% . 2% - T

1% 3x4k pu | 15% 3x4k pu _
’ 3xak tu —----- 1% 3xdk tu —--—— 4
05% | 3x64k pu -------- - B 3x64k pu -------- i
’ 3x64K tU - 0.5% 3x64K tU -
0 % 1 1 1 O % 1 1 1 1
0 2 4 6 8 10 0 2 4 6 8 10
global history global history
go mcf

20 % 9% T T T T

18 % 8 %

16 % 7%

14% .. 6% L]

12% R 4

10% |- - % i
8% - | 4% T

0, - -
6% 3x4k pu 3% 3xak pu
4% | 3x4k tu - 2% 3x4k tu b
3x64k pu o L 3x64k pu
2% 3x64ktu - 7 1% 3x64Kk tu -
O % 1 1 1 1 O % 1 1 1 1
0 2 4 6 8 10 0 2 4 6 8 10
global history global history
twolf gap

16 % T T T T 4%

14 % 35%

2% 3%

10% o Ty 25% |- g
8% B 2% B
6% 1 15% b

N 3x4k pu i N 3x4k pu |
4% 3x4k tu ------- 1% 3IxAK tu ——————
204 3x64k pu -------- - 05% 3x64k pu -------- .
0%) 3|x64k tu ; - 0%) 33(64k tu A
0 0
0 2 4 6 8 10 0 2 4 6 8 10
global history global history

Figure 31: Cf. Figure 30.

RR n°® 4219

72 Pierre Michaud , André Seznec
groff gs
5% T T T T T T T 7% 3
45 % 6%
4%
35% 5%
3% 4%
25%
2% . 3%
15% 1 20 4
Ler taivot i 1% talvot
meta/vote b meta/vote B
0.5% [- meta ------- T meta -------
0 % 1 1 1 1 1 1 0 % 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
global history global history
mpeg_play nroff
9% T T T T T T T 4.5 % T T T T T T T
8% 4%
7% 35%
6 % 3%
5% 25%
4% B 2%
3% B 15% 4
2% |- - 1% B
1% F meta/vote n 05% | meta/vote i
meta —----—- ’ meta -------
0 % 1 1 1 1 1 1 1 O % 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
global history global history
real_gcc sdet
12 % T T T T T T T 6 % T T T T T T T
10 % 5%
8% 4%
6% b 3%
4% - e 2% g
2% - meta/vote 7 1% - meta/vote 7]
meta —----—- meta -------
O % 1 1 1 1 1 1 1 O % 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
global history global history
Figure 32: Misprediction percentage of a 4-KByte 2bc-gskew (“meta/vote”) and

a simple 4-KByte hybrid predictor (“meta”)
predictor is meta-select(majority-vote(T1,T2,T3), T, Tmeta) Wwith Tj = bimodal[A,12],
Ty = gsharel[A, Hy, 12], T5 = gshare2[A, Hy,12] and Typetq = gshare3[A, Hp,12]. The hy-
brid predictor is meta-select(Th,Ty,T3) with Ty = gsharel[A, Hy, 13].

More precisely, the 2bc-gskew

INRIA

A Comprehensive Study of Dynamic

Global History Branch Prediction

73

verilog

8%
7%
6 %
5%
4%
3%

2%
1%

meta/vote 4
meta -

0%

25 %

20 %

15%

10 %

5%

0%

25 %

20 %

15%

10 %

5%

0%

RR n°® 4219

15 20 25 30 35 40
global history

go

meta/vote
meta - -

10

15 20 25 30 35 40
global history

twolf

meta/vote
meta -------
1 1 1 1 1 1
0 10 15 20 25 30 35 40
global history

video_play

7%
6 %
5%
4%
3%

2%
1%

meta/vote
meta
1 1 1 1 1 1

0%

14 %
12%
10 %
8 %
6 %
4%
2%
0%

5 10 15 20 25 30
global history

mecf

= meta/vote

meta
1 1 1 1 1 1

0 5 10 15 20 25 30

global history
gap

8 %
7%
6 %
5%
4%
3%
2%
1%

0%

meta/vote
metla

5 10 15 20 25 30
global history

Figure 33: Cf. Figure 32.

74 Pierre Michaud , André Seznec
groff gs
5% T T T T T T T 7% 3
0,
45 % 6%
4%
35% 5%
3% 4%
25%
2% . 3%
15% 1 20 4
1% B
05% L meta/vote | 1% - meta/vote b
27 meta/meta ——---—- meta/meta ——---—-
0 % 1 1 1 1 1 1 0 % 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
global history global history
mpeg_play nroff
9% T T T T T T T 4.5 % T T T T T T
8% 4%
7% 35%
6 % 3%
5% 25%
4% B 2%
3% B 15% 4
2% |- - 1% B
o L meta/vote n o L metal/vote i
1% meta/meta ------- 05% meta/meta -------
0 % 1 1 1 1 1 O % 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 0 10 15 20 25 30 35 40
global history global history
real_gcc sdet
12 % T T T T T T T 6 % T T T T T T T
10 % 5%
8% 4%
6% b 3%
4% - e 2% g
2% - meta/vote 7 1% - meta/vote 7]
meta/meta ------- meta/meta -------
O % 1 1 1 1 1 O % 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
global history global history
Figure 34: Misprediction percentage of a 4-KByte 2bc-gskew (“meta/vote”) predic-

tor defined as meta-select(majority-vote(Ty,Ta,T5),T1, Tmeta) With Ty = bimodal[A,12],

Ty = gsharel[A, Hy,12], T5 = gshare2[A, Hp,12] and Tyero = gshare3[A, Hy, 12].

We

show the impact of replacing the majority-vote by a meta-select (“meta/meta”)

meta-select(meta-select(T1, T2, T3), T, Timeta)-

INRIA

A Comprehensive Study of Dynamic

Global History Branch Prediction

75

verilog

8%
7%
6 %
5%
4%
3%

2%
1%

meta/vote 4
metla/metla T

0%

25 %

20 %

15%

10 %

5%

0%

25 %

20 %

15%

10 %

5%

0%

RR n°® 4219

15 20 25 30 35 40
global history

go

meta/vote
) met?/met§ o

5

10

15 20 25 30
global history

twolf

meta/vote
) met?/met§ o

5

10

15 20 25 30
global history

video_play

7%
6 %
5%
4%
3%

2%
1%

meta/vote
metlalmetla T

0%

14 %
12%
10 %
8 %
6 %
4%
2%
0%

5 10 15 20 25 30 35 40
global history

mecf

meta/vote
) metzlilmetfli U

0 5 10 15 20 25 30 35 40

global history
gap

8 %
7%
6 %
5%
4%
3%
2%
1%

0%

meta/vote .
metlalmetla T

5 10 15 20 25 30 35 40
global history

Figure 35: Cf. Figure 34.

76

Pierre Michaud , André Seznec

5 % T T T T T T
45%
4%
35%
3%
25%
2% E
15% - B
1% E
05% |
0 % 1 1
0 10 20 30 40 50 60
global history

mpeg_play

9%
8%
7%
6 %
5%
4% B
3% - B
2% B
1%

0 % 1 1
0 10 20 30 40 50 60

global history
real_gcc

12 % T T T T T T
10 %

8 %

6 %

4% | .

2%

O % 1 1
0 10 20 30 40 50 60

global history

8 %
7%
6 %
5%
4%
3%
2%
1%

0%

4.5%
4%
3.5%
3%
25%
2%
15%
1%
0.5%
0%

20 30 40 50 60
global history

nroff

20 30 40 50 60
global history

sdet

6 %

5%

4%

3%

2%

1%

0%

10

20 30 40 50 60
global history

Figure 36: Misprediction percentage of Y AGS6[h,12] and gtags6[h,12] for a global history

length h varying from 0 to 64 bits.

INRIA

A Comprehensive Study of Dynamic Global History Branch Prediction

7

8%

verilog

7%
6 %
5%
4%
3%

2%
1%

0%

25 %

20 %

15%

10 %

5%

0%

25 %

20 %

15%

10 %

5%

0%

RR n°® 4219

30 40 50 60
global history

go

10

yags
gtags -------
20 30 40 50 60
global history
twolf

10

20 30 40 50 60
global history

8 %

video_play

7%
6 %
5%
4%
3%

2%
1%

0%

14 %
12%
10 %
8 %
6 %
4%
2%
0%

8 %

10 20 30 40 50 60
global history

mecf

10 20 30 40 50 60
global history

gap

7%
6 %
5%
4%
3%
2%
1%

0%

10 20 30 40 50 60
global history

Figure 37: Cf. Figure 36.

78

Pierre Michaud , André Seznec

groff gs
5 % T T T T T T 8 % T T T T T T
4.5 % 7%
4%
35% 6%
3% 5%
25% 4%
2% T 3%
15% 1
1% meta/meta 4 2%
gtags4 ——-—— i 1%
0.5 % gtagsé - i
0% L : 0%
10 20 30 40 50 60
global history global history
mpeg_play nroff
9% T T T T T 4.5 % T T T T T T
8% 4%
7% 35%
6% 3%
5% 25%
4% B 2%
3% : 1.5%
2% - meta/meta b 1%
o L gtags4 ------- i 0
(l) ;’ . gtags6 -------- O'(S)Of . . gtagsé
(0
10 20 30 40 50 60 10 20 30 40 50 60
global history global history
real_gcc sdet
12 % T T T T T T 6 % T T T T T T
10 % 5%
8% 4%
6 % 3%
4% e 2% g
2% meames 4 awl L R—
0% . . gtagsé - 000 . . gtags6 --------
0 0

10

20 30 40 50 60
global history

10

20 30 40 50 60
global history

Figure 38: Comparison of gtags4 and meta/meta for a 4 KB budget. Both predictors feature
the same quantity of ”bimodal” prediction, “gshare” prediction and “selection” information.
We also show the misprediction percentage of a gtags6 (5 KB).

INRIA

A Comprehensive Study of Dynamic Global History Branch Prediction

79

8%

verilog

7%
6 %
5%
4%
3%
2%
1%

0%

25 %

20 %

15%

10 %

5%

0%

25 %

20 %

15%

10 %

5%

0%

RR n°® 4219

meta/meta B

10

20 30 40 50 60
global history

twolf

10

20 30 40 50 60
global history

8 %

video_play

7%
6 %
5%
4%
3%
2%
1%

0%

14 %
12%
10 %
8 %
6 %
4%
2%
0%

8 %

global history
mcf

10

20 30 40 50 60
global history

gap

7%
6 %
5%
4%
3%
2%
1%
0%

Figure 39: Cf. Figure 38.

global history

80

Pierre Michaud , André Seznec

5%
45%
4%
35%
3%
25%
2%
15%
1%
0.5%
0%

groff

T T T T
meta/meta (rand) ———
meta/meta (bim/gsh) -----—-
gtags4 -------- 1

gtags6 -]

10 20 30 40 50 60
global history

mpeg_play

9%
8%
7% -
6% -
5% -
4%
3% -
2%
1%
0%

meta/meta (rand)I

meta/meta (bim/gsh) -
gtags4 -------- i
gtags6 -

10 %

10 20 30 40 50 60
global history

real_gcc

9%
8 %
7%
6 %
5%
4%
3%
2%
1%

0%

metlalmetal(rand) '

meta/meta (bim/gsh) -
gtags4 -------- 1
gtags6 - —

10 20 30 40 50 60
global history

7%

gs

6 %
5% -
4%
3%
2%
1%

0%

T T T

meta/meta (rand)

meta/meta (bim/gsh) ------- .
gtags4 --------

gtags6 - _

4.5%
4%
3.5%
3%
25%
2%
15%
1%
0.5%
0%

5%

45% P

4%
3.5%
3%
25%
2%
1.5%
1%
0.5%
0%

10 20 30 40 50 60

global history
nroff

meta/meta I(rand) '

meta/meta (bim/gsh) —----
gtags4 --------
gtags6 -

20 30 40 50 60
global history

sdet

T T T
meta/meta (rand)
meta/meta (bim/gsh) —----
gtags4 -------- T
gtags6 -

10

20 30 40 50 60
global history

Figure 40: Comparison of gtags4 and meta/meta for a 64 KB budget. Both predictors feature
the same quantity of ”bimodal” prediction, “gshare” prediction and “selection” information.
We show two versions of meta/meta: one initializes the meta-predictors randomly (“rand”),
the other initializes the meta-predictors so that the outer meta-predictor selects bimodal
and the inner meta-predictor selects gshare (“bim/gsh”). We also show the misprediction
percentage of a gtags6 (80 KB).

INRIA

A Comprehensive Study of Dynamic Global History Branch Prediction

81

verilog

8%
7%
6 %
5%
4%
3%
2%

1%

T T T T
meta/meta (rand) ———
meta/meta (bim/gsh) -
gtags4 -

gtags6 -

0%

25 %

20% P

15%

10 %

5%

0%

25 %

20 %

15%

10 %

5%

0%

RR n°® 4219

10 20 30 40 50 60
global history

go

- meta/meta (bim/gsh)

meta/meta (rand) ———

gtags4
gtagsﬁ ;

0 10 20 30 40 50 60

global history
twolf

meta/meta (rand) ——
meta/meta (bim/gsh) - i
gtags4 --------

gtagsé -

0 10 20 30 40 50 60

global history

video_play

7%

6%
5% |
4% b
3% |
20
1% b

T T T T
meta/meta (rand) ———
meta/meta (bim/gsh) —---- —
gtags4 -
gtags6 - e

0%

14 %
12%
10 %
8 %
6 %
4%
2%
0%

20 30 40 50 60
global history

mecf

meta/meta (rand) ——— +
meta/meta (bim/gsh)
gtags4
gtagse .

10

20 30 40 50 60
global history

gap

8 %
7%

6% |

5%
4%
3%
2%
1%

0%

T T T T
meta/meta (rand) ———
meta/meta (bim/gsh) —----
gtags4 -

gtags6 - -

Figure 41: Cf. Figure 40.

global history

82

Pierre Michaud , André Seznec

70 %
60 %
50 %
40 %
30 %
20 %
10 %
0%

90 %
80 %
70 %
60 %
50 %
40 %
30 %
20 %
10%
0%

80 %
70 %
60 %
50 %
40 %
30 %
20 %
10 %
0%

Figure 42: Percentage of dynamic branches

groff

T T
gtags6
meta/meta
metal transitions

global history

mpeg_play

T T

gtags6
meta/meta
metal transitions

global history

real_gcc

T T T
gtags6

meta/meta

metal transitions

global history

80 %
70 %
60 %
50 %
40 %
30 %
20 %
10 %
0%

90 %
80 %
70 %
60 %
50 %
40 %
30 %
20 %
10%
0%

90 %
80 %
70 %
60 %
50 %
40 %
30 %
20 %
10%
0%

gs

(i;tagse I

meta/meta -------
metal transitions --------

global history
nroff

T T

gtags6
meta/meta —--—-
metal transitions -------- g

global history
sdet

T T

gtags6
meta/meta —--—-
metal transitions -------- g

global history

using the gshare predictor on a 4-KByte
meta/meta and a 5-KByte gtags6. We also show the percentage of Tyuetq1 updates in
meta/meta that result in a change of the meta-prediction.

INRIA

A Comprehensive Study of Dynamic Global History Branch Prediction

83

80 %
70 %
60 %
50 %
40 %
30 %
20 %
10 %
0%

90 %
80 %
70 %
60 %
50 %
40 %
30 %
20 %
10%
0%

90 %
80 %
70 %
60 %
50 %
40 %
30 %
20 %
10%
0%

RR n°® 4219

verilog video_play
T T T T T T 80 % T T T T T T
gtags6 gtags6
meta/meta ------- b 70 % meta/meta ------- b
metal transitions -------- 60 % L metal transitions --------
50 % |-
40%
30% [
20%
10% -]
0% L b CIEELEEEL EELELEAL e IR .
0 10 20 30 40 50 60
global history global history
go mcf
T T T T T T 100 % T T T T T .
gtags6 | 90 % gtags6 i
meta/meta ------- meta/meta -------
metal transitions -------- g 80% r metal transitions - B
70 %
60 %
50 %
40 %
30%
20 %
10 %
1 1 1 1 1 1 O %
10 20 30 40 50 60
global history global history
twolf gap
T T T T T T 80 % T T T T T T
gtags6 | gtags6
meta/meta ------- 70 % meta/meta ------- b
metal transitions -------- E 60 % metal transitions --------
50 %
40 %
30 %
20 %
10%
‘I’) 1 1 1 1 1 0 %
10 20 30 40 50 60
global history global history

Figure 43: Cf. Figure 42.

84 Pierre Michaud , André Seznec

global history global history
mpeg_play nroff

140 T T T T T T

120
100
80
60
40
20

global history
half real _gcc sdet

100
90
80
70
60
50
40
30
20 ¥
10

global history global history

Figure 44: Approximation of BPPM by cascading two match-select. The three tables are
Ty = gsharel[A, Hy,m], T> = gsharel[A, Hy /4, m] and T3 = gsharel[A, 0, m], the predictor
simulated is match-select(Ty, match-select(T3,T3)). The gshared function is used for the
tags. The y-axis is the misprediction interval (inverse of the misprediction ratio) and the
x-axis is the global history h. Three hardware budgets are simulated : 208 KB (m = 16,
10-bit tags), 20 KB (m = 13, 7-bit tags) and 9 KB (m = 12, 6-bit tags).

INRIA

A Comprehensive Study of Dynamic Global History Branch Prediction

verilog

120

100

80

60

40

20

global history
go

0 10 20 30 40 50 60
global history

twolf

global history

120

100

80

60

40

20

video_play

global history
mcf

0 10 20 30 40 50 60

global history
gap

0 10 20 30 40 50 60
global history

Figure 45: Cf. Figure 44.

RR n°® 4219

86

Pierre Michaud , André Seznec

30
20 |
10

bppm hmax=64 —— 7

(64,16,0) —------
(64,16,8,0) --------
(64,32,16,8,0)

40

14

15 16 17 18
log2 entries/table

mpeg_play

19

20 |
15
10

14

15 16 17 18
log2 entries/table

half real _gcc

19

60

20 |

10

13

14

15 16 17 18
log2 entries/table

19

gs
80 T T T T T
70
60 e
50 b
40 7
30 b
20 F bppm hmax=64 |
(64,16,0) -———-—--
10 - (64,16,8,0) -------- i
§64,32,16,8,0) -

0 1 1 1

13 14 15 16 17 18 19

log2 entries/table
nroff
140 T T T T T
120
100
80 | b
60 b
40 bppm hmax=64 B
(64,16,0) -——-—-—--
20 | 64,16,8,0) -------- B
(64,32,16,8,0) -
O 1 1 1 1
13 14 15 16 17 18 19
log2 entries/table
sdet

100 T T T T T

30
20
10

bppm hmax=64 7

(64,32,16,8,0)

14

15 16 17 18 19
log2 entries/table

Figure 46: Approximation of BPPM by cascading several match-select (misprediction inter-
val on the y-axis). The maximum global history length is fixed to h = 64. On the x-axis,
we vary the logy of the number of entries per table. The tag width is fixed to 10 bits.
Three configurations are displayed : a 3-table configuration using history lengths (64, 16, 0),
a 4-table (64,16,8,0) and a 5-table (64, 32,16,8,0).

INRIA

A Comprehensive Study of Dynamic

Global History Branch Prediction 87

120

verilog

60 -

40 -

bppm hmax=64 ——
(64,16,0) -----—-—-
(64,16,8,0) -------- 7
((?4,32,1(?,8,0) -

13

14

15 16 17 18 19
log2 entries/table

bppm hmax=32 ——
32,8,0) ------- T
(32,8,4,0)
|(32,16,§,4,0) o

13

14

15 16 17 18 19
log2 entries/table

twolf

bppm hmax=32 —— |
32,8,0) -------

(32,8,4,0) -~ 4
|(32,16,§,4,0) U

13

14

15 16 17 18 19
log2 entries/table

120

video_play

60 -
ol bppm hmax=64
(64,16,0) ----—--
[(64,16,8,0) -------- i
(64,32,16,8,0) -
0 L : I |
13 14 15 16 = - J
log2 entries/table
mcf
20 : . | | |
18 | ——
1 8 »/vv_»/_/,/”,,‘,,«,, i
14 == -
12 -
10 -
of _
6 bppm hmax=32 ——— -
o 32,8,0) -—--—-- i
oL (32,8,4,0) -------- i
(32,16,8,4,0) -
0 ! . I I
13 14 15 16 " - J
log2 entries/table
gap
60 T : . , .
50 _.:,J;;;.,J,;W; ,,,, -
40 -
30 |
20 - bppm hmax=32 —— |
32,8,0) -----—--
10 o -
(32,16.84.0)
0 ! . I I
13 14 15 16 " - J

log2 entries/table

Figure 47: Cf. Figure 46. On the four SPEC benchmarks, the maximum history length is
fixed to h = 32. Three configurations are displayed : a 3-table configuration using history
lengths (32, 8,0), a 4-table (32,8,4,0) and a 5-table (32,16, 8,4, 0).

RR n® 4219

88

Pierre Michaud , André Seznec

10

40

15
10

60

50

40

bppm h=64 —— |
percep h=64,a=0 -------
percep h=64,a=4 -------- u
percep h=64,a=8 - ..
percep h|:64’a212. N

16 64 256 1024 4096
Kbytes

mpeg_play

bppm h=64 ———
percep h=64,a=0 -~
percep h=64,a=4 --------
percep h=64,a=8 - -
percep h|:64,a:12| -

16 64 256 1024 4096
Kbytes

half real_gcc

bppm h=64 i
percep h=64,a=0 -~
percep h=64,a=4 --------
percep h=64,a=8 - -

percep h|:64,a:12| -

16 64 256 1024 4096
Kbytes

80

70
60

10

bppm h=64 B
percep h=64,a=0 -------
percep h=64,a=4 --------
percep h=64,a=8 - o

percep h-:64’a:12. P

64 256 1024 4096
Kbytes

nroff

bppm h=64
percep h=64,a=0 ------- -
percep h=64,a=4 --------
percep h=64,a=8 - A

percep hf64,a:12| -

100

64 256 1024 4096
Kbytes

sdet

10

bppm h=64
percep h=64,a=0 -------
percep h=64,a=4 -------- -
percep h=64,a=8 - -

percep hf64,a:12| -

16

64 256 1024 4096
Kbytes

Figure 48: Misprediction interval of a perceptron predictor using a fixed number h = 64 of
global history bits. We show four perceptron configurations perceptron[m, Hgy, A,], with

a the number of address bits used as extra inputs. Configuration a = 0 is the

“normal”

perceptron (65 weights per entry). Configuration a = 12 uses 12 address bits (77 weights
per entry). The number of table entries is varied between 64 (m = 6) and 64k (m = 16).
Perceptron weights are coded on 9 bits. For comparison, we also show the misprediction
interval of BPPM with h = 64.

INRIA

A Comprehensive

Study of Dynamic Global History Branch Prediction

89

120

100

80

60

verilog

bppm h=64 —— |
percep h=64,a=0 -------
percep h=64,a=4 --------
percep h=64,a=8 - .
percep h:|64,a:12I P

16 64 256 1024 4096
Kbytes

=
o

9
8
7
6
5
4
3
2
1
0

percep h=64,a=0 ——— -
percep h=64,a=4
percep h=64,a=8
Ipercep h|:64,a:12I .

14

16 64 256 1024 4096
Kbytes

twolf

o N & O ®
T

percep h=64,a=0 —— -

percep h=64,a=4 --—---——-

percep h=64,a=8 -------- a
Ipercep h|:64,a:12I .

RR n°® 4219

16 64 256 1024 4096
Kbytes

120 :
100 | |
80 |- |
60 |- |
40 bppm h=64 |
percep h=64,a=0 -------
percep h=64.,a=4 --------
percep h=64.a=8 - |
percep h=64,a=12 — -
0 1 1 | | .
4 16 64 256 1024 4096
Kbytes
mcf
16 :
14 = .
12 |
10 F |
8 B -
6 B -
4+ percep h=64,a=0 —— |
percep h=64,a=4
2 percep h=64,a=8 |
percep h=64,a=12 -
0 1 1 L 1 .
4 16 64 256 1024 4096
Kbytes
gap

15
10

video_play

B percep h=64,a=0 ——— |
r percep h=64,a=4 ------- i
percep h=64,a=8 --------
percep h|:64’a:12. E §

4 16 64 256 1024 4096

Kbytes

Figure 49: Cf. Figure 48

90

Pierre Michaud , André Seznec

18
16
14
12
10

o N b OO

16
14
12
10

o N M O

go

e e e

bppm h=32 ——— |
percep h=32,a=0 -------
percep h=32,a=4 -------- u
percep h=32,a=8 -

percep h:3|2,a:12 i

64 256 1024 4096
Kbytes
twolf
T T T : .
i bppm h=32 ———
- percep h=32,a=0 ------- i
percep h=32,a=4 --------
- percep h=32,a=8 - |
I L percep h:3|2,a:12 T
4 16 64 256 1024 4096
Kbytes
Figure 50:

20
18
16
14
12
10

oN MO ®

60

50

20

10

bppm h=32 —— |

percep h=32,a=0 -------

percep h=32,a=4 -~

percep h=32,a=8 -
percep h:3|2,a:12 i

16 64 256 1024
Kbytes

gap

4096

bppm h=32 ——
percep h=32,a=0 -------
percep h=32,a=4 -~
percep h=32,a=8 -
percep h:3|2,a:12 i

16 64 256 1024
Kbytes

Cf. Figure 49. The global history length h fixed to 32 here.

4096

INRIA

A Comprehensive Study of Dynamic Global History Branch Prediction 91
groff
30 .
20 L | 20 g
perceptron perceptron ——
10 hybrid pu ------- - 10 hybrid pu -------
hybrid tu -------- hybrid tu --------
0 1 1 1 1 0 1 1 1 1 1
8 16 32 64 128 256 512 1024 8 16 32 64 128 256 512 1024
Kbytes Kbytes
mpeg_play nroff
100 T T T T T T
20 + g 1
15 4 i
10 + g §
perceptron 20 perceptron -
5F hybrid pu ------- b 10 hybrid pu ------- i
hybrid tu -------- hybrid tu --------
0 1 1 1 1 0 1 1 1 1
8 16 32 64 128 256 512 1024 16 32 64 128 256 512 1024
Kbytes Kbytes
half real_gcc sdet
60 T T T T T T
15 8 20 4
10 + g
perceptron perceptron
5L hybrid pu ------- 4 10 hybrid pu ------- T
hybrid tu -------- hybrid tu --------
0 1 1 1 1 0 1 1 1 1 1
8 16 32 64 128 256 512 1024 8 16 32 64 128 256 512 1024
Kbytes Kbytes
Figure 51: Misprediction interval of a hybrid perceptron. Predictor P; is
P, = meta-select(T1,T>,T3), with Ty = bimodal[A,m], T» = gsharel[A, Hip,m] and
T3 = gshare2[A, Hig,m]. The hybrid perceptron is meta-select(Py, Py, Ty), with

T, = gshare3[A, Hig, m] and P = perceptron|m — 6, Hgs, Ag]. Parameter m is varied from
12 to 18. Two versions of the hybrid perceptron are shown :

partial update (“pu”),

and total update (“tu”, P; and P, are always updated). The third predictor is a single

perceptron[m’, Hgq, Asg].

RR n°® 4219

92

Pierre Michaud , André Seznec

verilog

video_play

20 perceptron b 20r perceptron 7
10 + hybrid pu. ------- i 10 | hybrid pu ------- J
hybrid tu -------- hybrid tu --------
O 1 1 1 1 1 0 1 1 1 1 1
8 16 32 64 128 256 512 1024 8 16 32 64 128 256 512 1024
Kbytes Kbytes
go mcf
12 T T T T T T 16 ———— ——— T : r
| 14 E
12 B
] 10 + E
- 8 - -
4 | i 6 4
perceptron —— ar perceptron]
2r hybrid pu b oL hybrid pu - i
hybrid tu hybrid tu --------
O 1 1 1 1 1 0 1 1 1 1
8 16 32 64 128 256 512 1024 8 16 32 64 128 256 512 1024
Kbytes Kbytes
twolf gap

8 - -
30 :
6 - -
Al | 20 :
perceptron perceptron
2t hybrid pu ------- e 10 - hybrid pu ---——-
hybrid tu -------- hybrid tu --------
O 1 1 1 1 1 0 1 1 1 1
8 16 32 64 128 256 512 1024 8 16 32 64 128 256 512 1024
Kbytes Kbytes

Figure 52: Cf. Figure 51.

INRIA

A Comprehensive Study of Dynamic Global History Branch Prediction 93

80

10 | hybrid tu —— 4
cascad tu -------
0 1 1 1 1
8 16 32 64 128 256 512 1024
Kbytes
mpeg_play

20 | —
15 + B
10 | —
[hybrid tu 1
cascad tu -------
0 1 1 1 1
8 16 32 64 128 256 512 1024
Kbytes

half real _gcc

20 | —
15 B
10 | —
5+ hybrid tu 4
cascad tu -------
O 1 1 1 1
8 16 32 64 128 256 512 1024
Kbytes

70

10 - hybrid tu b
cascad tu -------
0 1 1 1 1 1
8 16 32 64 128 256 512 1024
Kbytes
nroff
100
90 B
80 B
70 B
60 B
50 B
40 B
30 B
20 hybrid t i
ybrid tu —— |
10 cascad tu ---—----
0 1 1 1 1
16 32 64 128 256 512 1024
Kbytes
sdet
60 T T T T T T
30 E
20 E
10 - hybrid tu 7
cascad tu -------
0 1 1 1 1 1
8 16 32 64 128 256 512 1024

Kbytes

Figure 53: Misprediction interval of a cascaded perceptron, compared with a hybrid percep-
tron. The hybrid perceptron is the same meta-select(Py, Py, Ty) as on Figure 51, and the
cascaded perceptron is Py = perceptron|m — 6, Hgq, Ag,pl], p1 being the prediction from
P;. Both use a total update (P, and P»/P; are always updated). The hardware budget for

the cascaded perceptron comprises both P; and Pj.

RR n® 4219

94

Pierre Michaud , André Seznec

verilog

B hybrid tu n
10 cascad tu -------
O 1 1 1 1 1
8 16 32 64 128 256 512 1024
Kbytes
go
12 T T T T T T

4 - -
2r hybrid tu b
cascad tu -------
O 1 1 1 1 1
8 16 32 64 128 256 512 1024

Kbytes
twolf

o N e (<23 e o)
T

hybrid tu
Icascatli tu

8 16 32

64 128 256
Kbytes

512 1024

10

16
14
12

o N A O

30

20

10

video_play

L hybrid tu i
cascad tu -------
1 1 1 1 1
8 16 32 64 128 256 512 1024
Kbytes
mcf
— o ___t | E—— | — T
L hybrid tu .
cascad tu -------
1 1 1 1 1
8 16 32 64 128 256 512 1024
Kbytes

gap

B hybrid tu 7]
cascad tu -------
1 1 1 1 1
8 16 32 64 128 256 512 1024
Kbytes

Figure 54: Cf. Figure 53.

INRIA

A Comprehensive Study of Dynamic Global History Branch Prediction 95

groff gs
90 T T T T T T 80 T T T T T T
80 e ,,/,,,. E 70 | [
70 b - 60 L R
60 I T 50 F i
50 - 4
: 40 g
40 + -
0L i 30 g
bppm h=64 —— bppm h=64
20 - Y - 20 - Y
10 4 10 |]
0 1 1 1 1 0 1 1 1 1
8 16 32 64 128 256 512 1024 8 16 32 64 128 256 512 1024
Kbytes Kbytes
mpeg_play nroff
40 T T T T T T 140 T T T T T T
35 V»‘w’“_»ﬂ”,._,,r,,v,-.,,.::.”»irr' ! 120 F P 3
30 |) /_/_,,//*’ . 100 F - a
L .
80 g
20+ - -
60 |- .
15 + -
10 F bppm h=64 ——— | 40 bppm h=64 4
PL ------- P1 -------
5L P2 4 20 P2 g
P2t P2’ -
0 1 1 1 1 1 1 0 1 1 1 1 1 1
8 16 32 64 128 256 512 1024 8 16 32 64 128 256 512 1024
Kbytes Kbytes
half real_gcc sdet
60 T T T T T T 100 T T T T T T
50 |
40]
30 g
20]
10 +]
0 1 1 1 1 1 s 1 - 0 1 1 1 1 1 a 1
8 16 32 64 128 256 512 1024 8 16 32 64 128 256 512 1024
Kbytes Kbytes
Figure 55: Misprediction interval of a perceptron cascaded with 2-table
and 3-table gtags. The gtags are P, = gtags8[16, m]= match-select(Ts,T3)

and P| = gtags8[64,16, m] = match-select(Ty, Py), with T = gsharel[A, Hgq,m],
T, = gsharel[A, Hig,m] and T3 = gsharel[A,0,m]. The cascaded perceptrons are
P, = perceptron[m — 6, Hgy, Ag, p1] and Py = perceptron|m — 6, Hgq, Ag, p}]. Parameter m
is varied from 12 to 18.

RR n® 4219

96 Pierre Michaud , André Seznec

verilog video_play
120 T T T T T T 120 T T T T T T

100

80 -

60

40

20 -

8 16 32 64 128 256 512 1024 8 16 32 64 128 256 512 1024
Kbytes Kbytes

8 16 32 64 128 256 512 1024 8 16 32 64 128 256 512 1024

16
14 4
12 + i
10 |
8 -
oL i
4+ i
oL i
0 L L L L L L 0 L L L L L L

8 16 32 64 128 256 512 1024 8 16 32 64 128 256 512 1024

Kbytes Kbytes

Figure 56: Cf. Figure 55.

INRIA

A Comprehensive Study of Dynamic Global History Branch Prediction

97

8 16 32 64 128 256 512 1024
Kbytes
twolf
16 T T T T T T
14 - -
12 B
10 + B
8 - -
6 - -
ar PL e iy
2+ P2 -------- -
0 1 1 1 1 IPZ’ 1
8 16 32 64 128 256 512 1024

Kbytes

60

50

40

30

20

10

bppm h=32 ——— 1
Pl - 4
P2 ---ooe- i
P2’
1 1 1 1 1 1
16 32 64 128 256 512 1024
Kbytes

bppm h=32
Pl -
P2 -ooe-es b
P2’
1 1 1 1 1 1
16 32 64 128 256 512 1024
Kbytes

Figure 57: Cf. Figure 56. Here, a global history h = 32 is used. The number of perceptron
entries have been doubled to keep approximately the same perceptron budget as on Figure

56.

RR n°® 4219

/<

Unité de recherche INRIA Rennes
IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technop6le de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lés-Nancy Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38330 Montbonnot-St-Martin (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http://www.inria.fr

ISSN 0249-6399

