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Exposants de Lyapunov: Quand le Top rejoint le Bottom

Résumé : Dans cet article, on considére les exposants de Lyapunov associés aux itérées de
fonctions aléatoires. Lorsque le support de ces fonctions est irréductible, nous montrons 1’égalité
des exposants de Lyapunov top et bottom.

Mots-clés : exposant de Lyapounov, récurrence stochastique. classification AMS 1991 :
Primaire 15A52, 34D08; Secondaire 68M20, 05C50.
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1 Introduction

It is well known result that top and bottom Lyapunov exponents associated to the iterates of
monotone homogeneous functions exist under a quite general setting (cf. [14]).

The focus of the present paper is to find general conditions under which the two exponents
are equal. The only known conditions for this equality are roughly based or on boundedness
condition of functions or on some fixed structure of the matrices when these functions admit
matrix representation (cf. [1, 13]). The sufficient conditions we give in §3 extend those
conditions based on the generalized notion of irreducibility defined in §2. Preliminary results
that we need for the proof of Theorem 1 are presented in §4 and the proof is in §5.

2 Preliminaries

We say that f : R? — RF is monotone if for all X,Y € R4, X <Y = f(X) < f(Y), where
< denotes the usual product ordering of R", for all n. We say that f is homogeneous if for all
A€Rand X € R, f(A+ X) = A+ f(X), where for all X € R” and A € R, A + X denotes
the vector with entries A + (X);.

Let T4(R) be the set of montone and homogeneous functions R — R4. Let (£, p) be a
probability space and @ the shift operator on €2, namely a measurable map {2 — 2 preserving
the measure p. Let f : @ — T4(R) be a measurable function. We denote f(0"w) by f(w,n)
or more simply f, for all n € Z. The support set of f, is denoted S.

Let { X, }nen be a sequence of vectors in R? defined by the stochastic recurrence:

Xn+1 = fn (Xn)

with an initial condition X € R¢.
In the following we denote by 0 the vector (0,---,0)" € R?. We define t,b: R — R by

VX e RY, ¢(X) =tX =max(X); and b(X)=bX = min(X);

If p is stationary ergodic and if f is integrable, that is f(-)(0) € L', then it is proved in [14]
that the top—Lyapunov exponent

. tX,
Jm == = (1)
and the bottom—Lyapunov exponent
. bX,
lim =Y
n—oo mn

exist a.s. and in L'. This result is based on the Kingman’s theorem for subadditive process
[12, 8]. Its computation issue is an open and difficult problem that has been studied in many
papers ([2], [3], [4], [6], [7], [11]). Besides, interesting results on the study of the cycle-time
vector in deterministic case (f, constant) can be found in [10].

3 Main result

Let £ = {1,...,d}. Let R=RU {—o0}. We denote by ST the semi-group generated by S.
We denote by e; the vector of dimension d with all components equal to —oo except for the
i-th component equal to 0.
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Extension on R Let g € T4(R). g is extended on R as follow: if X is a vector of R*, we
define XV as a vector obtained from X replacing all its components equal to —oo by —N and
we defined g(X) as the limit limy_,, g(X 7). Integrability and monotonicity of g implies that
this limit is in R%.

Definition 1 (path). We say that g € ST realizes a path fromi € E toj € E if g(e;); > —o0
and we denote it by i > j. The length of the path is defined by lg| = min{l > 1| g € SY.

Definition 2 (irreducibility). S is said to be irreducible if Vi,j € E, 3g € ST such that
i j,

Definition 3 (row-allowability). S is said to be row-allowable if Vg € S, Vi € E, 35 € E
such that j .

Here is the main result:

Theorem 1. Assume that the sequence {fn} is i.i.d. If S is irreducible and row-allowable
then v = v, = v and therefore for all 1,

lim (Xn)i

n—oo n

= a.s. and in L.

Remark 1. The result of Theorem 1 can be easily generalized to the sequence of functions
with Markov dependence. For stationary ergodic case, the irreducibility does no more guar-
antee the equality 1 = yp.

Example 1. Here are two main examples of monotone homogeneous map. The first example
is

g:R* 5 R, g(X) = log(M exp(X)) , (2)

where exp(X) = (exp(X1),--. ,exp(Xq))t, log(X) = (log(X1),.-- ,log(Xys))!, and M is a
d x d nonnegative matrix with at least one strictly positive entry per row (the later condition
is row-allowability and this ensures that f(R?) C R?). If each map fy, is of the form fi(X) =
log(Mj, exp(X)), for some My, then the Lyapunov exponent (1) coincides with the classical
top Lyapunov exponent [5] of the random product of nonnegative matrices My, ... M1, which

is defined by:
= li 11 | My, I
¥ =a.s. 1mn og || M M|,

for any norm || - ||. In this case, if we denote S the support set of My, S is irreducible if
Vi,j € E, 3M € ST such that M;; > 0.
The second example is
R - R (z) = M;j + z; 3
f ) fi(z) 1I£]E'iJ§Xd( ij +xj) 3)
where M is a d x d matrix with entries in RU{—o0}, such that each row contains at least one
finite entry. If each map f is of the form (3) for some matrix My, the Lyapunov exponent (1)

coincides with the Lyapunov exponent of the random product of matrices M, ... M; in the
max-plus semiring [1, 6]. Here S is irreducible if Vi, j € E, IM € ST such that M;; > —oo.

INRIA
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4 Backward coupling class

In this section we will assume that S is irreducible for an arbitraly given path relation and

/ 'O
that this relation is transitive, namely if ¢ EN j and j % k then + ¥ k. In the next section,
we show that Definition 1 defines a transitive relation.

Notations For J C E, we introduce the following notations:

1. Forward and backward path connections by g € S™:

Ij(J,g)={i€E|Jjed st. iD5}, IL(Jg=EcE|FelT st jdi}

2. Random path connections: Vn € Z,
Hw,J,n) = IL(J, f(w,-1)--- f(w,n)) forn < —1,
= Iy(J, f(w,n) - f(w,0)) for n>0.

3. Recurrent states of I(w, J,n) in backward:

Sp(w,J) ={J' C E| Card[n < —1| I(w, J,n) = J'] = o}.

4. Mazimum size of path connections:

Ny = max{Card[If(j,9)] | j € E, g €S™}, Ny =max{Card[ly(j,9)] | j € E, g € ST}.

5. Mazimum size of random path connections in backward:

Np(w, ) = max Card[I(w, j,n)].

The following lemma will be crucial to characterize the backward coupling class.

Lemma 1. Let
H(W,jaiaB) = {n < -1 | IS I(wajan) and fp—10--- of'n—|B| = B}
Vi,j € E,VB € ST, Card[H (w, j,1, B)] = o a.s.

Proof. This is an immediate consequence of the irreducibility of S and of the fact that condi-
tionnally to the event i € I(w,j,n), we have P(f,—10---0 f,_ g = B) > 0. O

Lemma 2. Let ig € E and M € ST s.t. Card[Iy(i9, M)] = Ny. The following almost sure
equalities hold :

1. V] € E, Nb(w,j) = Nb:

2.Vj € E, Sy(w,j) = Sp = Upes+Ip(io, M o B), where Card[Iy(ig, M)] = Nj.

RR n® 4198



6 Dohy HONG

Proof. We first prove the first a.s. equality.

Backward

Figure 1: n € H(w, j, 19, M)

We have (see Fig.1): Vn € H(w, j, 10, M), Iy(io, M) C I(w,j,n — |M]). Therefore Ij(ig, M) =
I(w,j,n — |M]). Since H(w, j,i9, M) is a.s. non empty, this implies that Ny(w,j) = Nj a.s.
We next show the second equality. We have Vn < 0, Sp(w,j) C Ugenl(w,j, k). If
n € H(w,j,ig,M), Vk < n, 3B € ST s.t. I(w,j,k) = Iy(igp, M o B). Hence Sp(w,j) C
Uges+I(i0, M o B). Now VB € ST, Card[H (w, j,%0, M o B)] = 0o a.s. Hence I(ig, M o B) are
recurrent states. O

Definition 4 (BC-class). i,j € E are in the same bacward coupling class (BC-class) if the
property: AN (w) € | — 00,0[ such that I(w,i,N) = I(w,j, N) holds a.s. and we will denote
this property by i ~ j.

Lemma 3. We have the following properties:
1. ~ is an equivalence relation.
2. If P(3n < —1,1(w,i,n) N [(w,j,n) #0) =1, then i ~ j.
3. IfAB € ST, Jig € E s.t. {i,j} C Iy(ig, B), then i ~ j.

Proof. 1) Tt is immediate that 7 ~ ¢ and that ¢ ~ j implies j ~ . If i ~ j and j ~ k, then for
almost all w, IN,N' < 0 s.t. I(w,i,N) = I(w,j,N) and I(w,j, N') = I(w,k, N'). Then, we
have I(w,%, min(N, N')) = I(w, k, min(N, N")).

2) fP(In < —1,I(w,3,n) NI (w,j,n) # 0) = 1, then for almost all w, In < —land z € E
s.t. z € I(w,i,m) N I(w, j,n).

Figure 2: z € I(w,i,n) N I(w,j,n).

If m < n is the time at which Card[I(6"w,z, m —n)] = Np (m is a.s. finite by Lemma 2, cf.
Fig.2), then I(w, j,m) = I[(0"w,z,m — n) = I(w,i,m). Therefore i ~ j.

INRIA
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3) Let Card[Iy(i, M)] = Ny. If n € H(w, i,i, M), I(w,i,n — |M|) = I,(i, M).

j
Figure 3: {i,5} C Iy(ig, B).

But we also have I(w, j,n—|M]|) C Iy(i, M). Otherwise 3z € I(w, j,n—|M|) s.t. = & I(i, M).
Since {3, j} C Iy(i9, B), that would imply that Card[I}(ig, Bo f_10..0 f_, 0 M)] > N, which
is impossible. Therefore Uy« (I(w,7,n) NI(w,i,n)) is a.s. non-empty and from the point 2,
i~

]

Lemma 4. E admits a unique partition in K BC-classes (C1,..,Cg) which only depend on
S and which has the following properties:

1. YVie{l,--- ,K}, C; can be constructed recursively as follow: C; = BC(1) (the BC-class
which contains 1), Cy = BC(min{i € E—C4}),.., Cxk = BC(min{i € E—C;..—Cg_1}).

Vie{l,..,K}, VB e ST, if C; ﬂ]f(Cj,B) # 0, then C; N If(E — Uk;,ngk,B) = 0.
i~ jif and only if AB € ST s.t. Iy(i, B) N Iy(j, B) # 0.
Ifi#j, thenVn € Z,Vw € Q, I(w,C;,n) N I(w,Cj,n) = 0.

AT R

Vn € Z,Yw € Q, Vi, 3j = o,(i), I(w,Cj,n) C C; and I(w, C;,n) is not empty.
Ifn >0, I(w,Ci,n) = Cy, (3)-

6. {I(w,%,n)}n<—1 15 a positive recurrent Markov chain. Its positive recurrent states are
Sh.
{I(w, Ci,n)}n>0 is a positive recurrent Markov chain. Its positive recurrent states are
the K BC-classes with stationary probability m which is independent of 1.

Proof. 1) The BG-class containing i, BC(z), has the following characterization. Due to the
point 3 of Lemma 3, we know that all elements of I(w,%,n) are in the same class for all n < 0.
Therefore,

BC(Z) = U{] | {27.7} cJe Sb}a

which is uniquely defined depending only on S.

2) Let z € If(j,B)NC;, j € Crand y € Iy(k, B)NC;, k € Cpp, I # m. Assume that with
probability p > 0, Un<o{I(w,j,n)NI(w,k,n)} = 0. Then with probability, P(f jo---of_ 5 =
B)xp>0, I(w,z,n) # I(w,y,n), for all n < 0. This would imply that z ¢ y.

3) Assume that i % j and I(i,B) N Iy(j,B) # 0. Due to the point 2, 3k, k' s.t.
I,(BC(i), B) U I,(BC(j),B) C Ck and I(E,B) N Cy = 0. Then a.s. Card[I(w, E,n)] \ 0

RR n® 4198



8 Dohy HONG

when n — —oo. But Card[I(w, E,n)] > 1. The converse implication is obvious. This result
shows that the BC-classes are deterministic notions that only depend on S.

4)Ifi ¢ §,VB € ST,Vk € E, {i,j} ¢ Iy(k, B) (Lemma 3, point 3) and Iy(i, B) N I(j, B) =
0 (point 3).

5) For n < —1: Vk € E, I(k,C;,n) is never empty because every coordinate has at least
one antecedent on which it depends. The inclusion is a consequence of the point 2.

For n > 0: the non emptiness and the inclusion are a consequence of the point 3. The fact
that every coordinate has at least one antecedent implies the equality.

6) It directly follows from the previous results. U

5 Proof of Theorem 1
Lemma 5. The path defined by Definition 1 is transitive.

Proof. 1f i % j and j % k, then by monotonicity and homogeneity [¢ o g(e:)]s > g'(ej)k +
g(e;); > —oo. O

Let Ci(n) = Cy, (i), Vn € Z. For all J C E, we denote by [J] the vector with 0 on k € J
and —oo on k ¢ J. For all n > 0 and m > n, we define X’ = (f,_10..0 fgo [Ci])jeCi(n) and

Xy = (fmo.ofno [Ci(n)])jECi(m—f—l)'
Proof of Theorem 1. It is clear that tX?,, is subadditive. If X* is a stationary version
of X* (i.e. C; chosen under stationary probability =), then tXJ, is a stationary ergodic
subadditive process and from Kingman’s theorem:

S

lim —2 exists a.s. and in L.
n—oo N

But from irreducibility Vi € B, limy 0 255 = limy, 00 52 = 4,. The same result holds for
b-

Choose j s.t. Card[n : tX} = (X},);] = +o0 a.s. Such a j exists, since F is finite. Let M €
St such that Ny = Card[If(j, M)]. Let H = {n:tX! , = (X,_); and Ci(n) = I;(j,M)}. It
is clear that Card[H]| = oo a.s. Hence one can construct an increasing subsequence T,, € H
for which we have:

0 <tX} —bX%L <tM(0)—bM(e;) < tM(0) — inf bM (e;) < 00
1€

—bX?

tX?
o Tn — () a.s.

Therefore lim,, ;o —2

Acknowledgement The author would like to thank F.Baccelli, J.Mairesse for their rigorous

review on the proof and S.Gaubert for many useful suggestions that helped to improve the
proof.
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