N
N

N

HAL

open science

Spatial Averages of Coverage Characteristics in Large
CDMA Networks

Francois Baccelli, Bartlomiej Blaszczyszyn, Florent Tournois

» To cite this version:

Frangois Baccelli, Bartlomiej Blaszczyszyn, Florent Tournois. Spatial Averages of Coverage Charac-
teristics in Large CDMA Networks. [Research Report] RR-4196, INRIA. 2001. inria-00072426

HAL 1d: inria-00072426
https://inria.hal.science/inria-00072426
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://inria.hal.science/inria-00072426
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--4196--FR+ENG

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Spatial Averages of Coverage Characteristicsin

Large CDMA Networks
Francois Baccelli — Barttomiej Btaszczyszyn — Florent Tournois
N° 4196
Juin 2001
THEME 1

apport
derecherche







VAV 1 IN IN I A

ROCQUENCOURT

Spatial Averages of Coverage Characteristics in Large
CDMA Networks

Francois Baccelli* , Barttomiej Btaszczyszyn' , Florent Tournois*

Théme 1 — Réseaux et systémes
Projet TREC

Rapport de recherche n° 4196 — Juin 2001 — 32 pages

Abstract: The aim of the present paper is to show that stochastic geometry provides an
efficient computational framework allowing one to predict geometrical characteristics of large
CDMA networks such as coverage or soft-handoff level. The general idea consists in represent-
ing the location of antennas and/or mobile stations as realizations of stochastic point processes
in the plane within a simple parametric class, which takes into account the irregularities of an-
tenna/mobile patterns in a statistical way. This approach leads to new formulas and simulation
schemes allowing one to compute/estimate the spatial averages of these local characteristics in
function of the model parameters (density of antennas or mobiles, law of emission power, fading
law etc.) and to perform various parametric optimizations.
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Moyennes Spatiales des Caractéristiques de la Couverture
dans les Grands Réseaux CDMA

Résumé : La but de cet article est de montrer que la géométrie aléatoire fournit un cadre
calculatoire efficace pour la prédiction des caractéristiques géométriques de grands réseaux
CDMA, telles que la couverture ou les zones de niveau du handover. L’idée générale consiste en
une représentation de la localisation des antennes et des mobiles comme réalisations de processus
ponctuels aléatoires dans le plan, appartenant a des classes paramétriques simples; ceci permet
notamment de prendre en compte les irrégularités et les aléas présents dans les localisations
des antennes et des stations mobiles. Cette approche conduit & de nouvelles formules et a de
nouveaux schémas de simulation permettant de calculer ou d’estimer les moyennes spatiales de
ces caractéristiques en fonction des paramétres du modéle (densité des antennes et des mobiles,
loi de la puissance d’émission et de 1’évanouissement etc.) et de mettre en oeuvre diverses
optimisations paramétriques.

Mots-clés : CDMA, géométrie stochastique, simulation exacte, capacité de Shannon, fonction
de niveau, zone de handover, probabilité de couverture, surface moyenne de cellule, distribution
de contact, optimisation paramétrique.



opatiar Averages in CLUMA INELWOTKS 9

1 Introduction

Most of current CDMA analysis is based on a simplified representation of the underlying net-
work geometry:

e Antenna patterns are often represented either by by a finite pattern consisting of one
central antenna and its direct neighbors, which is supposed to represent the typical en-
vironment seen by an antenna, or by an infinite regular pattern of points in the plane,
which leads to the classical honeycomb model. Both types of patterns are nevertheless
acknowledged to be inadequate, as real patterns in fact contain a very large number of
points with no planar regularity at all. This is true not only for networks where anten-
nas are themselves mobile like in ad hoc networks (see e.g. [5]), but also for networks
with fixed antennas. For fixed antennas, irregularity stems from the lack of homogeneity
of the demographic density; even in the homogeneous case, cost and topographical con-
straints also lead to quite irregular antenna patterns, particularly so in dense urban areas
networks.

e Inter-cell interferences are often represented in a simplified way too which either does not
take geometrical data into account at all (e.g. these interferences are included in the so
called thermal noise), or uses one of the simplified models alluded to above rather than
taking into account the actual location of the antennas causing the interferences.

The lack of adequate representation of geometry is a serious drawback within this setting in that
both on the up and the downlink, key local characteristics of CDMA (coverage, soft-handoff
level etc.), at a given point of the plane, are based on the Signal to (Interference and) Noise
Ratio (SINR, SNR) at this point, which is itself based in an essential way on the local geometry
of the network.

The aim of the present paper is to show that stochastic geometry provides an efficient
computational framework allowing one to represent these irregular patterns and to analyze
their effect on the key local characteristics of CDMA.

The general idea of the present paper consists in representing the location of antennas and
that of mobile stations as realizations of stochastic point processes in the plane within a simple
parametric class, which takes into account the irregularities mentioned above in a statistical
way. A natural versatile parametric model for representing antenna or mobile station point
patterns is that of Poisson-Gibbs point processes (see e.g. [15]). The results of the present
paper, which is the first step in the development of this methodology, are all based on (possibly
non-homogeneous) Poisson point patterns, which are the simplest possible mathematical models
within this setting.

This Poisson point process representation is then used together with classical models of
propagation and fading, and together with simple power control algorithm models, in order to
compute the resulting fluctuations of the key local characteristics of CDMA.

More precisely, this approach leads to formulas and simulation schemes allowing one to
compute/estimate the mathematical expectation (and more generally the law) of these local
characteristics in function of the model parameters (density of antennas, law of emission power,
fading law etc.).

It is important to stress how these mathematical expectations should be interpreted. In the
case of a homogeneous Poisson process, the most natural interpretation is in terms of a planar
averaging. For instance:
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e For the probability p(x) that a typical antenna contains a mobile, located at distance z,
in its soft-handoff zone, such a planar averaging means the following: pick at random a
(large) set of antennas of this irregular pattern; for each antenna within this set, add at
random a mobile located at distance x; then p(x) is the empirical frequency with which
the added mobile is in the soft-handoff zone of the antenna.

e For the expectation EH of the soft-handoff level H of a typical mobile: pick at random
a large number of locations in the plane; for each of them, add a mobile station there
and evaluate its soft-handoff level; then H is the empirical average over this large set of
samples.

Non homogeneous networks are of interest in case where the demographic density varies. Let
us consider the example of a town where the density depends on the distance to the center only.
Then the interpretation is still in terms of planar averaging:

e For the probability p.(x) that the soft-handoff zone of a typical antenna at distance r
from the center contains a mobile, located at distance x from the antenna, the empirical
averaging would be based on a set of antennas which are approximately at distance r
from the center.

e For the expectation EH(r) of the soft-handoff level H(r) of a typical mobile located at
distance r from the center, the empirical averaging would be based on locations picked
at random at distance r from the center.

The paper is structured as follows. The basic stochastic geometry model allowing one to
capture SNR and some of its most important special cases are described in §2. The CDMA mo-
tivations are described in §3. The key performance characteristics are defined in §4. Simulation
and analytical results are gathered in §5. This concerns in particular

e Qualitative results on the shape of the cells in function of such parameters as the strength
of the attenuation or the interference coefficient;

e The evaluation of the network QoS, e.g. the proportion of the plane where the soft-handoff
level is at least k, or the probability that a mobile moving along a random line remains
with such a handoff level for more than ¢;

e Parametric optimization issues, such as maximization of coverage under cost constraints.

The appendix contains two parts: §6.4 summarizes the main formulas and simulation schemes
obtained from this approach and which are the basis for the results obtained in §5. §A.4.2 gives
the parameters of a list of models that are used to illustrate the results throughout the paper.

2 Generic Stochastic Geometry Model

Let ® = {(Xj;,Z;)} be a marked point process (for basic definitions on point processes and
stochastic geometry, see e.g. [15]) on the 2-dimensional (or more generally d-dimensional)
Euclidean space R? (resp. R?), where ¢ = {X;} denotes the locations of points, and where the
marks Z; = (A;, B;) are such that A; is a matrix with V; < co rows and card(®) columns and
B; a column vector of dimension N;. We assume that the points {X;} are numbered and the
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vector of these points is denoted X = (X;) (the ordering is for instance based on the distance
to the origin). As already indicated, all the formulas of the present paper will be based on
the assumption that {X;} is the realization of a Poisson point process. However, most of the
definitions of this section are generic and do not require such an assumption.

In addition to this marked point process, the model is based on a function [ : R? — R*,
called the attenuation function, which is continuous w.r.t. its arguments; we will assume that
[(z,y) — 0 when |z — y| — oo (where |z| is the Euclidean norm of z in R?).

2.1 Individual Cells
We define the cell Cy attached to the point X, as the following subset of R?

Co = Co(®) = {y: AoL(y, 9) > Bo} | (2.1)

where L(y, ¢) is the column vector with entries I(y, X;), and where the inequality between two
vectors has the usual coordinatewise meaning.

2.2 Special Cases
1. The Boolean model (see e.g. |6] or [15])

Co={y: aol(y, Xo) > co}

is obtained as the special case where N; = 1, (4;)r = ;(k)a; (6 is the Kronecker function),
where a; and B; = ¢; are non-negative random variables. It is required here that [
decreases to 0 with Euclidean distance and that c; be strictly positive to avoid pathological
cases. For the classical Boolean model, the underlying point process should be Poisson
and the random variables (a;, ¢;) should be independent and identically distributed (i.i.d.).

2. The Voronoi tessellation (see e.g. [10]) is a special case too with N; = card(®); all entries
of A; and B; are zero but for (4;);; =1, j #1, and (4;);; = —1, j # i € N. Here we take
z,y) = |z —y[7"

3. A more elaborate model (which will be referred to as Model 3 below) with dependent
cells, is that introduced in [1]:

= {y: aoSol(y, Xo) > bolo(y) + co},

where I4(y) is the shot-noise process (see e.g. [21, 13, 8, 7]) of {X}, S;} at point y for the
response function [, namely :

=) Sil(y, Xi). (2.2)

Note it is a special case of (2.1) too with N; = 1, A; a row vector with kth entry
(Ai)k = —b;Sk for k # i and (4;); = (a; — b;)S,, and B; = ¢;, with a;,b;,¢;, S; non-

negative random variables.

RR n’ 4196
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2.3 Extensions

A natural extension to be used in the present paper is that where the matrices A; and/or the
vectors B; are functions of a parameter z € R2.

2.4 Coverage Process

The associated coverage process is the union of all cells:

@ =Jci(@) 23)

(1]
(1]

3 Geometry of CDMA Cells

This section summarizes the basic principles of CDMA. We start with the definition of level
sets of the Shannon capacity function, which is a natural theoretical basis for the definition of
the up and downlinks. We show that these level sets can be seen as a special case of our generic
model. We then study more specific features of the uplink and downlink CDMA cells and show
that their geometrical properties can be obtained from special instances of our generic model.

3.1 Level-Sets for Shannon Capacity of Planar Vector Channels

In this section we describe models of cells defined by the capacity of certain vector channels
where capacity should here be understood in the information theoretic sense.

We consider a vector channel with a K-component input, identified by its baseband repre-
sentation

K
y=> X+2,
i=1
where ), X}, Z represent the output, the components of the (vector) input and a Gaussian noise
respectively.

Let us assume for a moment that there is no spreading; i.e., spreading length L = 1,
and thus the K components of the channel cannot be distinguished — they simultaneously
support the same data stream. The Shannon capacity of this K-user Gaussian multiple-access
channel is max I(&Xy,...,Xk;Y), where I(X),... ,Xk;Y) is the mutual information between
the input and the output, and where the maximum is over all distributions of X; with variances
bounded from above by some power constraint Py, ..., P respectively. It is well known (see.
e.g. Chapter 7 in [2]) this maximum is achieved when all X; are independent Gaussian random
variables, and that the capacity C of our vector channel is:

K
1 -2
C:§log<1—|—a ZH), (3.4)

i=1

where o2 is the power (variance) of the Gaussian noise Z. It is shown in [14] that formula (3.4)
is an upper bound for sum capacity of the vector chanel in the case of spreading length L > 1
(when K components can be distinguished by the receiver). Although it is not in general a tight
bound, it remains to express the sum capacity in the case when the power constraints are not
“far apart” (precisely when 1/K "X P, > L/K max;—, . x P;; cf. [18]). Since Formula (3.5)
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gives an estimate of the theoretical maximal bit-rate that can be achieved by the channel, we
see that SINR is indeed crucial within this setting.

Let us now consider emitters of input components to be distributed in the plane, and let
us determine all possible locations of a test receiver, such that the channel has a total capacity
above some given threshold at this point.

Parameters

e y, € R?, potential location of the receiver,

{X;}32, pattern of points in R? giving the locations of emitters,
e P, power emitted from the 7 th source,

e « interference factor (due to e.g. spreading, processing gain, degrees of freedom, etc. —
see [18]),

e [(z,y) path loss from z to v,
e 02 Gaussian noise power,

o Ci,...i(y) total capacity (obtained from (3.4), assuming that interference from exter-
nal signals can be considered as additive white Gaussian noise that is commonly used
postulate) of the channel jointly operated by emitters located at points X ,..., X,

interfering with the signals of all other sources located at the points of ® whenever the

receiver is located at y

1 K Py, X;
Cir,ix (W) = 3 log (1 + ,{sz;:ﬂl](y(?){i) ﬁ U2> ’ (3.5)
e { a threshold on C ensuring required bit rate.
Now the ¢-level-set of the capacity C;, .. i, is defined as
Cirrin W) ={y € R : Ciy i (y) > 1} (3.6)

In practice the bandwidth factor is introduced in (3.5), and the logarithm has to be considered
in basis 2 so as to interpret the capacity in bps; but such considerations will not be needed in
this section where we will limit ourselves to qualitative considerations on the level sets defined
by Equation (3.6).

e Case K =1 When K = 1, we can recognize in (3.6) Model 3 with ® = {X,}, a; = €%,
bi=e*—1,¢,=0%*—1),and S; = P,.

e Case K =1 with fading Assume there is a random fading in addition to attenuation,
that is for all y and all 4, there is a random variable Z;(y) such that the power received
at location y from the i th source is P;Z;(y)l(y, X;) in place of P;l(y, X;). Then, we find
again Model 3 with the functional extension alluded to in §2.3 with S;(y) = Z;(y)FP;.
Mathematical results on this case are gathered in §A.2.2.

RR n’ 4196
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Figure 1: Level sets for K =1 Figure 2: Level sets for K = 2

e Case K > 11In the case K > 1 one has to introduce the point process &) of all K-tuples
of points of ®. Within this setting (where the underlying point process lies in R*( for
K-vector channels), one can recognize in (3.6) a set of the form (2.1) with appropriate
matrices associated to the points of ®%). The case with fading can be considered along
the same lines.

The level sets of the capacity function are exemplified for K = 1 and K = 2 and for two
antennas on Figures 1 and 2. These pictures were obtained using the simulation tool described
in §A.4. The colored regions of Figure 2 represent the increase of the level sets (based on the
same threshold as in Figure 1) when moving from K =1 to K = 2, whereas the white areas in
the neighborhood of the antennas correspond to the level sets of the case K =1 (also given in
Figure 1 for the very same pattern).

Note that in contrast with what happens in the Boolean model, where there is no interaction
between cells, the local configuration has an important impact on the geometry of the level sets
of interest here: e.g. as illustrated by Figure 1 in the case K = 1, two adjacent antennas
fight each other for space, with as a result, shrunken versions of both cells in the area located
between the two antennas. So we see that as mentioned in the introduction, irregularities in
the antenna patterns result into fluctuations in the geometry of the cells.

Figures 3 and 4 represent the multiple antenna case, which is the main object of the present
study. In Figure 3, which bears on the case K = 1, there is one randomly chosen color per
antenna level set. In Figure 4 (where K = 2), there is one randomly chosen color for each pair
of antennas that admits a non-empty level set. The convention concerning the white areas in
the direct neighborhood of antennas is the same as above). As one can check on this example,
the gain of coverage when moving from K = 1 to K = 2 may be substantial: the uncovered
zones (in white on Figure 3) are completely colored on Figure 4. For Figures 36 we took as
reference [Case 4] of § A.4.2.

In the following sections, we look at more specific examples that stem from practical imple-
mentations of the CDMA protocol.

INRIA
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3.2

Figure 3: Level sets for K =1 Figure 4: Level sets for K = 2

CDMA Downlink — Handoff Cells

The downlink concerns the communications from the Base Stations (BS’s) to Mobile Stations
(MS’s). We briefly describe how this downlink is established (see e.g. [3]). Some pilot signal
is emitted by each BS in order to determine the handoff cells for each BS. Each BS operates
on the same frequency bandwidth and has a set of orthogonal channels (orthogonality is only
guaranteed in the absence of multipaths). A MS is in handoff of a given BS provided the pilot
signal-to-interference ratio w.r.t. this BS is larger than an absolute threshold We will use the
following notation:

y, € R?, potential location of a MS,
{X;}2°, random pattern point in R? (a spatial snapshot) of the locations of BS’s,

P; total effectively radiated power of the ith BS (these are random variables, that may
depend on the number of MS’s that are located in the handoff zone of the BS’s),

I(z,y) path loss from x € R? to y € R?,

Z;(y) shadow fading from the ith BS to point y (random variables),
Ny thermal noise power density,

W frequency bandwidth,

m; fraction of the BS power allocated to the pilot signal,

T; pilot signal-to-interference absolute threshold;

RR n" 4196
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Figure 5: Soft handoff cells without point de- Figure 6: Soft handoff cells with point depen-
pendent fading dent fading

e R;(y) pilot signal-to-interference ratio from ith station received at location y, defined as

_ miPZi(y)(y, Xi)
Z;; PuZy(y)l(y, Xg) + NoW

R;(y) (3.7)

A simplified model is that where the point dependent shadow fading Z;(y) is replaced by
a random variable Z; that does not depend on .

We define the ith station handoff cell C’i(SH) (based on absolute threshold) as the set of
possible locations y such that the pilot signal-to-interference ratio R;(y) received there is above
the absolute threshold T;; i.e.,

CE™M = Ly Ri(y) > T} . (3.8)

One can recognize in (3.8) Model 3 with a; = m;/T;, b; = 1, ¢; = NoW, Si(y) = P, Z;(y), or
S; = P,;Z; in the simplified case.

The handoff cells of the simplified and the non simplified models are exemplified on Figures
6 and 5, which both bear on the very same point and power pattern. The case with point
dependent fading (Figure 6) is that where for all ¢, an i.i.d. fading Z;(y) is sampled for each
pixel y. Admitting that this assumption is rather far from reality as it does not capture the
space correlation of the fading we show Figure 6 as a “worst possible scenario”. Real patterns
exhibit much more regularity and presumably can be better approximated by the simplified
model where the same sample is used for all y (an independent fading variable Z; is nevertheless
sampled for each antenna). As one can check, the simplified cells are essentially a smoothed
version of the handoff cells with point dependent fading. In addition, most of the averaged
results of the following sections will be identical for both models. It is why we will mainly
concentrate on the simplified model in what follows.
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By definition, a MS has handoff level H (or is in a H-way handoff) if it belongs to the
handoff zone of H different BS’s. In this case, there are several situations: in case with hard
handoff, one selects one among the H BS’s, and power is radiated towards this MS from this BS
only. In the soft handoff case, the very same data will be sent by each of these BS’s, and this
will be used to improve the quality of the downlink communication. Handoff zones of various
levels are easy to visualize on the smooth cells of Figure 5.

3.3 Uplink

The uplink concerns communications from MS’s to BS’s. Two key features of the uplink are

e the power control of the signals emitted by the MS’s (which is of central importance to
reach high capacity);

e interferences between MS’s (reverse channels) no matter whether served by the same BS
or different BS’s.

Each MS uses the same frequency bandwidth (different from that of the downlink) and is
recognized by the BS via its permanent and unique code. Each BS participating in the soft-
handoff of a given MS assigns to it its own demand for the signal-to-interference ratio at which
it wants to receive the signal from this MS. Whether the uplink can be established depends on
whether the MS can adapt its power to this demand.

3.3.1 One BS Model

Parameters and typical assumptions (cf. e.g. [17])

e 1, location of the BS,

{Y;}%_, random pattern of points in R* (a snapshot) of locations of MS’s trying to estab-
lish uplink communication with the BS,

e M; the power limit (maximal power) of the jth MS,
e Z; fading from the jth MS (i.i.d. random variables) to z,
e IR information bit-rate,

e ¢; signal-to-interference ratio demanded for the signal received from the jth MS; this is
also the product of the bit-energy-to-interference ratio (defined as the ratio of the received
power to the total received power) and of the processing gain W/R. As established in [17],
€; is a set of i.i.d. random variables; randomness here is due to imperfections in power
control; measurements show that a typical situation is that where ¢; is lognormal.

e v; voice activity factor of the jth MS,

e S7: solution of the power control problem, that is of the linear system

*

W St
€ = — ,
7R Zl:l,...,k, 1£] usS; + NoW

j=1,... k. (3.9)
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This linear system with unknowns S7, j =1,... , k admits a solution iff
Relv;
Y s <L (3.10)
=1,k W+ Rejv;
Whenever a solution exists, the random variables 57, j =1, ..., k are approximately i.i.d.

with lognormal distribution (the parameters of this distribution depend on those of the
distribution of € and of k, see [17]). More precisely, the sequence of pairs {(€},S})} is
i.i.d. and each such pair has a known joint distribution with lognomal marglnals

If there is a solution to the power control problem, then all £ MS’s could communicate with
the BS if they had no limitation in power. Since power is limited, then only those MS’s such
that

Mjl(z,Y)Z; > S (3.11)

can actually meet the minimal power requirement. Assume M; = M for all j; in view of the
fact that the powers S} are i.i.d. and the fadings Z; are i.i.d. it follows from (3.11) that the
probability that a MS located in y meets the minimal power requirement is

P(M.Zl(z,y) > S*),

where S* and Z are random variables distributed like the S7’s and the Z;’s respectively. So,
the probability for this MS to be part of the uplink is equivalent to the probability that point y
belongs to the cell centered in x for the Boolean model with parameters ag = M.Z and by = S*.
In other words, a smoothed version of the uplink cells boil down to a Boolean model (here with
only one point). For a survey on mathematical results on the Boolean model, see §A.2.1.

3.3.2 Uplink — Several BS Model

No interference case Consider now the case with several BS’s, and denote X their locations.
For each of them, let in, j=1,...,k(i), denote the locations of a finite number of MS’s that
could have a feasible uplink to the ¢th BS in case we could neglect interferences between the
uplinks of MS’s connected to different BS’s. More generally, we will add a superscipt ¢ to
indicate that the considered variable is that pertaining to the ith BS. In this no-interference
case, the MS’s that are part of the uplink of the ith BS are those located in the Boolean model
defined by the conditions

MY}, X)Z} > ST (3.12)

Case with interference Let us compute the power I;(X;) of the interference signals at point
X;, due to MS’s that are part of the uplinks of all BS’s, except the ith. Since the emission
power of MS Y} is S /I(Y], X;) Z}, then

Z Z Xl le(Yl Xi)ZJZ:J’

I#i j=1,.. k(1)

where it makes sense to consider that the random variables Zj are i.i.d. and independent of the
r.v.’s S§ (see [17]), and similarly that the r.v.’s Z;’l, which represent the shadow fading from

Y} to Xj are i.i.d. and independent of all others.
So, the global uplink is now feasible when taking interference into account whenever

INRIA
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e the systems

I St
€ = 7 —! : (3.13)
Dim ki), 12501 T NOW 4+ 1(X5)
j=1,...,k(4), have solutions. But this is guaranteed if the initial uplinks had solutions
when ignoring interference in view of the shape of Condition (3.10);
e the power constraint inequalities

where §; is the solution of (3.13), are satisfied for all j =1,...,k(¢) and all . Note that
this leads to yet another Boolean model w.r.t. {X;}. Of course, there is no guarantee
that this holds true if it was holding true in the case without interference.

3.4 Up and Down Link

On can combine the last two models: Model 3 (describing the handoff zones) and a Boolean
model for the uplink. An interesting question consists in checking whether the corresponding
cells are of the same magnitude. Simulations of the corresponding cells are provided in §5.2.

Note that we do not model any power control in the downlink. In fact for the downlink
we focus primarily on the mechanism of handoff zones recognition, in which typically no power
control in implemented (pilot signal is not adjusted to a mobile request). In the downlink data
channel of a given BS all signals propagate through the same channel and thus are received by
a mobile station with equal power. Therefore no power control is required to eliminate near-far
problem. The power control is required only at the cell edge to minimize the interference from
other cells, which does not however vary very abruptly (e.g. in IS-95 CDMA the dynamic range
for the downlink power control is £6 dM in contrast to £24 dB for the uplink; cf. [11]). This
mechanism has presumably small impact on shape of the cells.

4 Performance Characteristics

We summarize here a few basic questions that can be addressed using the generic model de-
scribed above.

e Coverage by a given cell: what is the probability that a MS located at given point y of
space be part of the uplink and or the downlink w.r.t. the 7th BS?

e Area of a given cell: what is the distribution of the area of the uplink and or the downlink
w.r.t. the 7th BS?

e Handoff level of a given point: what is the distribution of the number of antennas H that
contain a MS located in y in their handoff zone? Such planar averages receive a natural
QoS interpretation. For instance, 1 — Pr(H = 0) represents the frequency with which a
mobile station wishing to start a communication at random (in space and time) is able
is establish the downlink with at least one BS.
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e Contact distribution: for a point y which is covered by exactly k cells, what is the
probability that a disc of radius r (resp. a segment of length [ and orientation 6) be
completely included in the region covered by exactly these k cells? The interest of this
characteristic becomes clear when one thinks of this segment as that describing the motion
of a mobile during some time interval. The contact distribution then gives the probability
that the soft-handoff level remain of level [ during this time interval.

5 Some Examples of Results

This section focuses on a few typical examples of applications of the general methodology de-
scribed in the preceding sections. All results rely on either the explicit/approximation formulas
gathered in the appendix, or on the simulation methodology described in §A.4. We both show
that the key performance characteristics can be computed from the model parameters, and we
show how to use this in order to obtain qualitative and quantitative results on the coverage.

Throughout this section (and the appendix), ® is a Poisson point process (Poisson p.p. for
simplicity) and {Z;} is an independent sequence of independent identically distributed (i.i.d.)
random variables characterized by the distribution of Z,. We sometimes use Z for a generic
random Z;. The default option is that when the underlying Poisson process is non homogeneous;
we will denote A(-) its intensity measure and assume that A(-) is non-atomic (thus ® has no
multiple points). In the homogeneous case, we will use A for the intensity of the point process
describing locations of BS’s and p for that of MS’s. All numerical examples are based on one
of the cases itemized in § A.4.2.

5.1 Shape of Level-Sets of Shannon Capacity

The notation and basic definitions are those of §3.1. We focus on the level sets (3.6), in the case
with K = 1 (which is directly related to the downlink cell problem) and with simplified fading.
We now use the simulation methodology described in §A.4 to obtain samples of the level sets
of interest for [Case 2| of § A.4.2. Here the parameters are those of what we will refer to later
on as the standard configuration for [Case 2]: A = 0.04BS/km?, ¢ = 13. On Figure 7, we give
the level-sets for t is varying from 0.8 to 0.2. Only the boundaries of the cells are depicted for
the sake of easier shape interpretation.

5.1.1 Influence of the Interference Coefficient

Figure 8 also bears on the level-sets for [Case 2| of § A.4.2. On Figure 8 we fix ¢ = 0.4 and
decrease the interference coefficient k — 0. Observe that for certain values of k, capacity w.r.t.
some given antenna falls below the threshold just in the neighborhood certain other antennas:
even in the smoothed version considered here (see §3.2), level sets are not convex, and may
even have holes! As one can check, level-sets tend to a Boolean model when k tends to 0. In
the limiting case k = 0, cells are spherical. So our first qualitative result states that small
interference coefficient allow one to approximate level sets for K = 1 by cells of a Boolean
model. This will be used for expansions in what follows.
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Figure 7: Level-sets of Shannon capacity for Figure 8: Level-sets of Shannon capacity at
the standard configuration. t = 0.4. for the standard configuration but
with kK — 0.

5.1.2 Influence of the Attenuation Coefficient

On Figure 9, we consider |Case 2|, but we take a much higher attenuation coefficient, o = 9,
which may be observed in certain dense urban environments. In this case, the external noise
(02 ~ 1.5 * 10'*) makes cells very small. In order to get an acceptable coverage, on has either
to densify the pattern of BS’s (this is done on Figure 9 a—b where A\ = 64BS/km? is here 16000
times bigger than in the standard configuration) or to magnify antena powers (this is done
on Figure 9 c—d, where ¢ = 293 making power about 10?® times bigger than in the standard
configuration, which is of course non realistic. On Figure 9 ef, we see P, = oo (which is
equivalent to 0> = 0). The level-sets are then similar to Voronoi tessellation. Our second
qualitative finding states that level sets (or equivalently downlink cells) are closer to Voronoi
cells whenever attenuation is stronger, e.g. in urban areas.

5.2 Up and Down Links

In the following simulations, which are again based on the methodology described in §A.4, we
assume the configuration of [Case 3] of § A.4.2 for the soft-handoff zone model. As for the
uplink, let us take for simplicity the one BS model based on Equation (3.11) with M; = 2W,
Z; lognormal with 02 = 8dB and various values of S7. The two models are jointly presented
on Figure 10. The discs with dotted boundaries represent the uplink constraint in its Boolean
approximation (see the end of §3.3.1), whereas the non dotted lines represent the boundaries
of the smooth version of the downlink cells. Depending on the number of MS’s in each cell,
either the down or the uplink may be the bottleneck. This is well illustrated by the different
patterns observed in Figure 10.
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Figure 9: Level-sets of Shannon capacity for Figure 10: Up-and-down link model combined.
the standard configuration with higher atten- S varies giving up-link cells on average larger
uation and more dense proces of BS’s, or mag- or smaller than handoff zones.

nified antenas powers.

5.3 Network QoS
We again focus on Model 3.

5.3.1 Coverage

The probability p(r) that a typical antenna contains a mobile, located at distance 7, in its cell
is an important parameter, already discussed in the introduction. Exact values of p(r) can be
obtained from the singular integral representation of §A.2.2 or from the expansion technique
of §A.3.1. The results of the two methods are plotted on Figure 11. The thick black line
represents the result of the singular integral representation (A.10). The blue and red curves
/thin upper and lower line/ represent the first, second, 14-th and 15-th order expansion based
on the approximation of this probability in the neighborhood of the Boolean limit (see §A.3.1).
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erage as a function of the inter- erage as a function of the dis- a function of the interference

ference coefficient tance. coefficient

We consider [Case 1] of § A.4.2, with A = 1. Figure 11 gives the value of p(1) = p®)(1) in
function of k. Figure 12 gives the mapping r — p(r) for k = 0.1. The thick black line represents
the result of the integral representation (A.10); the blue and red curves /thin upper na lower
lines/ represent 14-th and 15-th order expansion based on the perturbation approximation; the
light green curve /thin dashed line/ represents the Boolean case (k = 0).

5.3.2 Mean Cell Area

The numerical scheme of §A.3.1 for the mean area of the typical cell of Model 3 with data as
in [Case 1], A =1, m =1 is plotted on Figure 13.

5.3.3 Contact Distribution

In this section we consider Model 3. For a point x which is covered by exactly & cells, we denote

e R the largest random variable such the ball B(z, R) is covered by exactly k& cells too
(namely the largest ball where the reception conditions do not change)

e [ the longest segment with extremity x such that the whole segment is covered by exactly
k cells.

These questions are related to the so called spherical and linear contact distribution. Analytical
answers to this question are only available in the Boolean case (see (A.6) and (A.6) below),
and for £ = 0. Thanks to the stationarity and the isotropy of the model, we can choose x = O,
without loss of generality. We concentrate on simulation results for Model 3 all based on the
conditional simulation algorithm described in §A.4.2. In order to obtain samples with the right
condition (namely that the origin is covered exactly & times), it is enough to take n = p =1
and z; = 2] = 0 and ny = n| = k in this algorithm. In the following simulations, we take as
reference [Case 4] of § A.4.2. All figures bear on an observation window [—5km, 5km]? and are
based on a circular influence window with radius R’ = 40km.

Figure 14 focuses on conditional samples allowing one to estimate the fluctuations of L and
R.
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Figure 14: Conditional sample of Model 3.
Point O is covered 0,1,2 or 3 times. The corre-
sponding samples of L and R are also given.

Figure 15: Histogram of L (on the right) and
R (left) given O is covered 0 times.

Figure 16: Histogram of L (on the right) and
R (left) given O is covered 1 times.

Figure 17: Histogram of L (on the right) and
R (left) given O is covered 2 times.

Figure 18: Histogram of L (on the right) and
R (left) given O is covered 3 times.

handoff level EL varL ER varR
0 0.423 km | 0.191 km? | 0.121 km | 0.013 km?
1 0.521 km | 0.182 km? | 0.186 km | 0.021 km?
2 0.375 km | 0.107 km?2 | 0.116 km | 0.008 km?
3 0.239 km | 0.047 km? | 0.075 km | 0.003 km?

Figure 19: Mean and variance.

Figures 15, 16 17 and 18 give the histograms of the random variables L. and R as obtained
from the simulator. Table 19 gives more global results such as the mean of L and R. For
instance, for this set of values, if there is no reception at a given location, one must move away
400 meters away in mean to recover good reception again.

The numbers of samples on which these histograms are based are 24000 for £ = 0, 13000
for £ =1, 19000 for £ = 2 and 15000 for £ = 3. We limited ourselves to testing the hypothesis
of Gamma distributions. The Kolmogorov-Smirnov test was applied using the R package. The
hypothesis was accepted for the linear case when £ = 0, and rejected in all other cases.
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Figure 20: [a] Mean handoff as a function of mean antenna power 1/m under budget con-
straint (5.15) with C' = 1000, C) = 500 and from the top: C,,, = 1,2,5. [b] Solutions of (5.15)
as functions A = A\(1/m) for the same set of parameters; curves form top to bottom.

Notice that for all quantities pertaining to spatial joint distributions (such as the probability
that all points of a given segment or of a given ball have soft handoff level with a prescribed
value), the difference between simplified fading and point dependent fading actually matters.
In that, the distributions which are studied in this section are only approximations of the
quantities of practical interest for mobile communications, since the distributions in question
bear on the smoothed versions of the cells only.

5.4 Parametric Optimization

We now show to solve a typical optimization problem using our analytical tools. The problem
is that of the tradeoff between densification and increase of station power.

Suppose an operator has a total budger of C per km?, and that the cost of one antenna is
C), whereas increasing the power of one antenna by 1W costs C,,. In order to use the total
budget in the most efficient way, the operator may wish to maximize one of the average local
characteristics such as the expected mean handoff level for a typical location (ENp), under the
above cost constraint.

Let us now show how to translate the last example into a simple problem within our setting.
The cost constraint translates into the condition

ACy + CouX/m = C. (5.15)

We solve this equation in A = A(m) and use (A.13) together with the perturbation formula for
the mean area vy (see the end of §A.3.1) to plot ENj as a function of m. Figure 20 a shows such
plots, for C' = 10,C = 5 and three choices of C,, = 1,2,5 (curves from top to bottom). The
case considered here is that of the Shannon capacity level-sets as in [Case 1| of § A.4.2 with
k = 0.01, t = 0.35 (this is the same model as that considered in §5.3.1). Blue curves /thin uper
line in each set/ represent 14 th order polynomial approximations and read ones /thin lower
lines/ approximations of order 15. So our approximation is fine until these two colors split, for
each case of Cp,. (The light green curves /thin dashed lines/ represent the limiting Boolean
model with k = 0.) Part b of Figure 20 shows the corresponding functions A = A\(1/m). For
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instance, for C,,, = 2, the optimal configuration has \* ~ 0.9 antennas per square unit and each
antenna has a power 1/m* of approximatively 3 W. The same type of optimization could be
applied to other local characteristics such as the probability that a typical point be covered.
For this, on should use the expression for volume fraction of Model 3 (see (A.16) and (A.12) in
§A.2.2).

6 Conclusions, Future Work

We have proposed a generic stochastic model allowing one to estimate spatial averages of key
geometrical characteristics of large CDMA based wireless networks taking into account the
irregular nature of point patterns.

The model allows one to address both high level representations, such as level sets of Shan-
non’s capacity function, and specific issues pertaining to the down and the uplink.

In the Poisson case, the model leads to several analytical results allowing for the prediction of
QoS and the optimization of the architecture. Adapted simulation schemes offer another natural
way of estimating geometrical characteristics which cannot be described in an analytical way.

The framework of stochastic geometry already offers a significant number of mathematical
results that should allow one to approach further problems within this setting. We conclude
the paper with a list of problems which it should be possible to address using these tools.

6.1 Refined Cell Models

Here are a few natural extensions of our basic model.

6.1.1 External Noise as a Random Field

Thermal noise was represented as a random variable and not as a random field. We can easily
represent this noise as a shot noise created by yet another pattern of sources (modeled by
another point process ®') of powers S, with a possibly different attenuation function !’. In both
downlink and uplink models this would corresponds to introducing another term depending on
the location Ig/(y) (or Ig (z) respectively) in the denominator of e.g. Eq. (3.7), where

Io(2) = Y Sil'(z— X}).

Xied

It is easy to check that is is yet another incarnation of the generic model.

6.1.2 Directional Antennas

Up to now we have considered attenuation function of the form const(max(r, |z[))” "), which
corresponds to the case of isotropic antennas with ideal Hertzian propagation. When emitter
antennas are directional, a mark 7; € R? should be used for describing the direction vector of
antenna 7. The effect of antenna 7 located at z; on point y can then be modeled e.g. by the
following type of attenuation function

L(ti,y — z:) = Uy, 2:)((1:) - (y — 2:)) /|y — 2
where z; - z5 is the scalar product of vectors zp, zs.
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6.1.3 Relative Threshold

In the definition of the downlink, in the soft-handoff case, besides the absolute threshold con-
dition given by (3.8), there is often a relative threshold condition, which consists in accepting
the ¢th station to participate in the handoff of the MS located at y only if

Rily) 26 max  R;(y), (6.16)
where 6 < 1 is some threshold and where R;(y) is the ratio defined in (3.7). The rationale
for this is that power should only be radiated by the 7th BS towards a given MS provided the
signal received by the MS from this BS is not marginal compared to the best. Note that this
boils down to the following condition: the ith BS participates in the handoff of the MS located
in y if in addition to (3.8)

T P Z; ()l (y, X;) > ek/Rl?(E;)Xsz T P Z(y) L (y, Xi) - (6.17)

The geometry of (6.17) is a special case of the (generalized) generic model too, with N; =

card(®); all entries of A;(y) and B;(y) are zero but for (A4;);i(y) = mP,Zi(y), j # i, and
(Ai)ji(y) = =0m; P Z;(y)1R,>1y, 7 # 1, J €N

The geometry of the combination of (3.8) and (6.17) is also a special case of the generic

model with N; = card(®); for instance, in the simplified fading model, all entries of A; and B;

are zero but for (AZ)]Z = WiPiZi, j 7é ’i, (AZ)“ = —97TijZj, j € N, ] 7é i, (AZ)” = —PZZZ, ] 7é 7:,

6.2 Capacity

The capacity problem should be understood in the following sense: assume given an infinite
population of MS’s located at points {Y;}, j € J, and a set of antennas {X,}, ¢ € I. We will
call allocation a function that associates to J a subset J', and to each index j € J' a single
index a(j) € I. Such an allocation defines the subset {Y;'}, I =1,...,k(:) of the set of points
{Y;} of locations of MS’s with a link to the ith BS (we consider here the case of hard handoft).
Assume that the total power radiated by the 7th BS depends on the number of stations that
are in its handoff zone. Then an increase in the population of MS’s leads to a higher power
emitted, and possibly to a shrunken handoff zone. This results into a natural downlink capacity
problem. An allocation a defines the total power that the ith BS should radiate, which one
could for instance take proportional to the cardinal of the set {Y;'};. We will then say that

e this allocation is feasible w.r.t. the downlink (resp. the uplink) if it is such that for all [,
the point {Y}'} is located in the handoff cell of the ith BS (resp. the point {Y}'}; satisfies
the power constraints inequality (3.14) w.r.t. the ith BS);

e this allocation is mazimal w.r.t. the downlink (resp. the uplink) if for all 4, there exists
a j ¢ J' such that when adding the jth MS to the handoff zone of one of the BS’s, then
the new allocation is not feasible w.r.t. the downlink (resp. the uplink).

6.3 Mobility

Mobility was only addressed here through the empirical evaluation of the linear contact dis-
tribution, which receives a natural interpretation in terms of the time a mobile keeps emis-
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sion/reception conditions that remain the same. There is a large set of open questions along
these lines. Let us quote two of them:

e What is the nature of the stochastic process describing the evolution of the quality of
emission /reception or that of the handoff level, for a mobile moving along a random line
of the plane?

e For a given mobility pattern, there is a coupling between the positions of the MS’s, the
resulting power control, and the geometry of cells. This so called cell breathing is a
fascinating time-space phenomenon too, which might be approached via these tools when
adding some time evolution mechanisms for cells.

6.4 Refined Probabilistic Models

As for parametric models, Poisson point processes might be too rough an approximation for
representing the fluctuations of the location of antennas. Poisson Gibbs fields, with e.g. a
repulsive potential might offer a more versatile model.

Appendix A: Summary of Mathematical Results

In this section we make a survey of mathematical formulas and simulation schemes which allow
one to compute or to approximate quantities of interest related to our generic model. We will
concentrate mainly on special case 1 (the Boolean Model) and case 3 (Model 3) of section 2.

A.1 Typical Cell

The typical cell C(x;® U {(z,7Z)}) attached to a point located at z is by definition the cell
of point z for the pattern ® U {(z, Z)}, where ® is the Poisson p.p. and Z = (A, B) is an
“additional mark” distributed like the other marks and independent of ®. If the Poisson point
process is homogeneous, the characteristics are the same for all points z and we will speak of
the typical cell.

A.2 Exact Formulas
A.2.1 Boolean Model

The notation is that of §2. The formulas of this section are classical ones (see e.g. [15], chapter 3,
pp- 59-96).

Coverage by a typical cell : Denote by p,(K) = Pr(K C C(z;® U {(x,Z)}) the probability
that a test compact set K C R? is covered by the typical cell located at z. We have

Po(K) = Fey/ap (LK — 1)), (A.1)

where Fp/q, is the d.f. of ag/cy and [(A) = infyeal(y), K —z ={y—z:y € K}. In
particular for a single point K = {y}, ps(y) = Fry/ao(I(y — )). The probability that the
test set K is intersected by the typical cell is F,,/q,(I(K — z)) where I[(A) = sup,e 4 1(y).

INRIA



opatiar Averages in CLUMA INELWOTKS

Mean area of the typical cell :
vszHC(x;be{(x, Z)})H. (A.2)

It can be then obtained from the p,(-) function by the relation
Vg =/ pa(y) dy. (A.3)
R2

Number of cells : covering (resp. intersecting) a test compact set K is Poisson distributed with
parameter

ME) = [ Fagao(UK = 2)) M),
(esp. X) = [ P10 = ) A(d).

In particular the capacity functional of = = |J, C; of the test compact set K C R?, which
is defined by T=(K) = Pr(EN K # 0), is given by the formula

T=(K) =1 — exp [—X(K)] . (A.4)

Volume fraction of the coverage process : p = P(0 € Z) is a characteristic of a stationary
coverage process

p=Te({0}) =1 — exp (A /R Fujai(~)) )\(dx)) . (A.5)

Linear contact distribution function of Z : is the conditional distribution function of the dis-
tance from a test point y in a test direction z to =, given x & &

Hy i (r) = Pr(ly,y+rzlNE#Bly € E)
o~ My+r2)

= 1- =
e_’\(y) ’

(A.6)

r > 0. Similarly the spherical contact distribution function is

Hpyay(r) = Pr(B(z,r)NE# 0y € E)
o~ X(Bly))

= 1-c (A7)

e—X(y)

r > 0, where B(z,r) is the ball centered at 0 and with radius r. One can consider also

these contact distribution functions of a typical cell located at y. Then exp(A(-)) has to
be replaced in the above formulas by 1 — Fy . (I(- — x)).
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A.2.2 Model 3

Coverage by a typical cell located at x: for one-point test set K = {y}, assuming that b > 0

a.s.
a c
po(y) = P((F = DSy —2) =  — Laly) 2 0) (A8)
The shot-noise term I is independent of other terms and its distribution can be known
via its transforms. For example the Fourier transform of the vector (Is(yi,...,y,) is
given by

1/11(51,- ‘- 7§n7y17"' ayn) = Eexp [—Zz&ﬂp(yz)]

=1

ARG (zfzw ~)) - 1) A (A.9)

where 1)g is the Fourier transform of S. Knowing the Fourier transform ; (&, y) of Is(y)
one can reduce calculation of p,(y) to the singular contour integral (to be understood in
the principal value sense):

_1 1 [p(y)
pz(y) - 5 - % /']R Td& (AlO)

where

pl€,2,9) = br(= pBexp) i€ (a = DSy —2) ~

(see [1] for details and the proof). Coverage, and intersection with a more general test
set K, and in particular contact distribution functions have to be studied via simulation.

Mean area of the typical cell : it can be obtained from Formula (A.3) with p,(y) for Model 3.
Number of cells covering a test point y (denoted Ny): this can be analyzed in terms of its
factorial moments E[N™], where N® = N(N — 1)...(N — n+ 1)*, (t+ = max(t,0)),
which can be expressed as follows
EIN®] = / Py e (C(r @l Z0}))
R k=1 i=1
Adzy) ... A(dzy) , (A.11)

where @ is the original marked Poisson p.p. and {Z;}", is an independent sequence of
mutually independent vectors distributed as the generic mark; this relation holds provided
the integral on the right hand side is finite. If ® is a homogeneous Poisson p.p. with
intensity \(dz) = Adx then for each x € R¢

E[N{™] = E[N{"]

_ /(Rd)np(o c Qc(azk@ug{(zi,@}))
dry...dx,, (A.12)
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provided the integral is finite. In particular, for n =1
E[N()] == /\U(), (Al?))

where vy is the area of the typical cell. The distribution of /N, can be derived using the
formula

oo (n-+k)
P(N, =n) = E Z(—l)’“%, (A.14)

n!
k=0

which follows from the well-known expansion of the generating function.

In certain cases, there is a deterministic upper bound on N,, which allows one to reduce
the characterization of its law via (A.14) to a finite number of integrals of the type (A.12):
for a;, c; > 0 the following inequality

n

> b g (A.15)

o1 Lix

is a necessary condition for the set of cells C;,, K =1, ... ,n, to have a common nonempty
intersection. So Condition (A.15) gives bounds on the number N, of cells covering y:
suppose that the distribution of the mark Ay = (ao, by, ¢p) is such that by/ag is bounded
away from 0; i.e., by/ag > p a.s. for some constant p > 0; then for any y, N, < 1/p almost
surely.

Volume fraction of the coverage process : using factorial moments of N, we can write

PlzeZ) =) (_1T)!HE[(NZ)(’“)] : (A.16)

k=1

Further characteristics : The number of cell covering (intersecting) more general test set, as
well as the contact distribution function of the whole process, have to be studied via
simulation.

A.3 Perturbation Formulas

Under the term perturbation analysis we understand various results describing the behavior of
the model under some (typically small) changes of parameters. These results are in terms of
limits, (partial) derivatives, higher derivatives, expansions of model characteristics with respect
to some model parameters. They can can be used either for planing issues (e.g. marginal cost),
or for numerical approximations of the model characteristics.

A.3.1 Approximation of Model 3 via Perturbation of a Boolean Model

We briefly review here the results from [1] concerning convergence of the generic model to the
Boolean model. Note that the cells of = given by (2.1) are not mutually independent because
of the presence of the shot-noise variable Is. However, if we assume b = 0 a.s. the cells are
independent, and = is a Boolean model. One can then consider the following perturbation of
this Boolean model: assume that b — 0 in some sense. It is shown [1] that under some natural
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technical conditions, typical cells and their characteristic as capacity functional (in particular
coverage probabilities p,(y)), mean volume v,, number of cells hitting a compact set (so N,
and volume fraction p) etc., all tend is some sense to their counterparts in the Boolean model.

Moreover the first order and higher order corrections that should to be applied to the
characteristics of the Boolean model in order to approach the characteristics of the generic
model are also known [1]. More specifically, let

0 =0 ={y € R : aSi(y —2) > wbla(y) +c} (A7)

Is(y) is given by (2.2), x is fixed and (a,b, ¢, S) is an additional mark independent of ®, with
c> 0 almost surely We will denote by s )( )=P(y e Cé”)) the point coverage probably and

by v(* E|C | the mean area of C{"
Assume that b > 0 a.s. (to avoid conditional distributions) and let F,(u) = F(u;y) denote
the distribution function of the random variable (aSI(y) — ¢)/b; i.e.,

Fy(u) = F,(u;y) =P(“S“y‘b””) —¢ < u) (A.18)

Let F, admit the following Taylor approximation at 0

h o (k)
F.(u)=F0)+ ) d

and R, (u) = o(u”) wu 0, where F® (0) = F*(k)((); y) are the derivatives of F,(u;y) w.r.t. u
at u=0.

e If (A.19) holds for some i > 1 then

POy = P(aSi(y—2)>c)

0 u* + R.(u) (A.19)

provided E[(I5(y))*] < oo.

e If the random field I4(y) is stationary, (A.19) holds for for some h > 1 and all y
R?, and moreover if the remainder term R.(u) = R.(u;y) is bounded |R.(u,y)]
H1(u)Ha(y) where H;(u) is a nondecreasing function satisfying lim,~ o H1(u)/u =

and fo Ho(y) dy < oo then

o IA M

o5 = (0)

- va o / FO(0:y) dyB| (1a(0))" ] dy

+0( "),

provided that the integrals are finite and
E[H1(16(0)) (I(0))"] < oo.

e Similar approximations for moments of N, ...
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A.4 Simulation of Model 3

In this section we briefly review results from [16] concerning (almost) exact simulation of

Model 3.

A.4.1 Almost Exact Simulation of the Shot-Noise

In order to simulate cells of Model 3 with their exact distributions, one would have to know
exact values of the shot-noise term I, which requires the simulation of the Poisson point process
on the whole plane. This is infeasible, and instead, we use the following almost exact simulation:
for a given size of observation window in which we want to simulate almost exactly our cells
(say it is spherical observation window B(0, R) of radius R), one selects a larger spherical
influence window (say with a radius R') such that it is enough to take into account points of
the point process in this larger influence window in order to get good estimate of the shot-
noise term I, in the smaller observation window (and thus the shape of the cells) with high
probability (see Figure 21). Formally one can prove that if the attenuation functions is of the
form [(z,y) < C/|z —y|® for some constants C > 0, 3 > 0 and if the distribution of S has finite
moment E[SY/(/2-9] < oo for some & € [1,3/2], then one can show that for any R,e,a > 0,
there exists R’ > 0 such that

P | sup Z Sil(y, X;) <e| >1—-a. (A.20)
‘y|<R\X,-\>R’

Interesting cases where these assumptions are satisfied contain lognormal distribution of S.

Figure 21: Almost exact simulation of Model 3 in the observation window B(0, R), by taking
into account the points of a larger influence window B(0, R').

A.4.2 Conditional Simulation

The almost exact simulation of the shot-noise process allows one to get conditional distributions
of the certain geometrical properties of the generic model. We will here again concentrate on
Model 3.

!/

Suppose two finite sets of points zi,...,2, and 2], ... ,Z, In our observation window are

given, and we want to perform an (almost) exact conditional simulation of Model 3, where the

condition states that the points z; are covered by at least n; cells, and the points z, are covered
!

by at most n; cells, for some given numbers ny,... ,n, and nj,...,n,. Note that this type

RR n" 4196



r. bacceilt, b. Dtaszczyszyn ¢ r'. 1ournos

of conditions allows one to consider cases where the exact number of cells covering a point is
specified.

The conditional simulator is meant for producing typical samples where these conditions
are satisfied. Out of a sufficiently large set of these samples, one can then estimate various
fine statistical properties of the geometry of the coverage process and in particular the contact
distribution functions described in §4.

For this one can adapt, in the larger window, the so called backwards (coupling from the
past) simulation of conditional coverage process developed for the Boolean model by Kendall |9].

The idea consists of two steps.

e First one constructs a Markov process (Zt) of patterns of points that has for stationary
distribution the conditional distribution of Model 3. Points are generated at exponential
periods (with an exponential distribution parameter equal to A = [ BO.R') A(z) dx) and
located in the window with distribution A(-)/A, but only if their presence does not violate
conditions of mazimal coverage of the points z,. Points located in the window stay there
for exponential times (with parameter 1) and are removed, but only if their absence does
not violate the conditions of mazimal coverage of the points z,. If a particular removal
would lead to the violation, then the point stays for another exponential time. One can
show that the stationary distribution of this spatial birth-and-death process (Zt) is equal
to the conditional distribution of Model 3 indeed.

e A long run simulation of this Marlov process, started from the empty window, gives
random patterns with a distribution close to the conditional law of interest. The exact
stationary distribution of the Markov process (Z;) can also be obtained in exact form,
using backwards (coupling from the past) simulation [12] similar to these proposed by
Kendall [9]. This method requires definition of two extremal processes of point patterns
(Zmaz), (Zm™m) and an order relation <. These extremal processes are going to dominate
(with respect to <) (Z;) for all t < 0 and if they coincide at ¢t = 0, then Z; has the desired
conditional distribution. The details can be found in [16].

Appendix B: Parameters of Case Studies

Here we summarize assumptions we made in the numerical examples throughout the whole
paper.

B.1 Attenuation Function

For the attenuation, we assume one of the following two functions:
[A1] I(z,y) = A(max(|y — =[,70)7%,
[A2] I = (z,y)(1 + Ajz —y|)™

Note that both are modifications of Hata’s model, in fact they only differ in the assumptions
that are adopted in the neighborhood of the antenna.
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B.2 Power

For antenna power we assume one of the following models.
[P1] P, is constant,

[P2] P, is exponential with mean 1/m,

[P3] P is lognormal with parameters (e, 0?) meaning P; = 10(t78)/10 where ¢ is standard
normal random variable. Note that €,02 can be interpreted as mean and variance of P,
expressed in dB.

B.3 Fading

If fading is assumed explicitly in a model we take it lognormal with its own parameters (e, o%).

B.4 Fourier Transform of the Shot Noise

Direct computations show that under [A1] and [P2], in the homogeneous Poisson point process
case, the Fourier transform of the shot noise Is = Is(y) does not depend on y and is equal to

1, (€1) = E[e7¢]

[iA€ , [m\ A, [iAe
AT W arctan (T’O E) 571' F

re —iAE —r¢m
A 2°0 0
AT PAE+rgm |

= exp

for £ € R, where the branch of the complex square root function is chosen with positive real
part (see [1]).

B.5 Cases

The following models are used for numerical illustration.

B.5.1 [Case 1]
(Parameters of Level-Sets for Shannon Capacity; cf. 3.1).
e attenuation as in [Al] with A =1, =4,ry =1,
e homogeneous Poisson pattern of antennas, with intensity A,
e power is as in |P2|,
e K =1,
e 0% =1,
e k.t as well as A\, m specified in particular examples.

This simple model allows for explicit calculations as we have an explicit expression for the
Fourier transform of the corresponding shot noise.
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B.5.2 [Case 2]

(Parameters of Level-Sets for Shannon Capacity; cf. 3.1) A more realistic model.

e attenuation as in [Al] with A = 100, = 4,7y = 10, with distance expressed in meters.
It corresponds to a loss of about 140dB at 1000m,

homogeneous Poisson pattern of antennas, with intensity A,

power as in [P3] with o = 8,

K=1,
0? = —1269 dBm/Hz x 1.25MHz ~ 1.5 % 10~ W,

o t=0.34,

k as well as A, € specified in particular examples.

B.5.3 [Case 3]
(Parameters of CDMA Downlink — Handoff Cells; cf. 3.2)

e attenuation as in [Al] with A = 100,a = 4,7y = 10, with distance expressed in meters.
It corresponds to a loss of about 140dB at 1000m,

e {X;} uniformly generated pattern of 64 points of BS’s in the influence window 40 x 40km?
which makes intensity A = 0.04BS/km?. The observation window is the inner square of
size 20 x 20km?.

e power as in [P3] with P = 20W,

o m; =p=0.015,

e 7; lognormal with ¢ = 0 and 02 = 8§,
e Ny = —169dBm/Hz,

o W = 1.25MHz,

o T, = 0.0025.

B.5.4 [Case 4]
(Parameters of CDMA Downlink — Handoff Cells; cf. 3.2)

e attenuation as in [A2] with A = 10, @ = 3 with distance expressed in km. It corresponds
to a loss of about 120dB at 1km,

e Ny = —169dBm/Hz,
o W =1.25MHz;

e power as in [P3| with e = 7,0% = (2.4)2 = 5.76, as suggested in [20],
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e Z; lognormal with € = 0 and o2 = 8,
[} T;—/ﬂ'i = 01,

e )\ = 0.5BS/km; if not specified otherwise figures bear on an observation window [—5km, 5km]?
and are based on circular influence window with radius R’ = 40km (cf. §A.4.2).
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