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Abstract: In this paper, we study the implementation of dense linear algebra kernels, such
as matrix multiplication on 2D grids with homogeneous processors when the communication
links between the processors are heterogeneous (i.e. the time to transfer a block of the matrix
between two processors depends on these processors). We prove that finding the best allo-
cation of the processors into a grid, with respect to the minimization of the communication
overhead, is a NP-complete problem.
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Allocation de données pour 1’algébre linéaire dense sur
grilles bidimensionnelles avec communications
hétérogénes

Résumé : Dans ce rapport, nous nous intéressons & la mise en ceuvre de noyeaux d’algébre
linéaire dense, comme le produit de matrices, sur les grilles bidimensionnelles de processeurs
identiques reliés par un réseau de communications non homogéne (le temps nécessaire au
transfert d’un bloc de matrices entre deux processeurs dépend de ces processeurs). Nous
montrons que déterminer une organisation des processeurs en grille minimisant les commu-
nications est un probléme NP-complet.

Mots-clé : Communications hétérogénes, grilles bidimensionnelles, distribution de données,
noyeau d’algébre linéaire.



Two-dimensional Grids with Heterogeneous Communication Links 3

1 Introduction

We study the implementation of dense linear algebra kernels, such as matrix multiplica-

tion on 2D grids with homogeneous processors when the communication links between the
processors are heterogeneous (i.e. the time to transfer a block of the matrix between two
processors depends on these processors). The case of processors running at different speeds
and homogeneous communication links has been studied in [11, 7, 10, 3, 4, 2]. In [2], we
have proved that finding the best allocation of heterogeneous processors into a grid so as to
balance the load between the processors is NP-Complete. In this paper, we prove the cor-
responding theorem with homogeneous processors and heterogeneous communications links.
Indeed, in this context, finding the best allocation of the processors into a grid so as to
minimize the communication overhead turns out to be NP-Complete.
This paper is organized as follows. In Section 2 we briefly recall the algorithm implemented in
the ScaLAPACK library [5] on 2D homogeneous grids and derive its theoretical computation
time. We discuss in Section 3 the necessary modifications to two-dimensional block-cyclic
distributions used in ScaLAPACK to cope with 2D heterogeneous grids. Depending on the
data-layout, we obtain a new theoretical computation time and introduce a new optimization
problem. We prove in Section 4 that this optimization problem is NP-complete. In Section 5,
we give some remarks on other similar problems and finally, we conclude in Section 6.

2 Homogeneous Grids

2.1 Principles

For sake of simplicity we consider the multiplication C' = AB of two square n xn matrices
A and B. In that case, ScaLAPACK uses the outer product algorithm described in [1, 9, 12].
Consider a 2D processor grid of size p x p.

Assume first that n = p. In that case, the three matrices share the same layout over the
2D grid : processor P; ; stores a; j, b; ; and ¢; ;. Then at each step k,

— each processor P, (for all i € {1,..,p}) horizontally broadcasts a; s to processors P; ..

— each processor Py ; (for all j € {1,..,¢}) vertically broadcasts bg,; to processors P, ;.
so that each processor P; ; can independently compute ¢; j4+ = a; 1 X by ;.

This algorithm is used in the current version of the ScaLAPACK library because it is sca-
lable, efficient and it does not need any initial permutation (unlike Cannon’s algoritm [12]).
Moreover, on a homogeneous grid, broadcasts are performed as independent ring broadcasts
(along the rows and the columns), hence they can be pipelined.

Of course, ScaLAPACK uses a blocked version of this algorithm to squeeze the most
out state-of-the-art processors with pipelined arithmetic units and multilevel memory hie-
rarchy [8, 6]. Each matrix coefficient in the description above is replaced by a r x r square
block, where optimal values of r depend on the communication-to-computation ratio of the
target computer.

RR n~4165
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Fi1Gc. 1 - SUMMA Algorithm for matrix matrix multiplication on a 4 x 4 grid.

Finally, a level of virtualization is added : usually, the number of blocks [2] x [7] is
much larger than the number of processors p?. Thus, blocks are scattered in a cyclic fashion
along both grid dimensions, so that each processor is responsible for updating several blocks
at each step of the algorithm. An example is given in Figure 2 with p = 4 and [7] = 10.

1(2]|3|4]|1]|2]|3[|4|1|2
5(6|7(8]|5(6]|7|[8]|5|6
9]10|11{12| 9 |10[11{12| 9 (10
13(14[15|16(13({14|15(16(13|14
112(3(4(|1]|2(3[4]1]|2
5|6(7(8[5|6|7|8|5|6
9]10|11{12| 9 |10{11{12| 9 (10
13|14(15(16{13[14[15(16(13|14
1(2]|3|4]|1]|2]|3[|4|1|2
5(6|7(8]|5(6]|7|[8]|5|6

Fi1G. 2 — Processors are numbered from 1 to 16. This figure represents the distribution of
10 x 10 matrix blocks onto 4 x 4 processors.

2.2 Complexity

Suppose we have a p x p grid and that communications cannot be performed in parallel.
In what follows, we denote by ¢.r® the time needed to compute sequentially the product
of two r x r matrices and by 772 the time needed to transfer a r x r matrix between two

INRIA
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processors. The overall time needed to compute the product of two matrices of order n is
given by

) E ) - Bl

i=1 j#k

computations . .. . o
L horizontal communications vertical communication

:i B (%)3+T(p—1)”£+T(p—1)”ﬂ ,

=t ”— +2(p— 1)nr

If all necessary communications can be performed in parallel, then the overall time needed
to compute the product of matrices of order n is given by

p 3 2 2
n n n
=2 e () () e () |

~" ~~

Lcomputations horizontal communications vertical communications

p 3 2 2

n n n

= E tc (—> +T—2+T—2
p p D

3 Heterogeneous Communications

Let us suppose the cost of a unitary communication is not uniform anymore and let us
denote by d(P;, P;) (as opposed to 7 in the homogeneous case) the cost of the transfer of
one block between processors P; and P;. Suppose that the p? processors are arranged as a
p x p grid thanks to a bijective mapping 7 from [[1,p] x [1,p] to [1,p?].

— The time needed to compute the product of two matrices of order n if the communi-

cations cannot be handled in parallel is given by

2

k=1 z 1 j#k ] 1 i#k
- _ _
computations

y4 3
SEDD (E) +sz w(isk) > Pr(i.g) <n> +sz (k) w(m))( )
—————

v

~
horizontal communications vertical communications

(3.1)

RR n~4165
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The cost of the computations does not depend on the mapping 7 but minimizing the
overall computational time needed to compute the product ot two matrices turns out
to be equivalent to minimizing

P

Z sz e (isk) s Pre(i.g) +sz ' (k.j) s Pre(ing))

k=1 z 1 j#k ] 1 i#k

vl

horizontal commumcatlons vertical commumcatlons

and therefore to solve the following optimization problem :
Definition 1 (Hete-Comm-Sum) Given a metric d on Processors P, ..., Py, find a
bijective mapping 7 from [1,p] x [1,p] to [1,p%] minimizing

V4
Z Z d(Pr(k,5)> Pr(i,j)) + A(Pr(ik)> Prig))

k=1 i,j

— If all necessary communications can be handled in parallel, then the overall time needed
to compute the product of two matrices of order n is given by

p 3 2 2
n n n
Cmax = Z t. (;) +I£1:a*1x ma‘Xd( (i,k)» w(i,j)) (5) +max max d( w(k,j)> w(i,j)) (E)

=1
= J#k J i#k

~~ ~~

computations horizontal communications vertical communications
(3.2)
As previously, the cost of computations does not depend on the mapping 7 and in this
case, minimizing the time needed to compute the product of two matrices of order n
turns out to be equivalent to the following optimization problem :
Definition 2 (Hete-Comm-Max) Given a metric d on processors Pi,..., Py, find a
bijective mapping 7 from [1,p] x [1,p] to [1,p?] minimizing

p
Z maxd (ki) s n(i,j))+maxd( (i k) Pr(ing)))
k=1

In the next section, we show that (Hete-Comm-Sum) is an NP-Complete optimization pro-
blem.

4 Complexity

Theorem 1 Hete-Comm-Sum is NP-Complete.

In this section, we give the sketch of the proof of the NP-Completeness of Hete-Comm-
Sum. The entire proof, which is long and technical, can be found in Appendix.
The decision problem associated to Hete-Comm-Sum is the following :

INRIA
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Definition 3 (Hete-Comm-Sum-Dec) Given a metric d on processors Py,..., Py, and a
bound B, is there a bijective mapping © from [1,p] x [1,p] to [1,p?] such that

p
Z Z d(Pw(k,j)JPﬂ'(i,j)) + d(Pﬂ(i,k)an(i,j)) < B

k=1 i,j

We select the following NP-complete problem for the reduction :
Definition 4 2-Partition-Equal (2P-eq-Opt)
Given a set of p non-negative integers A = {ay,...,ap}, is there a partition of {1,...,p}
into two subsets Ay and As such that

Z a; = Z a; and card(A;) = card(Asz)

€Ay i€ As

We consider an arbitrary instance of the 2-Partition-Equal problem, i.e. a set A =
{ai,...,a2,} of 2n integers. We have to polynomially transform this instance into an ins-
tance of the Hete-Comm-Sum-Dec which has a solution if and only if the original instance of
2P-eq-Opt(A) has a solution.

4.1 Hete-Comm-Sum instance

Our instance will be made of a set (n + 1)? processors split into three areas : P!,
(PY,...,P), and (PIY,..., PI),

Let M = max;a;, Vi, b; = a; +2nM, A = 32n®max; b7, A’ =3 ,b? and S = Y b;. .
Thus, the following inequalities hold true :

b + b;)?

VijiA> % (4.1)
) )2

Vi, j kb2 < @ (4.2)

Intuitively, the b?’s are large and close together and are small compared to A.
The metric between the processors is defined as follows :

II: P, .. PY

11 o, (b +b))?
P — P 2
Ple—m P :A
Pl pHI g

I : P, PO

RR n~°4165
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Finally, the bound B is set to

2
amPA+n tn+1)+2n - 1A + %

4.2 Sketch of the proof.

In this section, we briefly describe the sketch of the proof of the NP-Completeness of
(Hete-Comm-Sum-Dec).

First, we prove that the point to point distance we have just defined is a true metric, i.e.
that triangular inequality holds true between any triplet of processors.

The second step of the proof is to study the possible positions of processors P! and P}t
into the grid. We prove that the overall communication overhead will be smaller than B if
and only if all the processors P! and P! belong to the first row or to the first column of
processors, as depicted in Figure é\

Tav
o0
RN
xf* ’

¥

\ (P, P

Fi1G. 3 — Optimal solution organization

The third step of the proof is to study the possible position of processor P! into the first
row and the first column of processors. We prove that the overall communication overhead
will be smaller than B if and only if the processor P! belongs both to the first row and to
the first column of processors, as depicted in Figure 4.

The last step consists in proving that the overall communication overhead is smaller than
B if and only if the communication overhead involving the processors of the first column
is well balanced with the communication overhead involving the processors of the first row.
Then, we prove that tha above condition can be fulfilled if and only if the original instance
of 2P-eq-Opt(.A) has a solution.

INRIA
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| | | e

B2 | |

in| | |

Fi1G. 4 — Optimal solution organization

This achieves the proof of the NP-Completeness of (Hete-Comm-Sum-Dec).

5 Related Problems

In this section, we recall some results on related problems with homogeneous communi-
cation links but processors running at different speeds. In this case, it is not always possible
to reach perfect load balancing with 2D grids, and we have to consider different distribution
schemes. Figure 5 depicts some other possible data-allocation schemes that are well-suited
to heterogeneous platforms.

- | E

One-dimensional Two-dimensional Column-based Recursive Unconstrained

F1c. 5 — Tiling taxonomy

As in Section 2.2, we have to consider two different situations, according to the possibility
of handling communications in parallel. For each data allocation scheme depicted in Figure 5,
and for each hypothesis concerning the communication network, we give the complexity of
the resulting optimization problem in table of Figure 6.

In this paper, we have proved that Hete-Comm-Sum is NP-Complete but we still do not
know the complexity of Hete-Comm-Max. Note that our proof of the NP-Completeness of
Hete-Comm-Sum strongly relies on the allocation of the processors into a grid. If we relax this

RR n~ 4165
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1D 2D Column-based | Recursive Unconstrained
N NP-complete.
0
. Guaranteed
x Polynomial [3] | known |y ictic with 7/4
NP- results bound. [4]
Polynomial complete
(2] ;
NP C([);]n plete N NP-complete.
Guaranteed K o Guaranteed
max o nown heuristic with 2/v/3
heuristic with results bound. [4]
2/4/3 bound. '

F1G. 6 — Various complexity results on heterogeneous platforms

topological constraint, the communication overhead is much more difficult and the instance
we considered in Section 4 is not optimal anymore.

6 Conclusion

In this paper, we have shown that deriving efficient strategies for data-allocation turns
out to be surprisingly difficult (NP-Complete) as soon as the communication network is
heterogeneous. This complexity result is not of practical interest since the case of heteroge-
neous communication links and homogeneous processors may seem surprising, but it states
that the algorithmic complexity in the context of heterogeneous resources may come either

from the heterogeneity of the processors or from the heterogeneity of the communication
links.
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A Proof of the NP-Completeness of Hete-Comm-Sum-Dec

We detail the proof whose sketch is given in Section 4.

A.1 The distance is a true metric

In order to prove that the distance we have defined is a true metric, we need to prove
that triangular inequality holds true for any triplet of processors.

i) Communications between P! and P! : We have to check that

VP, d(P', P/") < d(P", P) + d(P, P]")

RR n~4165
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_¥pP=p!
MﬂP%<ﬂ#P%+ﬂﬂwﬂw@w<w+@iﬁﬁ
P ) = 1t g ] 271 T — 77 2
This holds true since b? < % (equation 4.2).
~IfP=pWl

d(P', Py <d(P', P/") +d(P]",P") & b} <A+ A,

This holds true because A > b? (using equations 4.1 and 4.2).

ii) Communications between P! and P! : We have to check that
VP, d(P', P{) < d(P', P) + d(P, P")

~IfP=pP"
d(P', Py <d(P,Pj") +d(P', P/"") & A<b+A

_P=pN
I oI 1 oIl 1 oIl
d(P', PI) < d(P', P™) + d(PM, PI) & A< A+ A
iii) Communications between P;' and Pj' : We have to check that
VP, d(P}", P]') < d(P]', P) + d(P, F}")
~-IfP=P!
d(PH, Py < d(PH, PY) +d(P', P! Bitb)” 2 g2 o o, < b2 482
(P, Py7) <d(P;, P7) +d( aj)@T_i+]’@ ib; < b7 +bj
& 0L (b, - bj)2
~Ifp=p!
d(P{, P}') < d(P{', P) + d(Py', BjY) & (bi +b;)” < (bs + bk)? + (b + b)),
This holds true because (b; + b;)* < 2b7 + 2b7 is smaller than (b; + by)? + (by, + b;)?

(using equation 4.2).
- ¥ P=pml

1
AP, P}) < d(Pi', Pet) + d(Pe, Pl & 5 (bi+b))? < A+ 4,

which is true (see equation 4.1).
iv) Communications between P;' and P;"" : We have to check that

11 111 11 111

INRIA
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~IfP=P"
d(P',P/") <d(P',P") +d(P",P]"") & A<b;+A

- 1If P= P!

d(P", Pj") < d(P[', ") + d(P{, ") & A< (b +bi)” + A

N | =

~ ¥ P=pU
d(P{', P") < (P B + AR P & A<A+
v) Communications between P;" and P;" : We have to check that

111 pIII 111 111
\ffﬂ (i(E% ;-EZ' ) < Ci(E% ’ })) + Ci(fi-EZ' )

~IfP="P!

d(PiIII’PjIII) < d(P™M, PY) +d(PI’P}II) o 1<A+A
-IfpP=Pp!

d(PiIII’PJIII) Sd(PiIII’PkII)_*_d(PIiI,P;II) o 1<A+A
- Ifp=pH

AP, P < (P P +d(RIL P & 1< 141

Thus, triangular inequality holds true and our instance of Hete-Comm-Sum-Dec is valid.

A.2 Position of processors P! and P!

Let us first suppose that there is a solution to the instance of Hete-Comm-Sum-Dec with
the b;’s, i.e. that the overall communication cost is smaller than B.

In this section, we prove that if the overall communication cost is smaller than B, then
the processors P! and P! have to be arranged as depicted in Figure 3. This proof consists
in two main steps. First, we prove that the processors P! and P! have to belong to the first
row or the first column, and then, we proove that processor P! has to be in the left-upper
corner.

We look for a bijective mapping of (n + 1)? processors onto a (n + 1) x (n + 1) grid so
that the overall amount of communications is smaller than B.

Let 7 a processor allocation function (a bijective mapping from [1,n + 1] x [1,n + 1] to
[1,(n 4 1)2]). Let r; (resp. ¢;) denote the number of processors belonging to Area I or Area II
in the i*" row (resp. the jt* column). Is is always possible to reindex rows and columns s.t.
ry > 1y > - >1Tpyp and ¢ > ¢ > --- > cpy1- We suppose in the following that these

RR n~4165



14 Olivier Beaumont, Arnaud Legrand and Yves Robert

conditions are fulfilled. Let us define ¢ by ¢(i,j) = 0 if Py € {P,P,...,P3L} and
¥(i,7) = 1 otherwise. The overall volume of communication is given by

=2 3> (A(Pr(hg)s Priiy) + APripys Prgiz))
ki 3
that can also be written :

. CY(m) = 325 1 A(Prikys Pri,j)) and
=Y crm+ Yt 1th{ i ik AL k)s P
2 CHm) + 3G with 3 iy = 5 d(Prie, Priig)

)

Thus,

Z d(Pﬂ'(z’,k 7r(z,]) Z d 7r(z k)>» 7r(z ])) Z d(Pﬂ(z’,k)aPﬁ(z’,j))

P (i,k)=0 P(ik)=1 Y (i,k)#Y(1,7)
¥(4,5)=0 ¥ (i,j)=1

Z d(P,,(i,k),P,,(z-,j)) +(n—r)n+1-—r;))+24- (ri(n +1- rz))
P(i,k)=0
w(iaj)=0

Since Vi, b? is small compared to A we can bound some terms in previous expression.

0< Z d(Pr(i k), Pr(ij) + (n—ri)(n+1—1;) , < Z 2ml3Xb}2+(”—Ti)(”+1—Ti) ,
(i, k)=0 (i, k)=0
¥(i,5)=0 ¥ (4,5)=0

< ri(ri —1) -2mlaxb‘f +(n+1)?
<(n+1)>*- Zmlaxle + (n+1)?
< 4n? max b? (when n is big enough) ,

A
<_
— 8n

Then, we have

2A'Cj(n+1—cj)§C}’(7r)§2A-cj(n+1—cj)+£_

&n
Similarly,
A
2A-ri(n+1—n-) SC{L(W) §2A-m(n+1—r,~)+% ,
and finally

)=2A- (Zr,n+1—r, +chn+1 >+Rw1thRE[0A/4]

INRIA
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Since B = 4n2A +n2(n+1)+ (2n— )A + 5 and n2(n+ 1) + 2n — DA’ + & < 4,
then

Cm)<B= > riln+1-r)+) cjln+1-¢;) | <2n’

% J

Moreover, (Ez ri(n+1—r)+3 cn+1-— cj)) =2(n+1)2n+1)=>, 7 - > ¢, and

therefore,
C(r) <B= er + Zcf >2(n+1)(2n +1) —2n% = 2((n + 1)* +n).
i J
Let us first note that if 1 =¢; =n+1land Vi > 1, r; =¢; =1, then Y ,r] + > c? =
2((n+1)*+n). In what follows, we prove that with any other values for the r;’s and the ¢]s,
i+ 265 <2((n+1)% +n), so that the only possible configuration for the processors
P! and P consists in putting them in the first column and the first row.

Lemma 1 An optimal allocation has the following shape :

Area I and II

Any processor belonging to Area I or Area IT has for left and
upper neighbour a processor belonging to Area I or Area II :
processors belonging to Area I and Area II are grouped to-
Area III gether on left and upper sides.

Proof Let us suppose that there exists an optimal allocation scheme s.t. there exists a
processor belonging to Area I or Area IT whose left neighboor belongs to Area III (the upper
neighbour can be treated in a similar way). Then, it is possible to build a better allocation
scheme (see Figure 7), by moving this processor to the left.

Let k be the index of the column of this processor. Let us define r’ and ¢, the indices
obtained ater the permutation. ' and ¢’ are given by r{ = r; Vi, ¢; = ¢; Vj ¢ k,k—1,
c,=cy—landc,_; =c,+ 1.

Then,
12 12 2 2 _ 12 r 2 2 2
Do DG =D =Y G =ty — G — G
i j i j
=(r =12+ (cp1+ 1) =2 —ci_,
=2+ 2(cp_1 —cg) >0,
which is absurd since the cost of the solution after permutation is smaller. a
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1 Cr—1Ck Cn+1
1 1
D /\/—)~
!
Tn+1 Tn+1
FIG. 7 — Minimizing communications between {P!, P{*,... P} and {P{", ..., P!} : grou-

ping on the top and on the left

Lemma 2 Optimal allocations satisfy :

Vie[2,n+1]:m>2=c+ri—1>n+1
Viel2,n+1]:¢;j>2=¢cj+r1—1>n+1

Proof Let us suppose for example that there exists k s.t. 7 > 2 and ¢; +7r, —1<n+ 1.

Cl. .. Crpy eennnnnn Cry
1
| Area I and II
Tk
: Area III
iy

FIG. 8 — Minimizing communications between {P!, P{!,... PII} and {P,..., PTILIQI} : grou-
ping on the upper and leftmost sides

We want to maximize Y71, ¢f + i1, r7, which is related to the overall amount of commu-
nications. that has to be the largest possible. Moving r; — 1 processors from the kt* row to

the first column, we get the allocation depicted in Figure 8. In this case, the indices 7' and

INRIA
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¢’ defining the new allocation are given by :
ri ifie[l,k—-1] o
+r,—1 ifj=1

o1 fi=k Tk e

rl = andc. =<{¢;,—1 if j €[2,7:] ,
¢ ri ifi€k+1,¢] J ’ J €2l

cj ifj>r
1 ifi>e J J =T

what leads to

Tk T1
Zc;-2 +Zr§2 =|(c1+me— 1) +Z(Cj -1)% + Z c
i i j=2 Jj=ri+l
k—1 T1
+ (Zr§+1+ > r§+(rk—1)> :
i=1 i=k+1
Tk Tk T1
=G +2(ry—1)+7} —2rk+1+20?—220j+(rk -1+ Z c?
j=2 j=2 j=ra+1
k—1 T1
+ (er+1+ Z rf—k(rk—l)) ,
i=1 i=k+1

T1 C1 Tk
- (3] () <230
j=1 =1 j=2

T1 c1
> Z c? + Zr?,iff the ¢;’s are not all equal
j=1 i=1

If the ¢;’s are not all equal, it leads to an absurdity. If the c;’s are equal then the 7;’s
have also to be equal and r1¢; = 2n + 1 (the r;’s are all equal and processors of Area I and
Area IT are then grouped together in a rectangle).

— If ry =1 then ¢ = 2n + 1, which is impossible since ¢; belongs to [1,n + 1] and if

r1 = 2 then 2n + 1 = ry1¢; is even. Thus, r; > 3 and similarly ¢; > 3.
— Since ric; = 2n + 1, at least one of r; and ¢; is smaller than +/2n + 1. Let us suppose
(by symmetry) that ry <+/2n+ 1.
In this case, r1 € [3,v2n + 1] and

2
L, 2n+1 5 (2n+1
E cj+2 ry =11 + 7y .
T1 T1
j=1 i=1
Since previous expression is a decreasing function in 1 on, we get

L - 2n + 1)2
2 ?<(7 32n+1).
jzzlc]+;r,_ 3 +32n+1)
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Nevertheless, allocating processors of Area I and Area II only in the first row and the
first column leads to 0L €5 + 2ity 7 = 2((n + 1)* + n), which is better than previous
allocation if n is big enough.

Thus, optimal allocations satisfy

Vie[2,n+1]:r>2=c+r—1>n+1

The other case (c; > 2 and ¢; + 71 —1 < n +1) is similar. a

Lemma 3 The optimal allocation satisfies i =cir=n+1andr; =c; =1, Vi,j > 2.

Proof Suppose there exists i € [2,n + 1] s.t. 7; > 2. Then, r5 > 1 and 3j € [2,n + 1]
s.t. Cj Z 2.

Since we know that 7, > 2 =>c1+r;,—1>n+1landc¢; >2=>c¢cj+r1—1>n+1, we
have ¢; +7; > n+3 and ¢; +71 > n+ 3. Moreover, since the number of processors belonging
to Area I and Area Il is larger than r1 +¢i+7i+c¢;—4, then2n+1>ri+ci+ri+c¢;—4 >
2n + 6 — 4 = 2n + 2, which is absurd. Optimal solutions are then organized as depicted in
Figure 3.

O

We have shown that, in an optimal allocation, processors belonging to Area I and Area IT
are grouped together on the first row and the first column.

Lemma 4 In an optimal allocation, P! is in the leftmost upper corner.

Proof

— Suppose we have an optimal allocation where the processor I is not in the leftmost
upper corner. Let I = {iy,...,in} (resp. J = {j1,...,Jjn}) be the indices of Area II’s
processors located on the first column (resp. the first row). We will suppose in the
following that processor I is in the first column but the other case can be treated in a
very similar way.
Since the leading term of the communications overhead has already been minimized
(the communications between Area IIT and Area I/II), we need to minimize internal
communications in Area I/II.
Horizontal communications are then given by

Ch :Z (sz + bh ZZ sz + b]k Z (bjk ';bh)Q ,
k

1 k Ik
—y s lat b #3005+
k I#£k

INRIA
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and vertical communications are given by

C, ZZ(bu‘i‘bzk +b%k)+2b“,

k I#k

=Syt 2y

k I#k

The overall cost of communications between processors of Area I/II and Area III is
therefore given by

szz(bil +2bik)2 + (b;, +2bjk)2 +Z(bjl+bi1)2+2zb§1
7 1

k Ik

— Consider the same allocation as before where P! is moved in the leftmost upper corner.
Thus, the communications during the first step are given by :

=20+ 20,
l l
and the communications during the step & > 1 are given by :
(bi, + b;,,)? (bj, +bj,)?
C]Ig; — Z i 5 ik +b12k + Z Ji 5 Jk +b?k
I#£k l#£k

The overall cost of communications between processors of Area I/IT and Area III is
therefore given by

_ ZZ (b, +2bik)2 N (bj, +2bjk)2 +2Zb?l +2Zb?z ‘ (A.1)
1 l

k £k
Then,
C-C'= Z(bgz +b;,)" =2 Z b2 > 0 (using equation 4.2).
1
Processor I is then in the leftmost upper corner. d

We have therefore proved that if the overall communication cost is smaller than B, the
the processors have to be arranged as depicted in Figure 4. In what follows, we slightly refine
previous result. Indeed, we prove that if the overall communication cost is smaller than B
then there must be a solution to 2P-eq-Opt with the a;’s.

RR n~°4165
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A.3 Equivalence with 2P-eq-Opt

We know that optimal allocations are organized as depicted in Figure 4

Let I = {i1,...,4n} (vesp. J = {j1,...,4n}) denote the set of indices of processors
belonging to Area II that are located on the first column (resp. the first row).

Thus, the overall communication cost is given by

C(ﬂ') = 4n2A+n2(n + 1) + 221)2 + 221)1 + iz ((b“ + bik)2 + (bjt + bjk)2) ,
1 k k=1 I#k
and therefore, the overall communication cost is smaller than B if and only if
2 2 - 2 2 ,S?
2;% + 2;% +l§l¢z}c (b, +03,)° + (bj, +1;,)°) < (20— DA+ =~

Let us note that

n

Z Z ((biz + bik)2 + (bjt + bjk)z) = (2TL - 2)AI +2 i Z(blt bik + bjlbjk)a

k=1 I#k k=1 I#k

and
" 2 2
ZZZ(bzzbZk +bjlbjk) = <Zb’lk> + (Zka) _be
k=11#k k k i
Therefore,
2
QZb +22b +ZZ i+ biy)? + (b, +bj,)%) = 24"+(2n—-1)A"+ (Z bik> +<Z
k=1 I#k k k

and if the overall cost of communications is smaller than B, than

2 2 S2
)
Since ), by, + >4 bj, =S, then
S
(Z bik) (Z ka) <5 &= Zbik ijk = 9
k k

and the partition of the processors of Area II into the first row and the first column solves
the 2P-eq-Opt problem for the b;’s. Let us prove that this partition solves the 2P-eq-Opt

problem with the a;’s. Since
S
Sh=Yh =t
k k
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then
Zai’c +2nM.n = Zajk +2nM.n
k k

E ag, = E a]'k.
k k

Therefore, if there is a solution to Hete-Comm-Sum-Dec with the b;’s, there is also a solution
to 2P-eq-Opt with the a;’s.

Reciprocally, if there is solution to the 2P-eq-Opt with the a;’s, we can arrange the
processors as depicted in Figure 4, and solve Hete-Comm-Sum-Dec with the b;’s.

This achieves the proof of the reduction of Hete-Comm-Sum-Dec to 2P-eq-Opt.

and finally

A.4 Conciseness of the transformation

In order to prove the NP-Completeness of Hete-Comm-Sum-Dec, we need to check the
conciseness of the transformation of the instance of 2P-eq-Opt with the a;’s to the instance
of Hete-Comm-Sum-Dec with the b;’s.

The size of the encoding of our initial instance A = {ay, ..., a2, } for 2P-eq-Opt is
c(A)=Q (Z log a,-)
i
The size of the coding of our new instance B = {b1,...,aan, A4,..., A} for Hete-Comm-Sum

18

c¢(B)=0 (Z logb; + (n® — (2n + 1)) log A)
If we set M AX = max; a; then we have
Zlog a; > log(MAX) + (n — 1) log(mina;) > log(MAX) + (n — 1) log2

and thus
c(A) = (Y logai) = Q(n +log MAX)

Since b; = a; + 2nmaxa; < (2n + 1) maxa;, we have
logb; <log(2n + 1) + log(MAX) = O(n + log MAX).
We have A = 32n% max; b} and thus,

log A <log32 + 3logn + 2(log(2n + 1) + log(M AX)) = O(n + log MAX).
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Frow the previous equation, we deduce :
c(B) =O(Z log b; + log A)

:O((;n +1)(n+1log MAX) + n®*(n + log MAX))
=0((n +log MAX)*)
=0(c(A)")

This achieves the proof of the NP-Completeness of Hete-Comm-Sum-Dec.
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