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Résumé : Nous étudions le probléme de recherche de répétitions en tandem
avec K inégalités. Nous considérons deux définitions principales et pour cha-
cune d’elles nous proposons un algorithme de recherche s’exécutant en temps
O(nKlog K +S5), ot n est la longueur du mot et S est la taille de sortie. Cela
ameéliore en particulier 1’algorithme proposé dans [L.S93]. Dans la derniére
section nous analysons d’autres définitions possibles.
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1 Introduction

Repetitions (periodicities) play a central role in word combinatorics [Lot83,
CK97|. On the other hand, repetitions are important from the application
perspective. As an example, their properties allow to speed up pattern match-
ing algorithms [GS83, CR95, CH98|.

The problem of efficiently identifying repetitions in a given word is one
of the classical pattern matching problems [Cro81, Sli83]. A tandem repeat
or a square is a pair of consecutive occurrences of a subword in a word. For
example, baba is a tandem repeat in word cbacbabacba. Since the beginning
of 80s [Cro83] it is known that checking whether a word contains no tandem
repeat (or is square-free) can be done in time O(n) (n length of the word). If
one wants to find all tandem repeats, their number comes into consideration.
Word a™ contains O(n?) tandem repeats. If we restrict ourselves to primitive

*on leave from the French-Russian Institute for Informatics and Applied Mathematics at
Moscow University
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4 Roman Kolpakov and Gregory Kucherov

squares (i.e. subwords wu where u is not itself a repetition v* for k > 2),
then a word may contain O(nlogn) of them and this bound is tight. All
primitive squares can be found in time O(n + S) where S is their number
[Kos94, SG98, KK99a|, hence in the worst-case time O(nlogn).

In [KK99b, KK99a|, we studied mazimal repetitions (see also [ML84, Mai89]).
Those can be viewed as maximal runs of squares [IMS97, SG98|, i.e. series of
squares of equal length shifted by one letter one with respect to another. For
example, bcbacacacaab contains a maximal repetition acacaca which is a suc-
cession of four squares : acac, caca, acac, caca. Thus, the set of maximal
repetitions can be regarded as an encoding of all tandem repeats in the string.
We showed [KK99b| that this encoding is more compact in the worst case, as
there are only O(n) maximal repetitions in words of length n. Moreover, all
of them can be found in time O(n) [KK99a].

More recently, searching for repetitions in a string received a new moti-
vation, due to the biosequence analysis [Gus97]. Successive occurrences of
a fragment often bear important information in DNA sequences and their
presence is characteristic for many genomic structures (such as telomer re-
gions for example). From practical viewpoint, satellites and alu-repeats are
involved in chromosome analysis and genotyping, and thus are of great inter-
est to genomic researchers. Tools for finding successive repeats are nowadays
an obligatory part of integrated systems for analyzing and annotating whole
genomes [Ben99]. We refer to [vBSvL*97] as an example of biological study
of contiguous repetitions in DNA sequences.

The major difficulty in finding biologically relevant repetitions in genomic
sequences is a certain variation that must be admitted between the copies of
the repeated subword. In other words, biologists are interested in approximate
repetitions and not necessarily in exact repetitions only. The first natural def-
inition of approximate repetition is an approximate tandem repeat which is a
subword uv where u and v are within a given distance k£ and the notion of
distance could be one of those usually used in biological applications, such
as Hamming distance or edit distance. The problem of finding approximate
tandem repeats for both these distances has been studied by G. Landau and
J. Schmidt [LS93]. They showed that in case of the Hamming distance (re-
spectively edit distance), all approximate tandem repeats can be found in time
O(nKlog(n/K)+S) (respectively O(nK log K logn—+5S)), where S is the num-
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ber of repeats found. Several other approaches to finding approximate tandem
repeats in DNA sequences have been proposed in bioinformatics community —
some of them use statistical framework [Ben98, Ben99|, some require to specify
the size of repeated motif [BW94, RDDD95]|, some use very general framework
and have to make use of some heuristic filtering steps to avoid exponential
blow-up [SM98|.

This paper deals with finding approximate repetitions using exact combi-
natorial methods of string matching. We focus on the Hamming distance case
when the variability between repeated copies can be only letter replacements.
An important motivation is to define structures encoding families of approx-
imate tandem repeats, analogous to maximal repetitions in the exact case.
In Section 2, we define two fundamental structures : globally-defined approz-
imate repetitions and runs of approrimate tandem repeats. In Section 3, we
show that all globally-defined approximate repetitions can be found in time
O(nKlog K + S), where S is their number. In Section 4 we show that the
same bound holds for runs of approximate tandem repeats: all of them can
be found in time O(nKlog K + R), where R is their number. This result
implies, in particular, that all approximate tandem repeats can be found in
time O(nK log K +T) (T their number), improving the O(nkK log(n/K) +T)
bound of G. Landau and J. Schmidt for the most interesting case of small K.
Finally, in Section 5 we introduce two other possible notions of approximate
repetitions and give a brief analysis of their properties.

2 K-mismatch globally-defined repetitions and
runs of K-mismatch tandem repeats

Quoting [Ben98|, one difficulty in dealing with (approximate) tandem repeats
1s accurately defining them. Even if we concentrate only on mismatches, as it
is the case in this paper, different definitions of approximate repetitions can be
thought of. Here we introduce two basic notions of approximate repetitions.
Other definitions will be discussed in Section 5.

We start by recalling briefly some facts about exact repetitions. The period
of a word w[1 : n] is the minimal natural number p such that w(i] = w[i + p]
for all 1 <i,74 p < n. The ratio n/p is called the exponent of w. A repetition

RR n° 4163



6 Roman Kolpakov and Gregory Kucherov

is any word with the exponent greater or equal to 2 [KK99b|. A tandem
repeat, or a square, is a word which is a catenation of another word with itself.
Equivalently, a tandem repeat is a repetition the exponent of which is an even
natural number. In the case when the exponent is equal to 2, the tandem
repeat (square) is called primitive. The following proposition is well-known
(see [Lot83]).

Proposition 2.1 A word r[1 : n] is a repetition of period p < n/2 if and only
if one of the following conditions holds:

(i) r[l.n—p| =r[p+1..n], and p is the minimal number with this property,

(ii) any subword of v of length 2p is a tandem repeat, and p is the minimal
number with this property.

When considering repetitions as subwords of a bigger word, the notion of
maximality turns out to be very useful: a repetition is mazimal iff it cannot
be extended (by one letter) to the right or left while keeping the same period.
Formally, given a word w[1 : n] and a subword w[i..j] which is a repetition of
exponent e > 2, this repetition is called mazimal if the period of both wli..j+1]
(provided that j < n) and w[i — 1..j] (provided that ¢ > 1) is strictly larger
than e. For example, acaabaababc contains repetition (tandem repeat) aabaab
which is not maximal, as the a which follows it respects the periodicity. On
the other hand, aabaaba occurs as a maximal repetition. Maximal repetitions
were studied in [Mai89, KK99b, KK99a, SG9S].

We now turn to defining approximate repetitions. Similar to the exact case,
the basic notion here is the approximate tandem repeat. Assume h(-,-) is the
Hamming distance between two words of equal length, that is h(wy, ws) is the
number of mismatches (letter differences at corresponding positions) between
wy and wsy. For example, h(baaach, bcabch) = 2.

Definition 2.2 A word a = o'a", such that |o'| = |&"|, is called o K-
mismatch tandem repeat iff h(a/,a”) < K. Reusing the terminology of the
exact case [KK99a], we call number p = |o/| = || the period of a, and words

o, o left and right root of a respectively.

We now want to define a more global structure which would be able to
capture “long approximate periodicities”, generalizing repetitons of arbitrary
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exponent in the exact case. As opposed to the exact case, Conditions (i)-(ii)
of Proposition 2.1 generalize to different notions of approximate repetition.
Condition (i) gives rise to the strongest of them:

Definition 2.3 A word r[1 : n] is called a K-mismatch globally-defined repe-
tition of period p, p < n/2, iff h(r[l.n —pl,r[p+ 1.n]) < K.

Equivalently, r[1 : n] is a K-mismatch globally-defined repetition of pe-
riod p, if the number of i such that r[i] # r[i + p| is at most K. For ex-
ample, abaa abba cbba cb is a 2-mismatch globally-defined repetition of period
4. abc abc abc abb abe abe abc abe is a 1-mismatch globally-defined repetition of
period 3 but abc abc abc abb abc abe abe abb is not.

Another viewpoint, expressed by Condition (ii) of Proposition 2.1, considers
a repetition as an encoding of squares it contains [IMS97, SG98|. Projecting
this to the approximate case, we come up with the notion of run of approximate
tandem repeats:

Definition 2.4 A word r[1 : n] is called a run of K-mismatch tandem repeats
of periodp, p < n/2, iff for every i € [1.n—2p+1], subword o = r[i..i+2p—1] =
rli.i+p—1r[i+1..i + 2p — 1] is a K-mismatch tandem repeat of period p.

Similarly to the exact case, when we are looking for approximate repetitions
occurring in a word, it is natural to consider mazimal approximate repetitions.
These are repetitions extended to the right and left as far as possible provided
that the corresponding definition is still verified. Note that the notion of
maximality applies to both definitions of approximate repetition considered
above : in both cases we can extend a repetition to the right/left as long as the
obtained subword remains a repetition according to the considered definition.
Throughout this paper we will be always interested in maximal repetitions,
without mentioning it explicitely. Note that for both notions of approximate
repetitions defined above, the maximality requirement implies that if w[i : j]
is a repetition of period p in w[l : n|, then w[j + 1] # w([j + 1 — p| (provided
j <n)and wfi — 1] # w[i — 1 + p| (provided 7 > 1)'. Furthermore, if wl[i : j]
is a maximal globally-defined repetition, it contains exactly K mismatches

'For one type of repetitions defined in Section 5 this will not be the case, and we will
add this condition explicitely.
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8 Roman Kolpakov and Gregory Kucherov

u u Y, | v w w
d(u, u)>K d(v, v')<K d(w, w')>K

Figure 1: Maximal run of K-mismatch tandem repeats

>2p

N by & b, ¢ b Diis
P P P P

a; Z bJ j=0,1,....K+1

Figure 2: Maximal K-mismatch globally-defined repetition

wll] # wll +pl, i <I,14+ p < j, unless the whole word w contains less than K
mismatches (to simplify the presentation, we always exclude this latter case
from consideration).

Figure 1 illustrates the definition of (maximal) run of K-mismatch tan-
dem repeats, and Figure 2 that of (maximal) K-mismatch globally-defined
repetitions.

Example 2.5 The following Fibonacci word contains three runs of 3-mismatch
tandem repeats of period 6. They are shown in reqular font, in positions aligned
with their occurrences. Two of them are identical, and contain each four 3-
mismatch globally-defined repetitions, shown in italic for the first run only.
The third run is a 3-mismatch globally-defined repetition in itself.
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K-mismatch globally—defined repetitions

|

run of K—mismatch tandem repeats

Figure 3: Extension relation

010010 100100 101001 010010 010100 1001

10010 100100 101001
10010 100100 10
0010 100100 101
10 100100 10100
0 100100 101001
1001 010010 010100 1
10 010100 1001

In general, each K-mismatch globally-defined repetition is a subword of
a run of K-mismatch tandem repeats. On the other hand, a run of tandem
repeats in a word is the union of all globally-defined repetitions it contains.
We say then that the notion of run of K-mismatch tandem repeats extends
that of K-mismatch globally-defined repetition (see Figure 3).

However, a run of tandem repeats may contain as many as a linear number
of globally-defined repetitions. For example, the word (000 100)™ of length 6n
is a run of 1-mismatch tandem repeats of period 3, which contains (2n — 1)
1-mismatch globally-defined repetitions. Below is another example.

Example 2.6 The following run of I-mismatch tandem repeats of period 4
contains 8 I1-mismatch globally-defined repetitions, shown below in positions
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10 Roman Kolpakov and Gregory Kucherov

aligned with their occurrences.

0000 1000 1100 1110 1111 1111 0111 0011 0001 0000

0000 1000 1
000 1000 1100 11
00 1100 1110 111
0 1110 1111 1111
1111 1111 0111 0
111 0111 0011 00
11 0011 0001 000
1 0001 0000

It is easily seen that the run can be iterated and therefore this gives another
example of a family of runs containing a linear number of globally-defined
repetitions.

In general, the following observation holds.

Lemma 2.7 Let w[l : n] be a run of K-mismatch tendem repeats of period
p and let s be the number of mismatches wli]| # wli +p|], 1 < i,i+p < n
(equivalently, s = h(w[l..n — p|,w[p + 1..n])). Then w contains s — K + 1
globally-defined repetitions.

Note that both definitions can be criticized as for their relevance to practical
situations. An obvious property of runs, as shown in Example 2.6, is that the
repeated pattern can change completely along the run regardless the value of
K. For example, aaa aba abb abb bbb is a run of 1-mismatch tandem repeats of
period 3, although 3-letter patterns aaa and bbb have nothing in common. On
the other hand, globally-defined repetitions put a global limit on the number
of mismatches and therefore may not capture some repetitions that one would
possibly like to consider as such, in particular repetitions of big exponent
where the total number of mismatches can exceed K while the relative number
of mismatches remains low. However, these two structures are of primary
importance as they provide respectively the weekest and strongest notions of
repetitions with K mismatches, and therefore “embrace” all practically relevant
repetitions. In what follows we propose efficient algorithms to find both those
types of repetitions.

INRIA



Finding approrimate repetitions under Hamming distance 11

3 Finding K-mismatch globally-defined repeti-
tions

In this section we describe how to find, in a given word w, all maximal K-
mismatch globally-defined repetitions occurring in w (K is a given constant).
Our algorithm extends, on the one hand, the one for exact maximal repetitions
[Mai89, KK99a| and on the other hand, generalizes the one of [LS93] (see also
|Gus97]) by using a special factorization of the word to speed-up the algorithm.

To proceed, we need more definitions. Consider a globally-defined repeti-
tion 7 = wi..j] of period p in a word w[l : n]. w[i..i + p — 1] is called the left
root of r and w[j — p + 1..j] its right root. r is said to contain the character
wl] iff 1 <1 < j, and is said to touch w(l] iff r contains w[l], or contains one
of characters w[l — 1], w[l +1].

We assume we fixed a minimal bound pq for the period of repetitions we
are looking for. For example, py can be taken to be K + 1 having in mind that
if a period p < K is allowed, a tandem repeat of length 2p with no common
characters between the left and the right root would fall into the definition.
This is purely pragmatic assumption which does not affect the method nor the
complexity bounds.

Our first basic technique is described by the following auxiliary problem:
Given a word w[1 : n] and a distinguished character wll], | € [2..n—1], we wish
to find all K-mismatch globally-defined repetitions in w which touch w({]. We
distinguish two disjoint classes of repetitions according to whether their right
root starts to the left or to the right to w|[l]. We concentrate on repetitions of
the first class, those of the second class are found similarly.

For each p € [py..l — 1], and for all £ € [0..K], we compute the following
functions :

LPy(p) = max{jlh(w[l —p.l—p+j— 1 wll+j—1]) <k}, (1)
LSk(p) = max{j|h(w[l —p—j.l—p—1],w[l —j.l = 1]) < k}. (2)
Informally, LP(p) is the length of the longest subword in w starting at position
[ — p and equal, within £ mismatches, to a subword starting at /. Similarly,

LSk(p) is the length of the longest subword ending at position [ —p — 1 equal,
within £ mismatches, to a subword ending at position [ — 1. These functions
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12 Roman Kolpakov and Gregory Kucherov

are variants of longest common extension functions [LS93, Gus97| and can be
computed in time O(nK) using suffix trees combined with the lowest common
ancestor computation in a tree. We refer to [Gus97] for a detailed description
of the method.

Consider now a K-mismatch globally-defined repetition r of period p which
has its right root starting to the left to w[l]. Note that character w[l — p] is
contained in r, and that r is uniquely defined by the number of mismatches
w(i—p| # wli], i > [, contained in 7. Let k be the number of those mismatches.
Then

LPy(p) + LSk-k(p) = p. (3)

Conversly, (3) can be used to detect a repetition. The following theorem holds
(see [LS93, Gus97]), which is a generalization of the corresponding result of
[ML84, Mai89)].

Theorem 3.1 Let w[l : n| be a word and w[l], 1 < | < n, a distinguished
character. There exists a K-mismatch globally-defined repetition of period p
which contains w(l], and has its right period starting to the left to w(l], iff for
some k € [0..K],

LP,(p) < p, (4)

and inequation (3) holds. In this case, this repetition starts at position | — p —
LSk_(p) and ends at position | + LPy(p) — 1.

Inequation 4 ensures that the right root starts to the left of wll].

Theorem 3.1 provides an O(nK) algorithm for finding all considered globally-
defined repetitions: compute longest extension function (1) (2) (this takes
time O(nK)) and then check inequations (3), (4) for all p € [py..l — 1] and
all £ € [0..K] (this takes time O(nK) too). Each time the inequations are
verified, a new repetition is identified. Finding repetitions with the right root
starting to the right to w[l] is a symmetric problem, which is solved within the
same time bound.

The algorithm solving the auxiliary problem described above will be re-
ferred to as Algorithm 1. Its pseudo-code is shown below.

The second important tool is Lempel-Ziv factorization used in the well-
known compression method. Let w be a word and assume that the last sym-
bol of w does not occur elsewhere. In this paper, we need two variants of

INRIA
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Algorithm 1 Computing all K-mismatch globally-defined repetitions repeti-
tions in w touching a distinguished character
Input: word w[l : n], position [, 1 <l <n
Output: all K-mismatch globally-defined repetitions in w which touch w(l]
{Find those repetitions which have their right root starting to the left to
wll]}
1: for all p € [po..l — 1], k¥ € [0..K], compute longest common extension
functions LPy(p), LSk(p) defined as in (1), (2)
2: for p = py to min{n — I+ 1,n/2} do
3: for k=0to K do
4: if LP;(p) + LSk _«(p) > p and LP;(p) < p then
5 output a K-mismatch globally-defined repetition starting at posi-
tion | — p — LSk _(p) and ending at position | + LP;(p) — 1
{Similarly, find those repetitions which have their right root starting to
the right to wll]}

the Lempel-Ziv factorization, that we call with copy overlap and without copy
overlap?.

Definition 3.2 The Lempel-Ziv factorization of w with copy overlap (respec-
tiely without copy overlap) is the factorization w = fifs... fm, where f;’s are
defined inductively as follows:

b fl = ’LU[].],

e for v > 2, f; is the shortest word occurring in w immediately after
fife ... fic1 which does not occur in fifa... fi other than in prefix (re-
spectively, does not occur in fifo... fi—1).

As an example, the Lempel-Ziv factorization with copy overlap of the word
aabbabababbbe is a|ablba|bababblbc ; the factorization without copy overlap is

2The s-factorization used in [Mai89, KK99a] is a minor modification of the Lempel-Ziv
factorization with copy overlap. The difference is that the s-factorization considers the
longest factor occurring earlier, while the Lempel-Ziv factorization considers the shortest
factor which does not occur earlier (see [Gus97| for a related discussion). In this paper, we
use the Lempel-Ziv factorization which suits better to our purposes.
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14 Roman Kolpakov and Gregory Kucherov

a|ablba|bablabbblc. Both variants of Lempel-Ziv factorization can be computed
in linear time [RPE81, Gus97|. If w = f1 fo... fi, is the Lempel-Ziv factoriza-
tion, we call f;’s Lempel-Ziv factors or simply factors of w. The last character
of f; will be called the head of f;.

We are now ready to describe the algorithm for finding all K-match globally-
defined repetitions. Consider the Lempel-Ziv factorization of w with copy over-
lap. The algorithm consists of three stages. The key to the first stage is the
following lemmas.

Lemma 3.3 The right root of a K-mismatch globally-defined repetition cannot
contain as subword K + 1 consecutive Lempel-Ziv factors.

Proof: FEach factor contained in the right root contains a character mis-
matching the one located one period to the left. Indeed, if it does not contain
a mismatch, it has an exact copy occurring earlier, which contradicts to the
definition of factorization. As the right root contains at most K mismatches,
it cannot contain K + 1 or more factors. U
We divide w into consecutive blocks of K + 2 Lempel-Ziv factors. Let w =
By ... B, be the partition of w into such blocks. The last character of B; will
be called the head character of this block. At the first stage, we find, for each
block B;, those repetitions which touch the head character of B; but does not
touch that of B;,;. First, concentrate on those of such repetitions with the
right root starting before the head character of B;.

Lemma 3.4 Assume a K-mismatch globally-defined repetition r touches the
head character of B; but not that of Biy1. Then |r| < 2|B;B;;1].

Proof: Lemma 3.3 implies that the right root of r cannot start before the
first character of B;. Therefore, the period of r is bounded by |B;B;;1|. On
the other hand, by the argument of the proof of Lemma 3.3, r cannot extend
by more than a period to the left of B;. Therefore, the total length of r is
bounded by 2|B;B;1]. O
Lemma 3.4 allows us to apply Algorithm 1 : Consider the word w; = vB;B;1,
where v is the suffix of By ...B; ; of length |B;B;;1|. Then find, using Algo-
rithm 1, all repetitions in w; touching the head character of B; and discard

INRIA



Finding approrimate repetitions under Hamming distance 15

those which touch the head character of B;;;. The resulting complexity is
O(K(|Bi| + |Bit1l))-

After processing all blocks, we find all repetitions touching block head
characters. Observe that repetitions resulting from processing different blocks
are distinct. Summing up over all blocks, the resulting complexity of the first
stage is O(nK). The repetitions which remain to be found are those which lie
entirely within a block — this is done at the next two stages.

At the second stage we find all repetitions inside each block B; which
touch factor heads other than the block head (=last character of the block).
For each B;, we proceed by simple binary division approach:

(i) divide current block of factors B = f;fii1... fizm into two sub-blocks
B' = fi... fims2) and B" = fimsoi11 -+ fivm,

(ii) using Algorithm 1, find the repetitions in B which touch the head char-
acter of f|,,/2), but discard those which touch the head character of f;
or contain the first character of f;,

(iii) process recursively B’ and B".

The above algorithm has [log K| levels of recursion, and since at each step
the word is split into disjoint sub-blocks, the whole complexity of the second
stage is O(nK log K).

Finally, at the third stage, it remains to find the repetitions which occur
entirely inside each Lempel-Ziv factor, namely which don’t contain its first
character and don’t touch its head character. By definition of factorization
with copy overlap (Definition 3.2), each factor without its head character has
another (possibly overlapping) occurrence to the left. Therefore, each of these
repetitions has another occurrence to the left too. Using this observation, these
repetitions can be found using the same technique as the one of [KK99a|: When
constructing the Lempel-Ziv factorization we keep for each factor wa a pointer
to a copy of w to the left. Then processing factors from left to right, recover
repetitions inside the factor from its pointed copy. We refer to [KK99a| for
algorithmic details. The complexity of this stage is O(n + S), where S is the
number of repetitions found.

The following theorem summarizes this section.
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Theorem 3.5 All K-mismatch globally-defined repetitions can be found in
time O(nKlog K + S) where n is the word length and S is the number of
repetitions found.

The algorithm of finding all K-mismatch globally-defined repetitions, re-

ferred to as Algorithm 2, is given below.

Algorithm 2 Computing all K-mismatch globally-defined repetitions in w

Input: word w[l : n]
Output: all K-mismatch globally-defined repetitions in w

1:
2:

10:
11:

Compute the Lempel-Ziv factorization with copy overlap w = f1 ... f,
Partition the factorization into blocks of K + 2 consecutive factors; let
w = By ...B,, be the decomposition of w into such blocks
{first stage}
for each block B; do
find, using Lemma 3.4 and Algorithm 1, globally-defined repetitions
which touch the head character of B; but not that of B;
{second stage}

: for each block B; do

starting from B; apply the following recursive procedure
divide the current block B = f; f;1+1 ... fizm into two sub-blocks
B' = fi... fimj2) and B" = fim/2)+1 - - - fism
find, using Algorithm 1, globally-defined repetitions in B which touch
the last
character of f|,,/9), but discard those which touch the head character
of f i+m
or contain the first character of f;
process recursively B’ and B”
{third stage}
for each Lempel-Ziv factor f; do
retrieve all globally-defined repetitions in f; which don’t contain its
first character and don’t touch its last character, from its left copy (see
[KK99a| for details)
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Finding approrimate repetitions under Hamming distance 17

4 Finding runs of K-mismatch tandem repeats

In this section we discribe an algorithm for finding all runs of K-mismatch
tandem repeats in a word.

The general structure of the algorithm is the same as for globally-defined
repetitions (Algorithm 2) — it has the three stages playing similar roles. At the
first and second stages, the key difference is the type of objects we are looking
for : instead of computing globally-defined repetitions we now compute subruns
of K-mismatch tandem repeats. Formally, a subrun is a run of K-mismatch
tandem repeats, which is not necessarily maximal. At each point of the first
and second stage when we search for repetitions touching some head character
w(l], we now compute subruns of those K-mismatch tandem repeats which
touch w[l]. This can be seen as outputting by Algorithm 1 only the part of the
globally-defined repetition falling to the interval [ — 2p..l + 2p. The modified
Algorithm 1, referred to as Algorithm 3, is given below.

Algorithm 3 Computing subruns of K-mismatch tandem repeats in w touch-
ing a distinguished character
Input: word w[l : n], position I, 1 <l <n
Output: all subruns of K-mismatch tandem repeats in w which touch wll]
{Find those tandem repeats which have their right root starting to the left
to w[l]}
: for all p € [po..l — 1], k € [0..K], compute longest common extension
functions LPy(p), LSk(p) defined as in (1), (2)
: for p = py to min{n — I+ 1,n/2} do
for k =0to K do
if LP;(p) + LSk _1(p) > p and LP;(p) < p then
create a subrun of K-mismatch tandem repeats ending at positions
start(p, k) = max{l+p— LSk_x(p) — 1,1 — 1} through end(p, k) =
min{l + LPy(p) — 1,1 +p—1}
6: if £ > 0 and end(p, k) < end(p,k — 1) + 1 then
7 merge this subrun with the subrun computed for the previous
value of k
{Similarly, find those tandem repeats which have their right root starting
to the right to w[l] and thus end in the interval [ + p..l + 2p}

—_

AN
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18 Roman Kolpakov and Gregory Kucherov

The major additional difficulty in computing runs is assembling subruns
into runs. To perform the assembling, we need to store subruns in an additional
data structure and to carefully manage merging of subruns into bigger runs.
We have to ensure that the number of subruns we come up with and the work
spent on processing them do not increase the resulting complexity bound.

The assembling occurs already at the level of Algorithm 3, as subruns
found for different values of k (for-loop at line 3) may overlap or immediately
follow each other, in which case we join them into a bigger subrun (lines 6-7).
Similarly, subruns of tandem repeats with the right root starting to the right
to w[l] (case non-shown in Algorithm 3) may have to be joined with subruns
found by instructions 1-7 of Algorithm 3). We leave out the details of how this
is done.

Below we describe the three stages of the algorithm in more details. We
identify a subrun with the interval of end positions of the tandem repeats it
contains.

For the input word w, we compute the Lempel-Ziv factorization without
copy overlap and divide it into blocks B; ... B,,, each containing K + 2 con-
secutive Lempel-Ziv factors. At the first stage, we find subruns of all those
tandem repeats which touch block head characters. For each block B;, we find
the tandem repeats which touch the head character of B; but not that of B; ;.
Let [; be the position of the head character of B;. Then the subruns of period
p, found at this step, belong to the interval [I; — 1.. min{l; + 2p, l;11 — 2}] . We
call this interval the ezplored interval for w[l;] and p. The subruns found at this
step can be seen as subintervals of this explored interval. These subruns are
stored into a double-linked list in increasing order of positions. (We leave it to
the reader to check out that such a list can be easily computed by Algorithm 3
by making at each step a constant amount of extra work.) If the explored
interval for w[l;_1] and p ends at position [; — 2, it is merged with the explored
interval for wll;], thus forming a bigger explored interval. Accordingly, the
lists of subruns associated with these intervals are merged into a single list.
All additional operations take constant time, and the resulting complexity of
the first stage is O(nK).

The second stage is modified in a similar way. Recall that at each call
of Algorithm 3 we are searching for repetitions occurring between some factor
head, say wl[l'], another factor head w[l”], and touching some factor head w]l]
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Finding approrimate repetitions under Hamming distance 19

(I" <1 < 1"). Assuming that recursive calls are executed in preorder (see the
description of the second stage in the previous section), no factor head between
w(l'] and w[l"] has been processed yet. In this case, the explored interval is
[max{l' + 2p + 1,1 — 1}..min{l + 2p,!"” — 2}], and we may have to merge it
either with the previous explored interval, or with the next one, or both. The
complexity of the second stage stays O(nK log K).

After accomplishing the first and second stages, we have, for each period
p, a set of non-intersecting explored intervals. Each interval is associated
with a sequence of successive head characters w(l;|, w[l;11], ..., w[l,] such that
liz1—1; <2p+2for j € [i..m — 1], and the interval itself is [I; — 1..1,, + 2p].
In particular, the interval is associated to w(l;] and wll,;,] - the first and the
last head characters of this sequence. Those subruns of tandem repeats which
have been actually found within this interval, are stored in a double-linked list
associated to the interval.

At the third stage, we have to find subruns of those tandem repeats which
lie entirely inside Lempel-Ziv factors. For each period, potential occurrences
of these subruns correspond precisely to the gaps between explored intervals.
Thus, the third stage can be also seen as closing up the gaps between explored
intervals for this period.

As in the previous section, the key observation here is the fact that Lempel-
Ziv factors without their head character have a copy to the left (here required
to be non-overlapping), and the idea is again to process w from left to right
and to retrieve the subruns inside each factor from its copy. However, the
situation here is different in comparison to globally-defined repetitions: we
may have to “cut out” a chain of subruns belonging to the factor copy from a
longer list and then to “fit” it into the gap between two explored intervals. The
“cutting out” may entail splitting subruns which span over the borders of the
factor copy, and “fitting into” may entail merging those subruns with subruns
from the neighboring explored intervals. Below we sketch the algorithm for
the third stage, which copes with these difficulties. Algorithm 4 given below
provides a detailed description of the third stage.

During the computation of the Lempel-Ziv factorization, for each Lempel-
Ziv factor f; = va we choose a copy of v occurring earlier and point from the
end position of this copy to the head character a of f;. It may happen that
one position has to have several pointers, in which case we organize them in
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Algorithm 4 Third stage of the algorithm of finding runs of K-mismatch
tandem repeats

Input: word wll : n]; lists of subruns found at the first and second stages
Output: all runs of K-mismatch tandem repeats in w
{activerun(p) will be maintained to be the last considered run of period
p} {startingruns(i) will be maintained to be the list of runs starting at i}
1: for each position i € [1..n] do

2:  for each run r startingruns(i) do

3: let p be the period of r

4: activerun(p) :=r

5: if r is not the last in its list then

6: let 7' be the first position of the next run in the list

7: add the next run to startingruns(i’)

8:  for each factor copy ending at position 7 do

9: let w[j..7] be this copy and f,, the corresponding factor

10: for each period p < (j—i+1)/2 do

11: if activerun(p) contains tandem repeats inside w[j..7] then

12: link /merge this subrun of tandem repeats to/with the first subrun
of the explored interval associated with the head symbol of f,,

13: currentrun :=the predecessor of activerun(p) in its list

14: while currentrun contains tandem repeats inside w[j..i| do

15: link the subrun of those tandem repeats to the previously

copied subrun in f,,
16: link /merge the last processed subrun to/with the last subrun of

the explored interval associated with the head symbol of f,,_;
17: else
18: link the last subrun of the explored interval associated with the
head symbol of f,,,_; with the first subrun of the explored interval
associated with the head symbol of f,,

19: if activerun(p) is the last subrun of the explored interval associated
with the head symbol of f,,_; then

20: let 7' be the first position of the next run in the list

21: add the next run (if any) to startingruns(i’)

22: close up the gap corresponding to f,,, by merging intervals associated

to the head symbol of f,, and the head symbol of f,,_;
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a list. We traverse w from left to right and maintain for the current position
the last runs (of all possible periods) which start before this character. To this
purpose, we also maintain the following invariant: at the moment we arrive
at a position, we know the list of all subruns which start at this position.
This information is collected according to the following general rule: for each
subrun starting at the current position, we assign the starting position of the
next subrun in the list (instructions 2-7 in Algorithm 4). Of course, there
may be no next subrun if the current subrun is the last one in the explored
interval. In this case, the starting position of the subrun following the current
subrun will be set at the moment we fill the gap after this explored interval
(instructions 19-21).

When we arrive at the end position of a copy of a Lempel-Ziv factor, we need
to copy into the factor all the subruns which this copy contains. Therefore, we
scan backwards the subruns contained in the copy and copy them to the factor
(instructions 11-18). Copying the subruns closes up two explored intervals
into one interval, and links together two lists of subruns, possibly inserting
a new list of runs in between. Copying subruns in the backward direction
is important for the correction of the algorithm — this guarantees that no
subruns are missed. It is also for these reason that we need the copy to be
non-overlapping with the factor.

After the whole word has been traversed, no more gaps between explored
intervals exist anymore. This means that for each period, we have a list of
subruns with this period occurring in the word, which are actually the searched
runs. The complexity of the third stage is O(n + S), where S is the number
of resulting runs. Putting together the three stages, we obtain the main result
of this section.

Theorem 4.1 All runs of K-mismatch tandem repeats can be found in time
O(nKlog K+5S) where n is the word length and S is the number of runs found.

Once all runs have been found, we can easily output all tandem repeats.
We then have the following result improving the result of [LS93].

Corollary 4.2 All K-mismatch tandem repeats can be found in time
O(nKlog K + S) where n is the word length and S is the number of tandem
repeats found.
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5 Other definitions of approximate repetitions

K-mismatch globally-defined repetitions limit by K the total number of mis-
matches, and therefore provide the strongest notion of approximate repetition.
On the other hand, runs of K-mismatch tandem repeats provide the weekest
notion of repetition with K mismatches, as they impose only the minimal
requirement that every tandem repeat in a such repetition contains no more
than K mismatches. For practical applications, such as genome analysis, it
might be interesting to consider intermediate definitions with respect to the
two “extreme” cases. In this section we introduce two such types of repetitions
and point out very briefly some of their properties. A more detailed analysis,
together with illustrating examples, is to appear in the extended version of
this paper.

One natural way to loosen the definition of globally-defined repetitions is
to limit by K the Hamming distance between two subwords of length p or less
(p period), located within any distance which is a multiple of p.

Definition 5.1 A word r[1 : n] is called a K-mismatch uniform repetition of
period p, p < n/2 iff for every two subwords rli..i+j—1],r[i+kp..i+kp+j—1]
of r such that k is any integer and 1 < j < p, we have h(r[i..i + j — 1],7[i +
kp.i+kp+j—1]) < K.

For example, cbca bbca ab is a 1-mismatch uniform repetition of period 4,
but abca abca be is not since ab at position 1 is at Hamming distance 2 from bc
at position 9. In general, K-mismatch uniform repetitions is a weaker notion
than K-mismatch globally-defined repetitions: any word from (abcadc)™ is a
1-mismatch uniform repetition of period 3, whereas none of these words is a
1-mismatch globally-defined repetition.

The following technical remark concerning uniform repetitions is important.
When we consider mazimal uniform repetition in a word we have to add an
additional condition: wli..j] is a maximal K-mismatch uniform repetition of
period p in w if neither w[i — 1..j] nor w[i..j + 1] is a K-mismatch uniform
repetition of period p and the following inequalities hold:

wli = 1] # wli— 1+ pl, wlj+1-p] #wlj+1] (5)
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o

b

<

P
a

u
d(u, u)>K d(v, v))<K d(w, w)>K azb czd

Figure 4: K-mismatch uniform repetition

In contrast to both notions of repetition considered before, inequalities (5)
don’t hold automatically for uniform repetitions and should be added ex-
plicitely in order to ensure, in particular, that every K-mismatch uniform
repetition in a word is the union of K-mismatch globally-defined repetitions
containing in it. The following example illustrates the situation.

Example 5.2 Consider the following word of length 4p. It contains two maz-
imal K-mismatch globally-defined repetitions of period p starting at position 1
and p+ 1 and shown below in reqular font. Both of these repetitions are also
mazimal K-mismatch uniform repetitions. However, if we don’t require in-
equalities (5) to hold, we obtain a series of K —1 “ superfluous ” K-mismatch
uniform repetitions shown in italic.

D p—1 p—K K p—K-1 K+1
7 - N —— . N A
0...00...00...0...01 0...01...10...01...111
0...00...00...0...01 0...01...1 0...0

K-1

—

0...00...0...010...01...10...01

—
00...0...010...01...10...01...1
0...0...01 0...01...1 0

Figure 4 gives an illustration to the definition of maximal K-mismatch

uniform repetition. The relationship of uniform repetitions to globally—defined
repetitions and runs are summarized in the following lemma.
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Lemma 5.3 (i) Any K-mismatch globally-defined repetition can be extended
to a (possibly not unique) K-mismatch uniform repetition. Any K-
mismatch uniform repetition is the union of K-mismatch globally-defined
repetitions it contains.

(i) Any K-mismatch uniform repetition can be extended to a unique run of
K-mismatch tandem repeats. A run of K-mismatch tandem repeats is
the union of K-mismatch uniform repetition it contains.

Another possible definition is obtained when one thinks about an approxi-
mate repetition as an “exact repetition with no more than K replacement errors
per period”. This viewpoint is somewhat similar to the one of [SM98|, where
a repetition is defined through a consensus such that each repeated motif is
within a specified distance from the consensus.

Definition 5.4 Word r[1 : n] is a K-mismatch consensus repetition of period
p, p < n/2, iff there exists an exact repetition v[1 : n] of period p such that for
any subword r[i..j] of r such that j — i < p, we have h(r[i..j],v[i..j]) < K.

Example 5.5 Consider the word from Erample 2.6. The 1-mismatch con-
sensus repetitions it contains are shown together with a possible consensus for
each of them shown below in italic.

0000 1000 1100 1110 1111 1111 0111 0011 0001 0000
0000 1000 1100 11
1000 1000 1000 10
000 1000 1100 1110 111
100 1100 1100 1100 110
00 1100 1110 1111 1111
10 1110 1110 1110 1110
01110 1111 1111 01110
1 1111 1111 1111 1111 1
1111 1111 0111 0011 OO
0111 0111 0111 0111 01
111 0111 0011 0001 000
011 0011 0011 0011 001
11 0011 0001 0000
01 0001 0001 0001
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: a : : b |
u v w
u v w’
D '~ exact repetition of period p
d(u, u)>K d(v, v')<K d(w, w)>K

Figure 5: K-mismatch consensus repetition

The notion of K-mismatch consensus repetition is illustrated on Figure 5.
Similar to uniform repetitions, consensus repetitions provide an intermediate
structure between globally-defined repetitions and runs:

Lemma 5.6 Assume K is even.

(i) Any K-mismatch globally-defined repetition can be extended to a (possi-
bly not unique) K/2-mismatch consensus repetition. Any K /2-mismatch
consensus repetition is the union of K-mismatch globally-defined repeti-
tions it contains.

(i) Any K/2-mismatch consensus repetition can be extended to a unique run
of K-mismatch tandem repeats. A run of K-mismatch tandem repeats is
the union of K/2-mismatch consensus repetition it contains.

Concerning the relationship between uniform and consensus repetitions,
it is easily seen that a K/2-mismatch consensus repetition can be extended
to a K-mismatch uniform repetition. Any K-mismatch uniform repetition
can be, in turn, extended to a K-mismatch consensus repetition. More subtle
relationship between these two notion require an additional analysis. Designing
an efficient algorithm for finding these types of repetitions remains also an open
question.

Relations between different notions of repetition, studied in this paper, is
summarized on Figure 6. A solid arrow denotes the extension relation (see
Figure 3 and remark after Example 2.5), and a flashed arrow means just that
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K—mismatch consensus runs of K—mismatch
repetitions tandem repeats

K—mismatch uniform
repetitions

K/2—mismatch consensus
repetitions (K is even)

/

K—mismatch globally—
defined repetitions

Figure 6: Relations between different notions of repetitions

the “source structure” can be extended to a “target structure”, but not neces-
sarily that a target structure is the union of the source structures contained in
it.

6 Concluding remarks

We proposed O(nK log K + S) algorithms for finding K-mismatch globally-
defined repetitions and runs of K-mismatch tandem repeats (S the output
size). Note that if K is considered constant, we have O(n + S) algorithms for
finding each of these structures. This is an interesting result, which has been
long time unknown even for the exact case.

The algorithms presented in this paper are now being implemented within
the mreps software®. Currently, mreps implements the algorithm of finding

3http ://www.loria.fr/ kucherov/SOFTWARE/MREPS/index.html
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exact maximal repetitions [KK99a|. Some interesting experiments have been
done by applying mreps to genomic sequences [GKO00).
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