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to be monotonous, and hence valid, only if the scaled covariance matrix is diagonal domi-
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Consistence des schémas de différences finies généralisées
pour I’équation HJB stochastique

Résumé : Nous analysons une classe de schémas numériques pour la résolution de ’équation
HJB de la commande stochastique, qui généralise les méthodes usuelles de différences finies.
Ces derniéres ne sont monotones, et donc valides, que si la matrice de covariance mise 3
Iéchelle est diagonale dominante. Nous généralisons ce résultat en fournissant, étant donné
I’ensemble des points voisins pouvant intervenir dans le schéma, moyen de calculer la classe
de matrices de covariances consistante cet ensemble de points. Nous avons effectué le calcul
pour plusieurs cas, de dimension 2 & 4.

Mots-clés : Commande stochastique, différences finies, équation de Hamilton Jacobi Bell-
man, consistence, analyse numérique d’équations aux dérivées partielles
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1 Motivation

This paper is devoted to the discussion of numerical algorithms for solving stochastic
optimal control problems of the form (Fleming and Rishel [3], Lions and Bensoussan [6])

([ MinE /0 T ), u(t))e Mat;

(P:) Q[ dy(t) = fly(t),u(t))dt + a(y(t),u(t))dw(t),
y(0) =z,

u(t) € U, te€[0,00[.

\

In this problem y(t) € R™ is the state variable, u(t) € R™ is the control variable, A > 0
is the discounting factor, £ : R x R™ — R is a distributed cost, f : R* x R™® — R” is a
deterministic dynamics, o(-) is a mapping from R" x R™ into the space of n x r matrices,
and w is a standard r dimensional Brownian motion. We are assuming full observation of
the state, and are looking for a control in the class of feedback controls.

Assuming the functions f, o, and ¢, to be Lipschitz and bounded, the solution to the
stochastic differential equation and associated cost are well defined. The covariance matrix
(up to the factor ) is

a(z,u) = s o(z,w)o(z,u)’, V (z,u) € R* x R™. (1.1)

It is known (see P.L. Lions [7], and also Fleming and Soner [4]) that the value function V'
of problem (FP,) is the unique bounded viscosity solution of the Hamilton-Jacobi-Bellman
(HJB) equation

A(z) = H(z,v,(x),vp2(x)), forall ze€ R (1.2)
where the Hamiltonian is defined as
(a9, Q)= I § fou) + Jou) -+ 3 asgan) Qs . (13)
i,j=

where z € R", p € R?, and @ is a n X n symmetric matrix. A standard way for solving the
second order, nonlinear partial differential equation (1.2) is to discretize the state space, and
then to approximate the first and second order derivatives by finite differences. We develop
these ideas in the next section.

2 Generalized finite differences

Let us present a generalization of the usual finite difference schemes, that in fact is
nothing that another presentation of the class of Markov chain approximation discussed in

RR n° 4162



4 J-F. BONNANS AND H. ZIDANI

Kushner and Dupuis [5]. We consider a regular grid of discretization of the state space
R” with discretization steps hi, ..., hy. With the coordinate k = (k1,...,ky,) in Z™ is
associated the point z € R” of the form

Xy = (klhl, .. ,knhn) (24)

Let ¢ = {pr} be a real valued function over Z™. With £ € Z™, associate the shift operator
0¢ defined by 6 := @eik- Consider the second order finite difference operator A, =
8¢ + 6_¢ — 26, in other words,

Agpr = Prte + Pr—g — 20k = Prie — Pr — (Pk — Pr—g)- (2.5)

If ® is a smooth function over R”, and ¢ = ®(xy) for all k, then by a standard Taylor
expansion, we have that

Agpp = Z hih;&ij®y.0; + o(||R]7). (2.6)

i,j=1

For instance, when £ is equal to e; (the ith element of the natural basis of R") and e; + ¢;,
resp., we obtain

{ Aeor = (hi)>@aa, +o(|[B]1%),

Aeite; Pk = (hi)* @iz, + (hj)2¢ijj *2hihj®g.0; + o([IAl?). @7

Denote by vy the approximation of the value function V at xj, and let S be a finite set of
Z™. We consider explicit schemes based on the difference operators that we just discussed,
namely

— DU u
)"Uk = Jlelfllj e(mka U) + f('rka U) Dkvk + ;gak,fAka ) (28)

for all k € Z™. Here Dj}!v}, is a notation for the upwind spatial finite difference,

Vhte; — Vb .
(Diwg); = % if f(zg,u); >0,
K3

Vg — Vk—e;

. if not. (2.9)

Let hg > 0 denote a fictitious time step. Multiplying (2.7) by ho and adding v on both
sides, we get
vp = (1+ )\ho)_l
. } . (2.10)
lIelf[‘] v + ho@(l‘k,u) + hof(.’l?k, u) . Dkvk + ho Z Ozk,gAg?)k
u
ces

The scheme is said to be monotonous if, for small enough hg, the operator corresponding
to the right hand side is a nondecreasing function of v. Since an infimum of nondecreasing
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functions is nondecreasing, a sufficient condition for monotonicity of the scheme is that, for
each u € U, the function in the r.h.s., i.e.,

v — v + hol(xy, u) + ho f(zr,u) - Dyvy + ho Z o e Agvy, (2.11)
¢es

is nondecreasing. We call this a uniform monotonicity condition. Since (2.11) is an affine
function of v, it is easily checked that the uniform monotonicity condition holds iff

e >0, V(& ku)€SXZ"xU. (2.12)
ZM+2ZagE§hgl, Y (k,u) € Z™ x U. (2.13)
i=1 hi tes

The second condition is always satisfied when hg is small enough, once a (uniform in space)
estimate of } . s o} . is known.

The scheme is said to be consistent if, for all smooth function ® over R*, and k € Z",
we have

Z Oé};,gA,g‘I)(.'Ek) = Z aij (@, w) gz, (xr) + o(1). (2.14)
¢es ,j=1

It is known that those two assumptions of monotonicity and consistency allow to prove the
convergence of the solution to the numerical scheme towards the solution of the original prob-
lem, see Barles and Souganidis [2]. In the sequel we will assume (2.9)-(2.13) to be satisfied,
so that the scheme is monotone, and we therefore concentrate on the consistency condition.
Let a” denote the scaled covariance matrix {a;;/hih;}. In view of (2.6), consistency holds
iff we have

Z a}j,g{{T =a"(zp,u) +0(1), forall keZ™ (2.15)
£es

In the sequel, we discuss the strong consistency property

Za}é,E&T =a"(zp,u), forall keZ™ (2.16)
£es

Since a is nonnegative, strong consistency means that the symmetric matrix a”(zy,u) be-
longs, for all k and u, to the cone generated by the set {£¢7;¢ € S} that we denote

CS) =14 aetea eRY . (2.17)
£ES

Note that strong consistency implies a bound on the coefficients aj ., which in turn
allows to obtain an estimate of the fictitious time step.
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Lemma 2.1 Assume that the strong consistency condition holds. Then

Z aj, ¢ < trace a(zp,u), (2.18)
ces

and hence, condition (2.13) for the fictitious time step is satisfied whenever
— || filloo h 1
> 7 + 2trace [[a"|oo < By (2.19)
i=1

It follows from this lemma that, when h — 0, we have that hy is of order O(min; h?), as
expected.

3 Classical finite differences approximations

Let us show that the above generalized finite difference algorithm is indeed a generaliza-
tion of the classical finite differences approximations, that we recall now. Let ® be a smooth
function over R™, and let ¢y := ®(xy) for all k. Given any £ € Z™, we can approximate the
second order derivatives of ® by the following second order finites differences:

bgveive; — Oetres —Ocye; + 8¢
Pk
hih;

= By, (z1) + o(1). (3.20)

Denote the corresponding operators as follows:

B¢teire; — Ogte: — Bete; +0¢
hih;

di; = (3.21)

Viewing i (resp. j) as the first (second) coordinate, when £ = 0, we call this operator dfj
the right upper approximation of ®,,,,. We can similarly define left upper, right lower,
and left lower approximations of ®,,,,, by taking £ equal to —e;, —e;, and —e; — e;, resp.
By combining these amounts, we can define centered approximations; the corresponding
operators are, along the main and second diagonals:

Dj = 5(d% +di ), Dy = b dy). (3.22)
In other words,
1
Dt = ——(eiqe; +0—ei—e, + 280 — 6o, —6_e; — 6c; —6_¢,),
ij Qh.h,(61+g+5 i—e; T bo = be; — b, 61 6 J) 393
po— 1~ LIS S S 5 2%,) (3.2
i 7 Dy e T O T 0 T O0mes T Oeimes T O 0/
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In addition, for the approximation of diagonal second order derivatives we take the
standard centered formula
Oe; +0_¢; — 26

Dy == 3.24
hih; (3.24)

The classical finite differences approximation of (1.2) is

Ay = inf If(mk,u) + f(a:k,u) . Dz'vk + Z aij(a:k, U)Diﬂ)k
uelU =
1,j=1 (325)
forall ke€Z” qe€N,
¥y = 0, forall keZnm,

where if i # j, D;; is equal either to D;'; or D;;, and Dy, is the the upwind spatial finite differ-
ence defined in (2.9). This is another scheme where the second order term is approximated
by using a combination or neighboring points. The corresponding consistency condition

n n
Z aij($k; ) 1,790 Tk, U Z Qi xk; EziEj (xk;u) + 0(1) (326)
ij=1 j=1

is always satisfied. However, the monotonicity condition holds under restrictive assumptions
that we explicit now (this is a reformulation of known results; see e.g. Lions and Mercier

[8])-

Lemma 3.1 The classical finite differences approximation scheme is uniformly monotone
iff the following three conditions hold:

(i) If i # j is such that a;j(zy,u) # 0, then D;; = D;; if aij(zx,u) > 0, and Di; = D;; if
aij(xkau) <0,

(i) a(zk,u) is diagonal dominant, or equivalently,

@i (T, 1) > Z |aij(@x, v)] forall i=1,...,n, (3.27)
A

(iii) The time step ho satisfies the following condition

Z |f .’Ek, Z azz -'L'k; Z |az.7 xk,u < ho_l' (3.28)

Proof. Leti # j. Consider first the weight of terms of the form v+, +c;. If as;(zs,u) = 0,
this weight is 0. Otherwise, by (3.23), the weight is of the sign of a;;(xy, ) if D;; = ij, and
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of the opposite sign if D;; = D;;. Therefore (i) is a necessary condition for monotonicity of
the scheme. If (i) is satisfied, then the weight of terms of the form vj., is

Q4 JE]g, Z |azg xk: (329)
J#i

This weight is nonnegative iff (3.27) holds. Finally the weight of vy if nonnegative iff (3.28)
holds. §

We now make explicit the link between the two approaches by expressing the classical
finite differences approximation scheme as a Markov chain approximation scheme. If the
conditions of the above lemma, are satisfied, then we can write the approximation of second
order terms as

n

Qjj a;
_ 1 ij 1 ij
Z aij(a:k,u)Dij = 3 A h e +e; — Z Ael—eJ
3,Jj=1 i#j i#j
aij >0 2ij <0 (3.30)

i lai
E — A,
i 2 i ] €
=\ (ha)? < hihy

The weights of the transitions are nonnegative iff condition (ii) of lemma 3.1 is satisfied. It
follows that the classical finite difference scheme is equivalent to a Markov chain approxi-
mation with S here equal to Ss.

4 Characterization of finitely generated cones

Let us come back to the analysis of the generalized finite difference method. In the
sequel we will concentrate on characterizations of the strong consistence condition, with
special attention to the case when S is the set S7 of neighboring points of order ¢, defined
by

S1={t€z|t|<q i=1,...,n}. (431)

Characterizing a finitely generated cone happens to be a classical problem of convex
analysis and polyhedral combinatorics, and can be solved using the notion of polar cone.
Let us recall these classical results; an excellent reference on this subject is Pulleyblank [9].

Let C be a nonempty closed convex cone in RP. The associated (positively) polar cone is

C*={z*e X*; (z*,z) > 0, Vz € C}.

It is known that (C*)* = C. Let C be finitely generated, say by ¢1,-..,94- Then C* =
N;{z* € X*; (*,9;) > 0}. It happens that the set C* is also finitely generated, say by
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97,--.,9r; this dual generator can be computed by a certain recursion. Since C = (C*)*, it
follows that
C=A{z; (g,2z) >0, i=1,...,r}

This means that the cone C is characterized by a finite number of linear inequalities, whose
coefficients can be computed.

Let us specialize this result to the case of the cone C(S). Let M be the set of symmetric
matrices, and M, be the set of symmetric definite positive matrices. Using the Frobenius
scalar product A-B = Y=, ; A;;Byj, for which B-£€7 = €7 B¢, for all square n x n symmetric
matrix B and n dimensional vector £, we have that the polar cone is

C(Sp)*={BeM; "BE>0, VE€S). (4.32)

Consider the example when & = S§? defined in (4.31). Using the following facts: C(S?) is
strictly increasing with g, is a subset of the cone M, and (M;)* = My, we have the
infinite chain of strict inclusions

C(SY) C C(82)--- C My C -+ C(SH)* C C(Sy)*. (4.33)

It can be noticed that, since the cone C(S87) contains every nonnegative diagonal matrices,
each element of its dual has a nonnegative diagonal.

An important observation is that S?, and therefore also C(S?), are invariant through
the linear transformations in R" that correspond to a permutation of coordinates, and also
to the change of sign of coordinates. The permutation of coordinates ¢ and j of £ € R”
result in the permutation of elements of ££7 of coordinates (i, k) and (j,k), and (k,i) and
(k,j), for all k, while changing the sign of ¢; results in changing the sign of elements of
£€T of coordinates (4,5), for j # i. Since these transformations are self adjoint, for each
B € C(S87)*, the matrices obtained by the same (adjoint) transformations (so that the scalar
product with B remains invariant) also belong to C(S%)*. In particular, a generator of
C(87)* can be partitioned into classes of equivalence corresponding to the above mentioned
transformations. This allows to give a compact description of the set of generators.

5 Specific examples

We have performed the computation of generators of dual cones using the Qhull algorithm
by Barbet et al. [1]. The latter computes, given a finite set in R™, a minimal set of linear
inequalities characterizing its convex hull. This computation is made using the floating
point arithmetic of the C language. However, the risk of numerical errors due to the floating
point arithmetic is limited, since we were able to compute a scaling of the data for which
all coefficients are small integers, up to an absolute precision of 10719,

The link between the convex hull of a finite set and the generator of a dual cone is
as follows. Consider a generator gi,...,gn, and set go := 0. Then compute a minimal
characterization of the convex hull of go,... ,gn, of the form (g},-) > b;, i =1,...,7. A
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minimal generator of the dual cone is given by the homogeneous inequalities, i.e., the dual
cone is
{9eR™; (g7,9) 2 bi, i€}

with I:={1<i<r; b;=0}.

Our actual computations deal with spaces of symmetric matrices of size n. Each of them
can be represented by its upper triangular part, and thus is viewed as an element of R™,
m = %n(n + 1); in particular, m = 3, 6, and 10, for n = 2, 3, and 4, respectively.

Once a generator of the dual cone has been obtained, it remains to identify the classes of
equivalence in order to obtain compact expression. This was done by sorting the elements
following the (ordered) weights of diagonal elements (the latter being, as we already know,
nonnegative). It appears that this suffices for identifying the equivalence classes, as can be
checked by generating them using the formulas given below and comparing both sets.

Dimension 2. In the case n = 2, we computed characterizations of the sets C(S?), ¢ =1
to 10. We display detailed results for ¢ = 1 to 5. The set C(S') is characterized by 4
constraints and 1 equivalence class:

ai > lagl, 1<i#j<2
The set C(S?) is characterized by 8 constraints and 2 equivalence classes:

2a;; > |ag;)
2a;; + Qjj > 3|(Lz‘j|-

for 1 < i # j < 2. The set C(S?) is characterized by 16 constraints and 4 equivalence classes:

3ai; > |l

3&,’5 + Zajj Z 5|a,]|
6a;; + ajj > 5|a,-j|.
6a;; + 2a;; > 7|a,-j|.

for 1 <i # j < 2. The set C(S*) is characterized by 24 constraints and 6 equivalence classes:

dag; > |a;|

4&,’5 + 3ajj Z 7|a,-]-|
6a;; +aj; > 5|a,~j|
6a;; + 2a;; > 7|a,-j|
12a;; + aj; > 7|a,'j|
12a;; + 6(1]-]- > 17|az-j|

for 1 <4 # j < 2. The set C(8%) is characterized by 40 constraints and 10 equivalence
classes:
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\

Sa;; > |ag|

5&,'1' + 4ajj Z 9|(Lz’j|
IOaii + 2a]’j Z 9|a,-j|
10a;; + 3a;; > 11|aij|
1204’1’ + ajj > 7|CL1']'|
12a;; + 6a;; > 17|az-j|
15a;; + 2a5; > 11|aij|
15a;; + 6a;; > 19|aij|
20a4; + a;jj > 9|a,-j|
20a4; + 12a5; > 31|a,~j|

The set C(S%) is characterized by 48 constraints and 12 equivalence classes:

/

6:; > |aijl

6a;; + Saj; > 11|a,~j|
10a;; + 2a5; > 9|ai]’|
10a;; + 3ajj > 11|a,~j|
12a;; + ajj > 7|ai]“
12a;; + Gajj > 17|aij|
15aii + 2ajj > 11|am|
15a;; + 6a;; > 19|aij|
20a4; + aj; > 9|aij|
20a4; + 12ajj > 31|a,~j|
30ay; +aj; > 11|aij|
30a;; + 20(1]']' > 49|a,-j|

11
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The set C(S7) is characterized by 72 constraints and 18 equivalence classes:

[ Taii > |aij

Tai; + 6aj; > 13|a,~j|
14a;; + 3ajj > 13|aij|
14a;; + 40,]']' > 15|aij|
15a;; + 2a;; > 11|a,~j|
15a4; + 6a;; > 19|aij|
20a4; + aj; > 9|ai]’|
20a;; + ].20,]']' > 31|ai]‘|
2lay; + 2a55 > 13|a,-j|
21ay; + 10a;; > 29|a,~j|
28a;; + 2ajj > 15|aij|
28a;; + ].5(1]']' > 41|a,-j|
30a;; + Qjj > 11|az-j|
30as; + 20a;; > 49|a,~j|
35ay; + 6a;; > 29|ai]‘|
35ay; + 12a;; > 41|a,~j|
42(1ii + Qajj > 13|a,~j|
42a4 + 30a;; > 71|aij|

\

Dimension 3. When n = 3, we computed characterizations of the sets C(S?), ¢ =1 to 2.
The set C(S!) is characterized by

{ ai; > |

ay +aj; > (—l)paik + (—l)qajk + 2(—1)p+q+1ai]‘
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for i # j # k and p,q € {1,2}. The set C(S?) is characterized by

4

\

12a; + 4a;; + apr > 14
12a;; + Gajj + 2apr > 17(—1)paij + 7(—1)qajk — 10(—1)p+qaik
12a; + 6a;; + 4ag, > 17(—1)1’&1']' + 10(—1)ank — 14( )p"'qa-k
18a;; + 2a5; + agr, > 12(—1)pa,~j + 3(—1)qajk - ( 1)p+‘1a k
18a;; + 8aj; + agr, > 24(—1)17&,']' + 6(—1)qa]k —-9(— 1)p+‘1azk
18a;; + 10a;; + 2axr > 27(—1)17041‘ + 9(— )qa]k — 12( )p+‘1a-k

2a;i > |ag]

20 + aj; > 3|a,~j|
2a;; + 2aj; > 4(—1)”aij + (—l)qa]‘k - (—1)p+qaik

2a;; + 2ajj + apr > 4(—1)1’04']' + 3(—1)‘1a]~k — 3(—1)”+‘1a,~k
3ai; + 2aj; + 2ak; > 5(—1)”aij + 4(—1)qajk - 5(—1)”+qaik
6a;; +aj; + apr > 5(—1)1)&,']' + 2(—1)qajk — 5(—1)p+qa,-k
6a;; + 2a;; + apr > 7(—1)1’a,-j + 3(—1)‘1ajk — 5(_1)p+qaik
6aii + 2a;; + 2akr > 7(—1)Pa;; + 4(—1)%aj, — 7(—1)PHay,
8aii + 2aj; > 8(—1)Paz; + (—1)%aj, — 2(—1)P ay,

< 8a; + 20,]']' + apr > 8(—1)’%1,-]- + 3(—1)qa]~k — 6(—1)P+qaik
8a;; + 3ajj + 2ap, > 10
8a;; + Gajj + 2ap, > 14

(—l)Paij + 5(—1)‘1ajk - 8(—1)p+’1az~k
(—l)Pai]- + 7(—1)‘1a]-k - 8(—1)p+’1az~k
12a;; + 2a5; + agr, > 10(—1)1’&“’ + 3(—1)‘1a]-k - 7(—1)p+’1az~k
(=1)Pai; +4(=1)%a;, — T(=1)"* ay

Dimension 4. When n = 4, the set C(S!) is characterized by

;
(4273

ai; + ajj

\

@i; + aj; + Gk
2a;; + aj; + apk + an
da;; + aj; + akk

da; + 2055 + apr +ay >

> |ai;|
> (=1)Pa + (—1)%a;, — 2(=1)"*%ay
> ( l)l’a,l + ( )qa]’l + (—I)Takl
—2(— 1)1’+‘1a,j —-2(- 1)p+raik — 2(—1)q+’“ajk
> 3( l)pa,-j + 3(—1)‘1az~k + 3(—1)%,-,

-2

/\

—1)PHq 5y, — 2(=1)P " ay — 2(—1)" " ay
(=DPaqy + (=1)%a; + (—1)"an
1)”+qaij — 4(—1)p+ra,~k — 2(—1)q+rajk
(=1Pai; +4(=1)%ai + 4(-1)"aqy
(— 1)p+qajk — 3(_1)p+rajl — 2(_1)q+rakl

| 1V
ca,'*.‘iw

I
o

fori#j#k#1andp,qr€{1,2}.

Summary of results.

The following table summerizes the various steps of our calculation,

and highlights the importance of reduction of constraints using the classes of equivalence.
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n q size of generator | # of constraints | # of constraints # of classes
of primal cone defining S* defining C of equivalence

21 4 6 4 1

2| 2 8 13 8 2
213 16 27 16 4

2| 4 24 39 24 6
215 40 67 40 10
216 48 87 48 12
2|7 72 123 72 18
218 88 159 88 22
219 112 203 112 28
2110 128 239 128 32
311 13 31 24 2

3| 2 49 563 372 19

(4] 1] 40 | 416 | 328 ] 6 |

6 Discussion of results

In this paper we have clarified some aspects of the “Markov chain approximation” method
discussed in Kushner and Dupuis [5]. We have presented a general method for checking the
consistency condition. It seems that we have performed the computations for essentially
all cases for which the numerical resolution of the stochastic HJB equation is of reasonable
complexity.

On the other hand, our results are only a preliminary step towards an efficient numerical
algorithm. There are two main difficulties. The first is to design fast algorithms for comput-
ing the coefficients aj; .. The latter are, by the definition, solution of a linear programming
problem, but using a linear programming solver for each control, at each point of the grid
would be inefficient. The second difficulty is to deal with the case when consistency does
not hold, e.g. by approximating the matrix a(zy,u) by a consistent matrix. We are now
pursuing some research in these directions.
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