Splitting a Delaunay Triangulation in Linear Time

Abstract : Computing the Delaunay triangulation of $n$ points requires usually a minimum of $\Omega(n\log n)$ operations, but in some special cases where some additional knowledge is provided, faster algorithms can be designed. Given two sets of points, we prove that, if the Delaunay triangulation of all the points is known, the Delaunay triangulation of each set can be computed in randomized expected linear time.
Type de document :
Rapport
RR-4160, INRIA. 2001
Liste complète des métadonnées

https://hal.inria.fr/inria-00072462
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 10:01:40
Dernière modification le : samedi 27 janvier 2018 - 01:31:26
Document(s) archivé(s) le : dimanche 4 avril 2010 - 23:08:47

Fichiers

Identifiants

  • HAL Id : inria-00072462, version 1

Collections

Citation

Bernard Chazelle, Olivier Devillers, Ferran Hurtado, Mercè Mora, Vera Sacristán, et al.. Splitting a Delaunay Triangulation in Linear Time. RR-4160, INRIA. 2001. 〈inria-00072462〉

Partager

Métriques

Consultations de la notice

180

Téléchargements de fichiers

510