N

N

The Master-Slave Paradigm with Heterogeneous
Processors

Olivier Beaumont, Arnaud Legrand, Yves Robert

» To cite this version:

Olivier Beaumont, Arnaud Legrand, Yves Robert. The Master-Slave Paradigm with Heterogeneous
Processors. [Research Report] RR-4156, LIP RR-2001-13, INRIA, LIP. 2001. inria-00072467

HAL 1d: inria-00072467
https://inria.hal.science/inria-00072467
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00072467
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--4156--FR+ENG

ISSN 0249-6399

INSTITUT NATIONAL EleHMIMTI& ET EN AUTOMATIQUE

The Master-Slave Paradigm with Heterogeneous
Processors

Olivier Beaumont,
Arnaud Legrand and

Y ves Robert

No 4156
April 2001

THEME 1

apport
derecherche

V4¢ IN R 1A

RHONE-ALPES

The Master-Slave Paradigm with Heterogeneous Processors

Olivier Beaumont,
Arnaud Legrand and
Yves Robert,

Théme 1 — Réseaux et systémes
Projet ReMaP

Rapport de recherche n 4156 — April 2001 — 21 pages

Abstract: In this paper, we revisit the master-slave tasking paradigm in the context of heterogeneous
processors. We assume that communications take place in exclusive mode. We present a polynomial algo-
rithm that gives the optimal solution when a single communication is needed before the execution of the
tasks on the slave processors. When communications are required both before and after the task processing,
we show that the problem is at least as difficult as a problem whose complexity is open. In this case, we
present a guaranteed approximation algorithm. Finally, we present asymptotically optimal algorithms when
communications are required before the processing of each task, or both before and after the processing of
each task.

Key-words: heterogeneous processors, master-slave tasking, communication, matching, complexity.

(Résumé : tsup)

This text is also available as a research report of the Laboratoire de I'Informatique du Parallélisme
http://www.ens-1lyon.fr/LIP.

Unité de recherche INRIA Rhéne-Alpes
655, avenue de I’Europe, 38330 MONTBONNOT ST MARTIN (France)
Teéléphone : 04 76 61 52 00 - International : +33 4 76 61 52 00
Teélécopie : 04 76 61 52 52 - International : +33 4 76 61 52 52

Paradigme Maitre-Esclaves sur un ensemble de processeurs
hétérogénes

Résumé : Dans ce rapport, nous nous intéressons au paradigme maitre/esclaves pour des plateformes
hétérogeénes. Nous supposons que les communications ont lieu de fagon exclusives. Nous donnons un algo-
rithme polynémial qui donne une solution optimale au probléme de I’allocation des taches lorsqu’une seule
communication est nécessaire avant le traitement des taches sur les différents processeurs. Lorsqu’une com-
munication avant et une communication aprés le traitement des taches sont nécessaires, nous montrons que le
probléme est aussi difficile qu’un autre probléme dont la complexité est ouverte. Dans ce cas, nous présentons
un algorithme d’approximation polynomial garanti. Enfin, nous présentons des algorithmes asymptotique-
ment optimaux quand des communications sont nécessaires avant ou avant et apreés le traitement de chaque
tache.

Mots-clé : Ressources hétérogénes, maitre/esclaves, communications, couplages, complexité.

1 Introduction

Master-slave tasking is a simple yet widely used technique to execute independent tasks under the centralized
supervision of a control processor. In the standard implementation of master-slave, the tasks are executed
by identical processors (the slaves). We revisit the master-slave paradigm in the framework of heterogeneous
computing resources: slave processors have different computation speeds. We present several scenarios to
model the communication pattern between the master and the slaves. In all cases, such communications will
take place in exclusive mode on a dedicated hardware resource (such as a serial bus).

To give a single motivation, this framework applies to any Monte Carlo simulation where large numbers
of identical and independent simulations are run for different values of the random number generator seed.
Monte Carlo simulations are widely used in various areas such as cellular microphysiology [13], reactor
simulations [14] or studies on conformations of proteins [12].

The rest of the paper is organized as follows. In Section 2 we state four different variants of the master-
slave problem: (i) with communications only before the dispatching of the tasks, (ii) with communications
both before and after the processing of the tasks, (iii) with communication before each task processing and
(iv) with communication both before and after each task processing. We give in Section 3 a polynomial
time algorithm that solves the first problem. The second problem seems intrinsically more difficult and we
prove in Section 4 that it is at least as difficult as a problem whose complexity is open; we also prove a
guaranteed approximation algorithm for the second problem in Section 4, and we report some simulation
results. We present asymptotically optimal algorithms when communications are required before each task
(third problem) in Section 5, and when communications are required both before and after each task (fourth
problem) in Section 6. We briefly survey related work in Section 7. Finally, we give some remarks and
conclusions in Section 8.

2 Problem statement

The target architectural platform is represented in Figure 1. The master M and the p slaves P, B, ..., P,
communicate through a shared medium, typically a bus, that can be accessed only in exclusive mode. At
a given time-step, at most one processor can communicate with the master, either to receive data from the
master or to send results back to the master.

CEORNCNG

Figure 1: The target master-slave architecture.

We assume that there is a pool of independent tasks to be processed by the p slaves. All tasks are of
same-size, i.e. they represent the same amount of processing. Tasks are considered to be atomic (execution
cannot be preempted once initiated). Processors are heterogeneous; more precisely, slave P; requires ¢; units
of time to process a single task. We say that t; is the “cycle-time” of processor P;. Each P; will execute ¢;
tasks (where ¢; is to be determined) from the pool. Regardless of the hypotheses concerning communication
costs, there are two (related) optimization problems:

MinTime(C) Given a total number of tasks C, determine the best allocation of tasks to slaves, i.e. the
allocation C = {c1,¢2,...,¢p} s.t. > 5_, ¢; = C' and which minimizes the total execution time.

RR n°4156

MaxTasks(T) Given a time bound T, determine the best allocation of tasks to slaves, i.e. the allocation
C ={ec1,¢2,-..,¢p} s.t. all processors complete their execution within T' units of time and Ele c=C
is maximized.

In the paper, we concentrate on solving the second problem MaxTasks(T). Given the solution to this
problem, we find a solution to MinTime(C) by using binary search on T, calling MaxTasks(T) several times,
and returning the smallest value of T' for which the answer is at least C.

We now state some specific hypotheses for the communication costs. For each modeling of these commu-
nication costs, we analytically formulate the MaxTasks(T) problem.

2.1 Without any communication cost

Assume first that there is no communication cost at all. It is not difficult to solve both previous problems
using a greedy algorithm. The solution of problem MaxTasks(T) is straightforward: we let ¢; = [%J for all
i, 1 <1i < p, which obviously defines the optimal solution.

2.2 With an initial scattering of data

The formulation of this problem is taken from Andonie et al. [1], who study the implementation of distributed
backpropagation neural networks on heterogeneous networks of workstations, using the PVM library [6]. The
training of the neural network is divided into computational phases. At each phase, the training pattern
is distributed among the slaves, which are different-speed processors. Before executing any task, each slave
must receive some data file from the master processor. Because the communication medium is exclusive,
it it not relevant to distinguish whether the data file is the same for all slaves (then the master executes
a broadcast operation) or whether it is different (then the master executes a scatter operation): we only
assume that each slave must receive the same amount of data, and that each reception costs tcom units of
time. In the model of Andonie et al. [1], there is no communication cost paid to send the results back to
the master. In general, when the slaves compute “yes/no” results, the cost of returning the results may well
be neglected in front of the cost of the initial scatter and/or of the computations. Note that we deal with
another model, including communication costs both before and after the tasks, in Section 2.3.

Due to the constraint on the communication medium, the p messages will be sent one after the other.
Obviously, it cannot hurt to send the messages as soon as possible, i.e. at time steps 0, tcom, 2tcom, - - -
(p — Dtcom- The problem is then to determine the ordering of the p messages, i.e. the permutation o of
{1,2,...,p} such that slave P; receives the message at time o(¢)tcom- We are ready to state the optimization
problem analytically:

MaxTasks1(T) Given a time bound T, determine the best allocation of tasks to slaves, i.e. a permutation
o and an allocation C = {¢y,¢2,...,cp} s.t. all processors complete their execution within 7' units of time
and the total number of tasks is maximized:

p
max (Z ¢i | o permutation and Vi € [1,p] : 0(%)tcom + Citi < T>

i=1

2.3 With initial and final communications

As pointed out above, it is natural to assume that after the processing of their tasks, slave processors will
send some data back to the master. Because this message may well have a different size than the message
initially sent by the master, we model this situation by using two communication costs, t}, for the messages
sent by the master to the slaves, and 2, for the messages sent by the slaves to the master.

As above, we look for a permutation o7 which determines the ordering of the initial messages from the
host: the host sends data to slave P; at time o1 (i)t} ,,. But we also look for a second permutation o2 which
determines the ordering of the final messages sent back to the host: given a time bound 7', slave P; sends
data back to the host at time T' — o2 (i)t2,,,. This formulation is without any loss of generality: some slave
processor P; might send its message earlier than this bound, but we can always shift the communication

INRIA

processors

Py o I

Py b |
P, I S W

Py o B B

T time

Figure 2: Delaying messages sent back to the host.

pattern as stated, i.e. delay some messages, as illustrated Figure 2. We are ready to state the optimization
problem analytically:

MaxTasks2(T) Given a time bound T', determine the best allocation of tasks to slaves, i.e. two permutations
o1 and 02, and an allocation C = {c1,¢2,...,¢p} s.t. all processors complete their execution within T’ units
of time and the total number of tasks is maximized:

P
max (Z ¢ | 01,09 permutations and Vi € [1,p] : 01 (i) tegm + Citi + 02(1)t2, < T)

i=1

2.4 'With communications before each task processing

We also consider the case when communications are required between the master and the slave before the
processing of each task. In this third model, we consider that the cost of such a communication is t¢om. This
model is quite natural: some specific input data may well have to be propagated from the master to the
slave before computation can start.

We look for three functions fstartcomm, fstartcomp and fproc: fstartcomm (4) represents the time-step at
which the communication required by task ¢ will begin; fstartcomp(¢) represents the time-step at which the
processing of task ¢ will begin on processor fproc(7). The functions fstartcomm, fstartcomp and fproc must fulfill
the following conditions:

e Vi > 1, fsartcomm(i + 1) — fstartcomm() > tcom, which states that communications take place in
exclusive mode.

o Vi >4, fstartcomp(?) > fstartcomm (?) + tcom, Which states that the processing of task ¢ cannot start
before the end of the communication required by task i.

o V1 <i<j, if foroc(?) = fproc(j) =k, then fstartcomp(j) = fstartcomp(?) + tx, which states that tasks
are processed sequentially on each processor k.

o V1<i<y, Iif fproc(i) = fproc(j) = k,, then
[fstartcomm (])a fstartcomm (]) + tcom] n [fstartcomp (Z); fstartcomp(i) + tk] = @,
which states that communications and computations cannot be overlapped on processor k.

RR n° 4156

Processors

Pyl 0 ———————————
Py o T W - W, ———————————
2 L R o

P, |———— — — —— ST

Figure 3: Grouping some messages sent by the host to a given processor.

This formulation is quite general. Note that each processor can perform several communications before
processing the corresponding tasks, as illustrated on Figure 3. We are ready to state the optimization
problem analytically:

MaxTasks3(T) Given a time bound 7', determine the best allocation of tasks to slaves, i.e. three functions
fstartcomm, fstartcomp and fproc satisfying all the conditions stated above, s.t. all processors complete their
execution within T units of time and the total number of tasks is maximized:

max (N | Vi < N; fstartcomp(i) + tfpmc(i) < T)

2.5 With communications both before and after each task processing

It is natural to assume that after the processing of each task, slave processors will send some data back to
the master. As previously, we model this situation by using two different communication costs, t.,,, for the
messages sent by the master to the slaves, and 2, for the messages sent by the slaves to the master.

We look for four functions fsltartcomm: fsztartcomma fstartcomp and fprOC: fsltartcomm(i) represents the time-
step at which the communication from the host required before task 7 will begin (just as fstartcomm(i) in
the previous section); similarly, f2, . omm(?) represents the time-step at which the communication back to
the host after task ¢ will begin; finally, fstartcomp and fproc(é) are defined as before: fsiartcomp(¢) represents
the time-step at which the processing of task i will begin on processor fproc(i). The functions fi, tcomm>

[artcomms Jstartcomp and fproc have to fulfill the following conditions:
o Vi>1,Vi>1, Y(k1)e{1,2), ifk#lorij then

[fskéartcomm (2)7 fsk;;artcomm(i) + técom] N [fsftartcomm (.7)7 fsftartcomm (.7) + tgom] = @7

which states that communications take place in exclusive mode.

o Vi > 1, fstartcomp(i) > fstartcomm (i) + tL,m, which states that the processing of task i cannot start
before the end of the communication from the host required by task 3.

® Vi>1, fsartcomp(i) +ts,.0.(i) < fotartcomm (i), which states that the communication back to the host
required after task ¢ cannot start before the end of the processing of task .

INRIA

o V1<i<j, if foroc(i) = foroc(j) =k,
fstartcomp(J) > fstartcomp (i) + tx, which states that tasks are processed sequentially on each processor
k.

o VI<i<y, if fprOC(":) = fproc(j) =k, then
[sltartcomm(j)a sltartcomm(j) + tcom] n [fstartcomp(i)a fstartcomp(i) + tk:] = @

and
[fs2tartcomm (7'): fs2tartcomm (7') + tCOm] N [fstartcomp (.7)7 fstartcomp (.7) + tk] = Q),

which states that communications and computations cannot be overlapped on processor k.

Processors
P4 rr _,,,,;,;,33;,;,;;;;;;;;;;;;;;;;;;;;;;,,,,;;,;-% rrrrrrrrrrr
Py | I NN EREEEERRRY EERSSCER T
P2 ,,,,,,,,,,,,,, O R SR
Pl I T I S S - D A rrrrrrrrrrr
time
T

Figure 4: Grouping some messages sent by and to the host.

Again, this formulation is quite general. Note that each processor can perform several communications
from the host before processing the corresponding tasks, as well as delaying several communications back to
the host: this is illustrated on Figure 4. We are ready to state the optimization problem analytically:

MaxTasks4(T) Given a time bound 7', determine the best allocation of tasks to slaves, i.e. four functions
[hartcomms [fartcomms Jstartcomp and fproc satisfying all the conditions stated above, s.t. all processors
complete their execution within 7" units of time and the total number of tasks is maximized:

max (N |Vi < N, f (i) + t2om < T)

startcomm

3 Solution with an initial scattering of data

3.1 Restricted search

To (partially) solve the MaxTasksl(T) problem of Section 2.2, Andonie et al. [1] restrict the search to
allocations where the fastest processors start computing first. They use a dynamic programming algorithm
to solve the optimization problem MinTime(C). With our setting for problem MaxTasks1(T), this amount to
sort the cycle-times as t; <ty < ... < t, and to let o(i) = i for 1 < i < p. The intuition is that fastest
processors execute tasks more rapidly than the others, hence they should work longer.

However, the intuition is misleading in some cases. Assume for instance two slave processors (p = 2) with
ty = 5 and t; = 9 and let teom = 1. For the time bound T = 28, it is better to start the slow processor P

RR n°4156

first: P5 can then execute three tasks: tcom + 3t2 = 28 < T'; the fast processor, although started at time-step
2tcom = 2, can execute five tasks: 2tcom + 5t1 = 27 < T'. If we start the fast processor first, it cannot execute
more than 5 tasks, while the second processor can execute only 2.

Pl.\ Sl
Py, = =~ So
| \‘\\ \\\\ |
I T N I
I S~ S 7 I
I ~ < ~ . I
I S SO I
I S~ > I
| S~ |
I = I
I I
I B I
| -7 |
I - I
| -7 |
I -7 I
| -7 |
P’H"/ Sﬂ

Figure 5: Bipartite graph for MaxTasks1(T).

3.2 Matching techniques

The optimal solution to the MaxTasks1(T) problem can be found using a weighted-matching algorithm. The
idea is to draw a complete bipartite graph with 2p vertices, as shown in Figure 5. Vertices on the left
represent processors, while vertices on the right represent possible values for the permutation o. The edge
from vertex P; to vertex S; is weighted with the maximum number of tasks that P; can execute if o (i) = j,

namely [%J Extracting a matching from the graph enables to assign a different value of ¢ for each

processor, thereby guaranteeing that o is indeed a permutation. In fact, there is a one-to-one correspondence
between matchings and permutations. Because the total weight of a given matching is the total number of
tasks that can be executed for the corresponding choice of the permutation, our problem reduces to finding
the maximum weighted matching in the bipartite graph. Efficient (polynomial) algorithms exist to solve
this problem, see [7, 15]. More precisely, the complexity of finding the maximum weighted matching in a
bipartite graph with 2p vertices is of order O(p?).

We work out the following example: assume p = 3 processors of cycle-times t; = 4, t = 5 and t3 = 9.
Let tcom = 1, and consider the time bound T' = 118. The weighted bipartite graph is shown Figure 6. The
maximum weighted matching is unique, it corresponds to the permutation (1) =2, 6(2) = 3 and ¢(3) = 1.
The total number of tasks is 29 + 23 + 13 = 75.

To conclude this section, we formally state our result:

Proposition 1 The optimal solution to the MaxTasks1(T) problem with initial messages can be found in
time of order O(p®) with p processors using the above weighted-matching algorithm.
4 Solution with initial and final communications

The solution to the MaxTasks2(T) problem with initial and final messages turns out to be surprisingly
difficult. In fact, we do not know of any polynomial algorithm for the general case. We present an efficient
guaranteed approximation using matching techniques, as explained in Section 4.1. In Section 4.2, we give
some remarks about the complexity of MaxTasks2(T).

INRIA

29

Pl 1
29
28
23
P 23 2
23
13
12
Pn Sn
12

Figure 6: Bipartite graph with p =3, ¢t =4, t; =5,t3 =9, tcom = 1, and T = 118.

4.1 Matching techniques

Fi = P = S1
F, — - P, — - S
F, p, T S,

Figure 7: Bipartite graph with initial and final communications.

To take both permutations o1 and o into account, we build a bipartite graph G = (V, E) with 3p vertices
(i.e. |V| = 3p), as shown Figure 7. The p leftmost vertices F; correspond to the first permutation oy, the
p center vertices P; correspond to processors, and the p rightmost vertices S; correspond to the second
permutation o5. Rather than a matching, we extract a 2-factor from the graph [7, 15]: more precisely, we
select a subset E' of 2p edges so that in the graph G = (V, E') each vertex F; or S; is exactly of degree 1, and
each vertex P; is exactly of degree 2. The complexity of extracting 2-factor from the graph with 3p vertices
is of order O(p?®) again, since we can solve independently the maximum weighted matching in both bipartite
graphs with 2p vertices (on the left-hand size and on the right-hand size in Figure 7) in time of order O(p?).

The problem is that edge weights cannot be determined fully accurately; the inequality oy (4)tl, ., + cit; +

o2(i)t2,, < T translates into

e < {T — 01 (i)t}:o;n - 02(i)t20mJ ,
[

and we need to know both o1 (i) and o2(i) to compute ¢;. Instead, we use the approximation

T2t | | T2 |

t; t;

RR n° 4156

This approximation enables us to weight the edges as follows: the edge between F; and P; is weighted as
221 2
[%J while the edge between P; and S}, is weighted as [%J

Theorem 1 The previous approximation leads to tasks allocations that differs at most by p from the optimal
solution.

Proof First note that
Va,b:0< |a+b] —|a] — |b] < 1. (4.1)
Therefore for any allocation (o1, 02, ¢) built using the previous approximation, we have

T/2 — 01 (i)téomJ + \‘T/Q — 02 (i)tgomJ < \‘T — 01 (i)téom - 02(i)tzomJ
t; t; - t;

Via Ci S \‘
and (01,09, ¢) is then a solution of the initial problem.

Let us note b
' Zp T/2 — 01(i)teom T/2 — 02(i)tZom
Capp(dl,az) = —t + —t

i=1

the approximative cost of two permutations and

(app) 7 Uéapp))

Tapp = (0 = argmax Cyyp (01, 02)

01,02

the permutations built by our algorithm.
Let

P oL ()42
Copt(Ul,O'z) = Z \‘T 01 (Z)tcoz 02 (z)tCOmJ

i=1
denote the real cost of two permutations and let

(opt) Ugopt))

Oopt (0] = argmax Cpt (01, 02)

01,02

be some permutations that are optimal solutions to the original problem.
By definition,

COPt (UGLDP) S Copt(aopt) (42)
and
Capp(Topt) < Capp(Tapp)- (4.3)
Using equation (4.1) we find that
Vo : Copt(0) = p < Capp(0) < Copa(0) (4.4)
and therefore
COPt (Uopt) —-p< Capp(aopt) (using (4.4))
< Capp(Tapp) (using (4.3))
S Copt(aapp) (using (44))
Copt(Topt) =P < Copt(Tapp) < Copt(Topt) (using (4-2));

which means that our approximation leads to tasks allocations that differs at most by p from the optimal
solution.]

INRIA

4.2 Some remarks about the complexity of MaxTasks2(T)

We have not found any polynomial algorithm for the general case, and we have not been able to prove
the NP-completeness of MaxTasks2(T). Nevertheless, we can formulate a few remarks about the intrinsic
difficulty of MaxTasks2(T). First, an exhaustive search of all possible permutations would have a complexity
of order O((p!)?), which is impossible in practice as soon as p > 9 (about 44 minutes on a Pentium III 550
MHz for p = 9 and more than one day for p = 10). Moreover, the problem seems to be difficult even for very
simple instances of MaxTasks2(T), as shown below. Indeed, let us consider the following open (polynomial
vs. NP-complete) problem in combinatorial optimization (see [9]):

Permutation Sums:
Instance: Let a; < az < ... < a, be p positive integers satisfying > 7 ; a; = p(p + 1).
Question: Do there exist two permutations oy and o3 of {1,2,...,n} such that

Vi € [1,p] : Jl(i) + Ug(i) = a;.

Let us build the following instance of MaxTasks2(T):
Instance: Let T = 3max; a;, tcom = 1. Let t; =T — a;, Vi € [1,p] denote the cycle time of processor P;.
Question: Is it possible to perform p tasks within 7" units of time?

Let us consider the above instance of MaxTasks2(T). Since t; = T — a; and T = 3max; a;, 2t; > T
and it is therefore impossible to execute more than one task with a given processor within 7" units of time.
Thus, our instance of MaxTasks2(T) is very simple (with respect to the general formulation) since Vi, ¢; < 1.
Indeed, the question can be stated as follows: is it possible to find two permutations o7 and o5 such that
Vi € [].,p] : Ul(i) -+ UQ(i) +t; <T.

Nevertheless, this instance of MaxTasks2(T) is as difficult as Permutation Sums. More precisely, if Permu-
tation Sums is proved to be NP-complete then MaxTasks2(T) is also NP-complete and if MaxTasks2(T) can
be solved in polynomial time, then it proves that Permutation Sums can also be solved in polynomial time.
Indeed, let us suppose that

01,02 such that V1<i<p, o1(i) +o020) +t; <T.
Then, V1 <i <p, 01(i) + 02(i) < a;- Moreover, let us suppose that
Ji, 01(4) +02(i) < a;,

then
p

P
pp+1) =) (01(i) + 02(0)) < Y_ai = p(p+1),
i=1 =1
which is absurd. Thus, finally
Vi € [l,p] : 0'1(1:) + 0'2(’1:) = Q.

Thus, we can expect that the general instance of MaxTasks2(T) is intrinsically difficult.

4.3 Simulations

In this section, we compare solutions given by the approximation algorithm proposed in Section 4 with
the optimal ones. For a given instance of the problem, we compute the difference between number of
tasks processed using the optimal permutations (found with an exhaustive search) and the number of tasks
processed using the approximation algorithm proposed in Section 4. Figure 8 depicts the mean value of this
error for several tests when the number of processors varies :

1. In Figure 8(a), cycle times are not strongly heterogeneous (numbers at random between 15 and 25)
and communication time can be large compared to cycle times (numbers at random between 10 and
90).

RR n° 4156

2. In Figure 8(b), cycle times are still not strongly heterogeneous (numbers at random between 15 and
25) but communication time are rather small compared to cycle times (between 1 and 9).

3. In Figure 8(c), cycle times are strongly heterogeneous (numbers at random between between 5 and 35)
and communication time can be large compared to cycle times (two numbers at random between 10
and 90).

4. In Figure 8(d), cycle times are still strongly heterogeneous (numbers at random between between 5
and 35) and communication time are rather small compared to cycle times (two numbers at random
between 1 and 9).

25

2
Matching —+— i i i Matching —+—

Mean error
Mean error

08

0.6

04

L L L L L L L L
3 4 5 6 7 8 3 4 5 6 7 8
Processors Processors

(a) comp 20 £ 5 ; comm 50 + 40 (b) comp 20 £5 ; comm 5+ 4

T
Matching —+—

Mean error
Mean error

Processors Processors

(c) comp 20 £ 15 ; comm 50 =+ 40 (d) comp 20 £ 15 ; comm 5+ 4

Figure 8: A few simulations

In all cases, the matching gives very satisfying results, since the difference between the optimal number
of tasks that may be processed and the number of tasks processed using the matching algorithm is small.
As we could expect, this difference grows with p and doesn’t depend on the degree of heterogeneity.

5 Solution with communications before each task
In this section, we present an asymptotically optimal algorithm for MaxTasks3(T): when T becomes large,

the ratio of the number of tasks processed by this algorithm over the number of tasks executed by the optimal
solution tends to one.

INRIA

5.1 Theoretical bounds

In order to prove the asymptotic optimality of our algorithm, we need to determine the optimal number of
tasks that can be performed if the cost of a communication between the master and the slave is tcom and
the cycle times of slaves processors are t; <t <... <t,. Consider a valid communication and computation
scheme, i.e. three functions fstartcomm, fstartcomp and fproc satisfying the conditions given in Section 2.4. Let
T be the time bound and let N denote the maximal number of tasks that can be processed within 7" units
of time:
N = max{n, Vi S n, fstartcomp(i) + Tfproc (%) S T}

Moreover, let
Card{]u fproc(j) :l} tcom

T

be the ratio of the time spent by the master to perform communications with slave P; over the time bound
T.

Vi, 1<i<p, a;=

Lemma 1 With the above notations, we have

T
N < _ 5.1
- ; teom + i ()
T
N< (5.2)
tCOm
Proof
1. Since V1 <i < p, a; = Zadls fp"’;(j):i} feem then Z:‘m = Card{j, fproc(j) =i} and
TY! (o
Toim @i _ 3" Card{j, foroo(j) =i} = N. (5.3)
tCOm i=1

2. Let us determine the maximal number of tasks that can be performed by slave P;, V1 <7 < p. Since
the overall cost of a task on slave P; is tcom + i, we have

. . . T . tcom
Card oe(f) =i} < — e a; < —om 5.4
ar {.77 fP OC(J) Z} = teom + ti Le. a; = teom + ti ()

3. Let us determine the number of communications that can be performed by the master. The cost of a
communication is tcom S0 that Niteonm < T and then, using equation 5.3, we deduce

p
Y ai<l (5.5)
=1

4. Using equations 5.3 and 5.4, we have

N<ZL
- P tcom+ti

5. Using equations 5.3 and 5.5, we deduce

N<T

o tCOn’l

In order to determine the optimal number of tasks that can be performed during T time steps, we need
to distinguish two different cases, according to the value of > %, 7 t°°$t,. Indeed, it turns out that the
communication network is not the limiting resource if -7 _; - tcoi < 1, but it becomes the limiting resource

com+1i
otherwise.

RR n° 4156

P,

P

5.2 Solution of MaxTasks3(T) if Y 7| Heem_ <1

1=1 tcom+tz -

To solve MaxTasks3(T), we propose an algorithm that consists in determining a pattern for communications
and computations, that will be reproduced periodically throughout the execution.

Let tc; = teom + i, for 1 < i < p, denote the overall cost of the processing of a task on slave P;, since
we cannot overlap communications and computations. Let TPate™ be the least common multiple of these
p values tc;: TPe™ determines the length of the pattern. Let nbP****™ = TP::H" be the number of tasks
processed by processor P; during the execution of the pattern.

Consider the following example: teom, = 1 and p = 4 slave processors with ti = 2,1t = 3, t3 = 3 and
t4 = 5. We have te; = 3, tea = 4, tez = 4 and teq = 6. In this case Y7, tco:ﬁtz = 1, TPattern — 12 and

bll)attern — 4, nbgattern — 3, nbgattern — 3 and nbzattern -9

To formally build the pattern, we need some complicated notations. We advise the reader to follow the

construction for the example, using Figure 9. First we define time-steps and processors within the pattern,

pattern pattern pattern pattern __
using three new functions fii, icomm> fatartcomp a0d fhrac " which we define as follows (initially nbp =0):

e Determine which processor executes task number i:
P j—1
. tt . . . tt
Vi<i< E nbp e s fREe () = min {5 | i > E nbpEern
k=1 k=0

e Determine the beginning of the communication and of the computation for task number i:

j—1 j—1
pattern N\ pattern - pattern
Startcomm(z) =1+ E nbk (tcom + tk) + (7' —1- E nbk)tcom,
k=0 k=0
j—1 Jj—
pattern - _ pattern pattern . 2 : pattern
fstartcomp(=1 + Z ’I’Lb tcom + Z ’I’Lb (7/ -1- ’I’Lbk)t
k=0 k=0 =

Processors 1 1 1 1 : :
"""""""" T T ———
"""""""" :::I———
rrrrrrrrrrrrrrrr I:II:II:l———
e T ! o — R— S —

| | | | | | | time
0 4 7 10 12 16 19 23

Figure 9: Example when > % | tci:_‘?m <1

The important fact about this pattern is that V2 < i < p,
i i—1
< S (D nbRte) + ti> (f&iii‘iﬁ?np (- nbprterm) + t,'_1>
k=0 k=0
i—1 i—2
= (&?t:»trttecl(.)nmm (Z nbi)attern + 1)) _ < S'p:;z:;trtte‘:l(-)nmm (Z nbi)attern + 1)))
k=0 k=0

INRIA

This condition states that the difference between the date of the end of the processing of the last task
on slave P; and the date of the end of the processing of the last task on slave P;_1 is equal to the difference
between the beginning of the communication required by the first task processed by slave P; and the beginning
of the communication required by the first task processed by processor P;_;. This is the key-condition that
ensures the periodicity of the whole computation and communication scheme from one pattern to the next
one: it is possible to execute the pattern defined above every TPt time steps, as illustrated Figure 9.
During the execution of one pattern, we process > &_, nbb****™ tasks.

We are now able to define the functions fstartcomm() fstartcomp(n) and fproc(n) corresponding to our
algorithm. Let k s.t. k3.7 nbP****™ < n < (k+ 1) nbP** ™ and let i = n — k 3F_, nb?*"**™. Then

fstartcomm() = kTpattern + f%z;triecl(‘)nmm(i):

f startcomp() = kTpattem + f ptiiziffﬁlp (l)a

foroe(n) = fiioc™™ (i)

One can easily check that the functions fstartcomm, fstartcomp @nd fproc satisfy all the conditions stated in
Section 2.4.

5.3 Solution of MaxTasks3(T) if Y7 | feem_ > 1

1=1 tcom+t;

To solve MaxTasks3(T) when Y% | tcct,;%t, > 1, we slightly modify the algorithm proposed in previous
section. Indeed, in this case, the network is the limiting resource. The algorithm consists in determining a
communication and computation pattern so that the communication network is always in use. Some slower
processors will be kept idle at some periods, or even will never be used.

First of all we sort the cycle-times of the slave processors and assume that
t1 <t < ... < tp.

Let tc¢; be defined as previously and let

teom
pmaz—max{kl Z Co_}_thsl}-

com

Pmaz 18 the index of the last processor whose computation power will be fully used in the pattern.
Let TP he the least common multiple of teom and of the tc;, 1 < i < praz. Moreover, define nbP***™
as follows:

attern
v 1 < . < bpattern _ Tp
S 1S Pmazy, N = ,
tC,'
atte D pattern
pattern __ TP — 4 iom Z i nb
Pmaxtl

tCOn’l
and let
nbP** ™ =0, Vi > prag + 1.

We see that processor number p,,q, + 1 is not used fully, while following processors are not used at all.

tt tt
With these notations, we define f&3 icomm: fatartcomp a0d fRALE™ as in the previous section. Again, the

only difference is that slaves P;, i > Ppqee + 1 are kept idle all the time, while slave P, .. 1 is kept idle

during the last (TPattern — nbgzt::TltcmeH) time steps.

The construction of the pattern is illustrated in Figure 10, with t¢om = 1, and p = 5 processors s.t. t; = 2,

to =3, t3 =3, t4 = 4 and t5 = 6. In this case Ez th:iti > 1, Pmaz = 3, Trattern — 60, and nbll)attern = 20,

nbHO = 15, pbR™ = 15, nphAHe" = w = 10 and nb2****™ = 0. Slave P; is not used at
all, while slave P, stays idle the last (60 — 10 * 5) = 10 time-steps of the pattern.

We extend the definition of f&ztrttecg;lma fsrgtrtt(:;:np and fpfotctem t0 fstartcomm, fstartcomp and fyroc exactly
as before. Again, one can easily check that the functlons fstartcomm, fstartcomp and fproc satisfy all the

conditions stated in Section 2.4.

RR n° 4156

Figure 10: Example when > 7_; 7 O:LZ > 1.

5.4 Asymptotic optimality
In this section, we show that the algorithm presented in Sections 5.2 and 5.3 is asymptotically optimal.

e Consider first the case Y7 _, ~feem— < 1. Let N be the number of tasks that can be performed using

i=1 teom+t;

our algorithm. We define & such that
kTpattern <T_— com Z nbpattern k + 1)Tpattern

In this expression, tcom 1y ! nbP***™ represents the delay before slave P, begins to receive its first

message, as illustrated in Flgure 11, and k represents the number of patterns that can be entirely
completed before time bound T'. Then,

pattern
k> — L X

- Tpattem Tpattern -1

Therefore,

p
pattern
N>k E nb;
i=1
p Tpattern

>ky ——
- i=1 com+t

p 1 pattern p pattern
Y im1 nb; T
— -1
1

Z (Tpattern T'pattern - tcom + ti

p—1 P
1
nbpattern + Tpattem
Z tcom + t) (Z ¢ z:zl tcom + ti

i=1 =1

Lemma 1 (equation 5.1) states that the optimal number of tasks N,y that can be performed within T
units of time satisfies
F.ooor

Nop < _.
o= —1 tcom+ti

INRIA

P
Py
Py
P,

P

processors

Figure 11: Several consecutive patterns.

Then we have,
1>

1
>1+0(=),
—_— (T)

which achieves the proof of the asymptotic optimality of our algorithm in the case Y%, tﬁi:z - <1

e Consider now the case Y7, ~feem_ > 1. Tet N be the number of tasks that can be performed using

1=1 teom-+ti
our algorithm. We define k£ such that

Pmaz

LT Pattern < T —teom Z nb?attern < (k + l)TPattern‘

i=1

; . maz tt . .
In this expression, teom Y ory™ nbY* ™ represents the delay before slave P, .. 1 begins to receive its

first message and k represents the number of patterns that can be entirely completed before time bound
T. Then,

atte
b T teom SoPmE mbPR
— T'pattern o Tpattern T

Therefore,

N Z k (Z nb?a’ttern + nbpmam+1>

i=1
Tpattern
- tcom
T Pmaz Tpattern
Z () _ Z nbll.?attern + .
tcom i—1 tcom

Lemma 1 (equation 5.2) states that the optimal number of tasks N,y that can be performed within T
units of time satisfies

T
Nopt S
tCOm
Then we have N 1
1> >1+0(2),
> -2 140(7)

RR n°4156

Py

Py

which achieves the proof of the asymptotic optimality of our algorithm in the case > ¢, tCZ:’J‘;ti > 1.

We formally state this important result:

Theorem 2 Let N,p(T') be the optimal number of tasks that can be executed within T time-steps. Let N (T)
be the number of tasks executed by the algorithm of Section 5.2 if ¢, tom < 1, gnd by the algorithm of

teom+ts
Section 5.2 if Y 7_ ;== > 1. Then

. NT)
AN

5.5 Comparison with a greedy algorithm

In this section, we compare the results obtained with the algorithm presented in Sections 5.2 and 5.3 against
the results obtained with a greedy algorithm, which works as follows: at each time step, if k slaves with
respective cycle times t;, < t;, < ... < t;, are waiting for a communication from the master, and if the
communication network is free during the next t.,m time steps, then a communication is performed between
the master and the fastest slave P;,. In Figure 12, we display the solution obtained with tcom = 1 and p =4
slave processors with t1 = 2, t2 = 3, t3 = 3 and ¢4 = 5. These results are to be compared with those obtained
by our algorithm (here, we have > 7, tci:—nﬁ - = 1), and displayed in Figure 9.

The greedy algorithm also leads to a periodic allocation (the time period is 9); it is able to process 8
tasks every 9 time steps but neither the computing ressources nor the communication medium are saturated.

Our algorithm is able to process 12 tasks every 12 time steps, thus leading to an improvement of order %.

processors

Figure 12: Execution with the greedy algorithm.

6 Solution with communications both before and after each task

In this section, we present an asymptotically optimal algorithm for MaxTasks4(T). The algorithm is very
similar to the one presented in Section5, so we only outline the sketch of the algorithm, and describe it
through an example, without detailing the proofs.

As previously, we define a pattern for communications and computations, that will be reproduced peri-
odically. The pattern consists in two main phases:

e The first phase consists in both backward and forward communications between the master and the
slaves,

e The second phase consists in task processing by the slaves.

INRIA

Let t!,,, be the communication cost for the messages from the master to the slaves, t2,, the communi-
cation cost for the messages from the slaves to the master, ¢;, 1 < < p the cycle times of the slaves, and T
the time bound. Basically, the pattern of communications and computations is the same as those defined in
Section 5, with tecom = tlom + t2om-

The construction of the pattern is illustrated in Figure 13, with ¢}, =2, t2 =1, and p = 3 processors:

ti = 8, t; = 8, and t3 = 9. In this case, tcom = 3, >, tcifi’iti < 1, TPattern — 132 and nbb**e™ =
12, nbS"**™ =12 and nb***™ = 11.

processors,
Py [
1 backward comm.
——1 forward comm.
P e
By [e—
‘ ‘ ‘ ‘ ‘ ‘ ‘ time

0 36 72 105 132 168 204 937
Figure 13: Pattern when communications are required both before and after each task

Of course, the first pattern is not executed entirely, since no backward communication is required between
the slaves and the master at the beginning of the execution. Similarly, the processing of tasks during the
last pattern may be useless, since corresponding backward messages from the slaves to the master may well
not have been completed.

Nevertheless, this does not impact the asymptotic optimality of this algorithm:

Theorem 3 Let Nopi(T') be the optimal number of tasks that can be executed within T time-steps, and let
N(T) be the number of tasks executed by our algorithm. Then

lim N(T)

— =1.
T—oo Nopt(T)

7 Related work

To the best of our knowledge, the most related work is presented in the paper of Andonie et al [1] which we
have already quoted in Section 3.

Several theoretical papers deal with complexity results for parallel machine problems with a server,
establishing complexity (NP-completeness) results [8, 10, 4] and providing guaranteed approximations [11].
Before processing, each job must be loaded on a machine, which takes a certain setup time. All these setups
have to be done by a single server which can handle at most one job at a time. Qur first problem (with
initial messages only) is a very special instance of this class of server problems.

Our second problem (with initial and final messages) is a special instance of the job-shop scheduling
problem (see problem SS18 in [5]) where each job consists of only three tasks, the first and last of which
having to be executed by the two machines dedicated to communications. Because this instance is very
specific, we do not know its complexity (polynomial versus NP-complete).

Generally speaking, note that our four problems differ from those studied in the literature with a server
and start-up times in that (i) all tasks are identical and independent, and (ii) communication times (the
counterpart of the set-up times) are identical too. The difficulty lies solely in the heterogeneity of the
computing resources.

RR n° 4156

8 Conclusion

In this paper, we have shown that deriving efficient algorithms for the master-slave paradigm, in the frame-
work of heterogeneous computing resources and communication links used in exclusive mode, turns out to
be surprisingly difficult. More precisely, we have designed an optimal polynomial algorithm in the case of an
initial scattering of data and provided a guaranteed polynomial approximation algorithm in the case of initial
and final communications. We conjecture this last problem to be intrinsically difficult even on (intuitively)
simple instances. Finally, we have presented asymptotically optimal algorithms for the case where each task
processing must be preceded (and possibly followed) by a communication from (back to) the master.

The different variants of the master-slave problem that we have addressed in this paper seem quite
representative of a large class of regular problems that exhibit a simple solution in the context of homogeneous
processors but turn out to raise several algorithmic difficulties in the context of heterogeneous resources [2,
3]. Data decomposition, scheduling heuristics, load balancing, were known to be hard problems in the
context of classical parallel architectures. They become extremely difficult in the context of heterogeneous
clusters, not to speak about metacomputing platforms. This is a nice challenge to investigate for adventurous
algorithmicians ...

References

[1] R. Andonie, A.T. Chronopoulos, D. Grosu, and H. Galmeanu. Distributed backpropagation neural net-
works on a PVM heterogeneous system. In Parallel and Distributed Computing and Systems Conference
(PDCS’98), pages 555-560. IASTED Press, 1998.

[2] Olivier Beaumont, Vincent Boudet, Fabrice Rastello, and Yves Robert. Matrix-matrix multiplication on
heterogeneous platforms. In 2000 International Conference on Parallel Processing (ICPP’2000). IEEE
Computer Society Press, 2000.

[3] Pierre Boulet, Jack Dongarra, Fabrice Rastello, Yves Robert, and Frédéric Vivien. Algorithmic issues
on heterogeneous computing platforms. Parallel Processing Letters, 9(2):197-213, 1999.

[4] P. Brucker, C. Dhaenens-Flipo, S. Knust, S.A. Kravchenko, and F. Werner. Complexity results for par-
allel machine problems with a single server. Technical Report Reihe P, No. 219, Fachbereich Mathematik
Informatik, Universitdt Osnabriick, 2000.

[5] Michael R. Garey and Davis S. Johnson. Computers and Intractability, a Guide to the Theory of
NP-Completeness. W. H. Freeman and Company, 1991.

[6] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM Parallel Virtual
Machine: A Users’Guide and Tutorial for Networked Parallel Computing. The MIT Press, 1996.

[7] M. Gondran and M. Minoux. Graphs and Algorithms. John Wiley & Sons, 1984.

[8] N. Hall, C.N. Potts, and C. Sriskandarajah. Parallel machine scheduling with a common server. Discrete
Applied Mathematics, 102:223-243, 2000.

[9] Steve Hedetniemi. Open Problems in Combinatorial Optimization. World Wide Web document, URL:
http://www.cs.clemson.edu/ hedet/algorithms.html.

[10] S.A. Kravchenko and F. Werner. Parallel machine scheduling problems with a single server. Mathematical
Computational Modelling, 26:1-11, 1997.

[11] H. Lee and M. Guignard. A hybrid bounding procedure for the workload allocation problem on parallel
unrelated machines with setups. Journal of the Operational Research Society, 47:1247-1261, 1996.

[12] Kizhake Soman, Robert Fraczkiewicz, Christian Mumenthaler, Berthold von Freyberg, and Thomas
Schaumannand Werner Braun. FANTOM - (Fast Newton - Raphson Torsion Angle Minimizer). World
Wide Web document, URL: http://www.scsb.utmb.edu/fantom/fm_home.html. a program for "the

INRIA

calculation of conformations of linear and cyclic polypeptides and proteins with low conformational
energies including distance and dihedral angle constraints from nuclear magnetic resonance experiments
or for modeling purposes.".

[13] J.R. Stiles, T.M. Bartol, M.M. Salpeter, and M.M. Salpeter. Monte Carlo simulation of neuromuscular
transmitter release using MCell, a general simulator of cellular physiological processes. Computational
Neuroscience, pages 279-284, 1998.

[14] J. Watts and S. Taylor. A practical approach to dynamic load balancing. IEEE Transactions on Parallel
and Distributed Systems, 9(3):235-248, 1998.

[15] D.B. West. Introduction to Graph Theory. Prentice Hall, 1996.

RR n° 4156

/<

Unit"e de recherche INRIA Lorraine, Technopdle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unit e de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unit"e de recherche INRIA Rhdne-Alpes, 655, avenue de I’Europe, 38330 MONTBONNOT ST MARTIN
Unit“e de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unit e de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
http://www.inria.fr
ISSN 0249-6399

