N

HAL

open science

Java Fair Threads

Frédéric Boussinot

» To cite this version:

‘ Frédéric Boussinot. Java Fair Threads. RR-4139, INRIA. 2001. inria-00072487

HAL Id: inria-00072487
https://inria.hal.science/inria-00072487
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00072487
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--4139--FR+ENG

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Java Fair Threads

Frédéric Boussinot

N° 4139
Février 2001

THEME 1

apport
derecherche

% I N R I A

SOPHIA ANTIPOLIS

Java Fair Threads*

Frédéric Boussinot!

Théme 1 — Réseaux et systémes
Projet Mimosa

Rapport de recherche n® 4139 — Février 2001 — 23 pages

Abstract: Fair threads are cooperative threads run by a fair scheduler which gives them
equal access to the processor. Fair threads can communicate using broadcast events, and are
fully portable as their semantics does not depends on the executing platform. Fine control
over fair threads execution is possible allowing the programming of specific user-defined
scheduling strategies. This paper presents fair threads in the context of the Java language,
and describes the APT to use them. Link with reactive programming, which is at the basis
of the fair threads proposal, is also considered.

Key-words: Concurrency, Java, Threads, Reactive Programming

* With support from France-Telecom R&D
f EMP/CMA-INRIA

Unité de recherche INRIA Sophia Antipolis

2004, route des Lucioles, B.P. 93, 06902 Sophia Antipolis Cedex (France)
Téléphone : 04 92 38 77 77 - International : +33 4 92 38 77 77 — Fax : 04 92 38 77 65 - International : +33 4 92 38 77 65

Java Fair Threads

Résumé : Les fair threads sont des threads coopératifs exécutés par un ordonnanceur
qui leur distribue le processeur équitablement. Les fair threads peuvent communiquer en
utilisant des événements diffusés. Ils sont complétement portable car leur sémantique ne
dépend pas de la plate-forme d’exécution. Les fair threads peuvent étre controlés finement,
ce qui permet a 'utilisateur de coder ses propres stratégies d’exécution. Ce texte présente
les fair threads dans le contexte du langage Java et décrit I’API pour les utiliser. Il présente
également les liens avec la programmation réactive dont ils sont issus.

Mots-clés : Parallélisme, Concurrence, Java, Threads, Programmation réactive

Java Fair Threads 3

1 Introduction

Contrary to standard sequential programming where the processor executes a single pro-
gram, in concurrent programming the processor is a shared resource which is dispatched to
several programs. The term “concurrent” is appropriate because programs can be seen as
concurrently competing to gain access to the processor, in order to execute.

Threads are a basic mean for concurrent programming, and are widely used in operating
systems. They are also introduced in the Java language as first class primitive. At language
level, threads offer a way to structure programs by decomposing systems in several concurrent
components; in this respect, threads are useful for modularity.

However, threads are generally considered as low-level primitives leading to over-complex
programming. Moreover, threads generally have loose semantics, in particular depending on
the underlying executing platform; to give them a precise semantics is a difficult task, and
this is a clearly identified problem to get portable code.

This paper proposes a new framework with clear and simple semantics, and with an
efficient implementation. In it, threads are called “fair”; basically a fair thread is a coop-
erative thread executed in a context in which all threads always have equal access to the
processor. Fair threads have a deterministic semantics, relying on previous work belonging
to the so-called reactive approach.

The structure of the paper is as follows: section 2 introduces threads and scheduling
strategies; the fair thread framework is defined in section 3; section 4 contains the Java API
for using fair threads; three examples are given in section 5; finally, links with the reactive
approach, which is at the basis of the fair thread proposal, are considered in section 6.

2 Threads

A thread is basically a program, that is a list of instructions and a program counter which
indicates the current instruction to be executed, as shown on Figure 1.

program

counter I

instructions

Figure 1: Thread

Threads are sharing the same address space and are executed in turn, one after the other.
The processor is allocated to threads by a scheduler which schedules thread executions. This
gives the drawing of Figure 2.

RR n° 4139

4 F. Boussinot

shared
address space

»>— — _—
_—: p—
R e B Sy

scheduler

Figure 2: Scheduler

Context Switches. When the processor is released by a thread, its execution context
has to be saved in order to be able to resume the thread later. This is called a context
switch. Context switches basically means to save the program counter and the execution
stack associated with the executing thread, then to restore the context of a new thread
(usually, some others items must also be saved/restored; for simplicity, we do not consider
these).

Threads vs Processes. As opposite to threads, processes have their own private memory
space. This implies that communication between processes is more complex than commu-
nication between threads, which can directly use shared memory. This also implies that
context switches are simpler for threads, since there is no need to save the address space
which always remains the same. Because threads context switches need less computing re-
source than process context switches, threads are sometimes called “lightweight processes”.
Note also that less memory swaps are needed using threads, than using processes, as threads
do not have their own private memory.

Nondeterminism. The way the scheduler chooses the thread to be executed is usually
left unspecified; in this way, implementations are less constrained and, thus, can be more ef-
ficient. However, nondeterminism may occurs: with the same input, several distinct outputs
are possible, depending on the scheduler choices. A major drawback of nondeterminism is
that debugging becomes more complex (for example, faulty executions are more difficult to

replay).

2.1 Scheduling Strategies

There are two basic scheduling strategies for chosing next thread to execute, called cooper-
ative and preemptive.

In the cooperative strategy, the scheduler has no way to force a thread to release the
processor. Thus, if the executing thread never releases the processor, then other threads

INRIA

Java Fair Threads 5

never get a chance to execute. This situation can occur when, for example, the executing
thread enters in an infinite loop. It is certainly a bug; however, in a cooperative context,
this kind of bug is dramatic as it freezes the whole system. In order to avoid such situations,
threads must cooperate with other threads and always release the processor after some time.

In a preemptive strategy, scheduler can force the executing thread to release the proces-
sor, when it decides to do so. Scheduler can use several criteria to withdraw the processor
from the thread; one criteria is related to execution time: time slices are allocated to threads,
and context switch occurs when the time slice given to an executing thread is expired. Other
criteria exist, for example criteria related to priorities; for simplicity, one does not consider
these.

Pros and cons for cooperative and preemptive strategies are the following:

Non-cooperative threads. There is no possibility, in the general case, to decide if a
thread is cooperative or not (this is an undecidable problem). Thus, thread cooperativeness
cannot be checked automatically and is of the programmer’s responsability. This is a real
problem for cooperative strategies, as presence of a non-cooperative thread can prevent the
global system to work properly. On the contrary, presence of non-cooperative threads is not
a problem for preemptive strategies, because they can be forced to release the processor.

Reasoning with threads. In a cooperative framework, execution of a thread cannot
be interrupted by the scheduler at arbitrary moments. This makes reasonning on programs
easier: actually in a cooperative framework, thread execution is atomic as long as the thread
does not release the processor. This contrast with preemptive context, where, by default,
the scheduler can freely interleave threads instructions.

Reusability. In a preemptive context, traditional sequential programs can be embbeded
in threads and run without risk to prevent other threads to execute. Thus, preemptive
schedulers are a good point for reusability. On the contrary, a “third-party” sequential
program cannot be used just as it is in a cooperative framework, as it could prevent the
whole system to progress.

Nondeterminism. Preemptive schedulers are less deterministic than cooperative ones.
Actually, both kinds of schedulers have freedom to chose the next thread to execute; however,
a preemptive scheduler has additional freedom to preempt or not the currently executing
thread; this additional freedom is a supplementary source of nondeterminism.

Data protection. In preemptive frameworks, access to data in the shared address space
must be protected because thread switches can occur in the middle of an access. Protection
is usually based on use of boolean variables, called locks; a lock is set (taken) by the thread
at the beginning of the data use and reset (released) by it at the end; while the lock is taken,
other threads willing to access the protected data have to wait for the lock to be released.
The test of a lock and its setting must be an atomic action, otherwise the scheduler could

RR n° 4139

6 F'. Boussinot

withdraw the processor to the thread just in between the test and the setting, leaving the
data unprotected. Programmers are thus, in preemptive contexts, highly concerned with
data protection. However, deadlocks can occur because of a bad locking strategy (a first
thread locks a data needed by a second thread which similarly holds a locks on a data needed
by the first). On the contrary, data are not to be protected in a cooperative framework,
where threads run atomically. Note that atomicity of test and set actions is automatic; thus,
simple boolean variables can be safely used for data protection.

Efficiency. Basically, threads unefficiency comes from context switches. In a preemptive
strategy context switches are not under control of the programmer, but of the scheduler;
in some cases, the scheduler thus introduces context switches which are not necessary but
cannot be avoided by programmers. In a cooperative context, it is the programmer’s respon-
sability to introduce cooperation actions in order to obtain threads cooperation. One thus
generally considers that cooperative strategies can lead to more efficient executions than
preemptive ones.

2.2 Existing Threading Frameworks
Threading systems can be implemented in several ways, depending on the way kernel re-

sources are used.

One-to-one Mapping. On one extreme, there are systems in which user threads are
mapped to kernel threads in a one-to-one way. One get the picture of Figure 3.

user

>— & — —thread
Applicative Level —— J— J—
| | |
Kernel Level * + *
p— — —native
p— — —thread
— »— —
I S— N —

Operating System

Figure 3: One-to-One Mapping

As modern operating systems are usually preemptive, this approach leads to preemptive
threading systems. This is the case of Microsoft NT system. Note that the mapping to kernel
threads can be rather inefficient; for example, all thread manipulations in NT systematically
introduce an overhead of 600 machine cycles [6].

INRIA

Java Fair Threads 7

Many-to-one Mapping. On the other extreme, all user threads can be mapped on one
unique kernel thread. This many-to-one mapping correspond to Figure 4.

 — ——
— e f—
— - — A —
» /
—LWP— LWP!
— —

Operating System

|

Figure 4: Many-to-One Mapping

In this approach, scheduler and user threads correspond to one process, mapped to one
single kernel thread. This approach is more flexible than the previous one, as the choice
is left open for the scheduler to implement either a preemptive or a cooperative strategy,
independently of the operating system characteristics.

Many-to-many Mapping. There are also intermediate approaches, in which user threads
are mapped to several kernel threads. This is the solution proposed by the Solaris system
of Sun[12]. In Solaris terminology, user threads are mapped to “green thread” which are
grouped in “light weight processes” (LWP). LWPs are the units scheduled by the operating
system. This many-to-many approach is represented on Figure 5.

Note that threads are executed in a cooperative way inside a LWP, but LWPs are sched-
uled in a preemptive way by Solaris. Solaris is thus a mix of cooperative and preemptive
strategies.

Thread Libraries and Threads in Languages. A lot of thread libraries exist, for a
large number of languages. Among these is the Pthread library [9] which implements in C
the POSIX TEEE standard for threads.

Linux Threads[8] proposes an implementation of POSIX for Linux. Each Linux thread is
a separate Unix process, sharing its address space with the other threads (using the system
call clone()). Scheduling between threads is handled by the kernel scheduler, just like
scheduling between Unix processes.

RR n° 4139

8 F'. Boussinot

 — ——
— |l ——— o ——
» //
—LWP— LWP
— —

Operating System

|

Figure 5: Many-to-Many Mapping

Recently, Gnu Portable Threads[3] have been proposed with portability as main objec-
tive; they are purely cooperative threads.

Very few languages introduce threads as first class primitives. The most well-known is of
course Java[l]. Actually, however, Java basically introduces locks (with the synchronized
keyword), and not directly threads which are available through an API.

The CML language[10] is an other language with threads; it introduces threads in the
functional programming framework of ML. CML threads are run by a preemptive scheduler.

2.3 Java Threads

It is very difficult to design threaded systems which run in the same way on both preemptive
and cooperative frameworks. Most of the time, threaded systems do not fulfill this require-
ment, and are thus not portable. In the context of Java, task is even more difficult because
no assumption can be made about the JVM scheduling strategy. No assumption can neither
be made on the way the JVM is implemented (process, native thread, or something else).
In this situation, programmers have to face a situation where:

e Each thread can be preempted at any time, because scheduling can be preemptive.
This implies that data have to be protected by synchronized code, as soon as they
can be accessed by two distinct threads. These protections are unnecessary when a
cooperative strategy is used.

e Each thread must periodically give up control in order to cooperate with other threads,
because scheduling can be cooperative. Note that the basic yield() method for coop-
eration has very loose semantics: it does not force a change of processor assignment,

INRIA

Java Fair Threads 9

but only allows it to take place. Note also that sleep(long), which forces the execut-
ing thread to release processor, is not portable as it depends on the machine execution
speed.

To sum-up, programmers have to code for the worst case for getting portable concurrent
code (one does not consider priorities which do not at all solve the problem; see [6] for a
discussion on this point).

Java programmers are faced with a second problem concerning threads: indeed, ways to
get fine control over thread, that is ability to stop, suspend, or resume threads, have been
suppressed from recent versions of the language[13]. Reason is that using these means is
error prone (for example, stopping a thread can damage data that where locked by it). This
certainly weaken the language as, without fine control over threads, it becomes very difficult
to program user specific scheduling strategies.

2.4 Conclusion
We are faced to the (seemingly contradictory) following needs:
e A preemption mechanism is absolutely necessary for code reuse.

e Thread systems should be as deterministic as possible (in particular, for debugging
concerns).

e There should be a way to limit to the minimum the use of deadlock prone constructs
such as locks.

e One should have possibility to get fine control over threads execution, for being able
to program user-defined scheduling strategies.

e Thread context switchings, even if they are cheaper than processes ones, are rather
expensive and memory consuming. It should exist a way to limit them to the strict
minimum.

The fair framework we are introducing now is a proposal solution to fulfill these needs.

3 Fair Thread Framework

One considers a new framework made of fair threads executed by fair schedulers. It is
presented via a list of questions/answers.

What are Fair Threads? A fair thread is basically a cooperative thread which must
never forgets to cooperate with other threads, by calling the cooperate() method. Fair
threads are run by fair schedulers; scheduler fairness is twofold:

RR n° 4139

10 F. Boussinot

e Fair schedulers give each thread an equal possibility to get the processor. Thus, all
threads get equal right to execute. More precisely, fair schedulers define execution
phases where all started threads run up to their next cooperation point, as shown on
Figure 6.

—> cooperate cooperate —»cooperate

cooperate = m m —»eooperate cooperate

cooperate —-—»—— cooperate —» cooperate
fair scheduler

Figure 6: Fair Scheduler

e Fair scheduler always dispatch the same information to all threads. More precisely, a
fair scheduler broadcasts events to all threads started in it. Thus, in the fair frame-
work, all threads see events in exactly the same way, because they are broadcast.
Moreover, events can have values associated to their generations, and these values are
also broadcast.

Why Fair Threads? The fair framework is basically cooperative; it is thus simpler than
preemptive ones. Indeed, as preemption cannot occurs in an uncontroled way, cooperative
frameworks are less undeterministic. Actually, the fair framework puts the situation to an
extreme point, as it is fully deterministic; threads are chosen for execution following a strict
round-robin algorithm. This can be a great help in programming and debugging.

The fair framework provides users with a powerful communication mean that is event
broadcasting. This simplifies concurrent programming while reducing risks of deadlocks.

Why Broadcast Events? Events are used when one wants one or more threads to wait
for a condition, without need for them to poll a variable to determine when the condition
is fulfilled. Broadcast is a mean to get modularity, as the thread which generates an event
has nothing to know about potentially receivers of it. Fairness in event processing means
that all threads waiting for an event receive it during the same phase where it is generated;
thus, a thread leaving control to cooperate with other threads does not risk to loose an event
generated later in the same phase. Note that scheduler phases actually define time scopes
of events.

How is it Implemented? Fair threads are implemented in the Java programming lan-
guage and usable through an API. Fair thread implementation is based on standard Java
threads, but it is independent of the actual JVM and OS, and is thus fully portable. Fair

INRIA

Java Fair Threads 11

schedulers are actually at level of Java Virtual Machines; one thus have the situation shown
on Figure 7.

_> cooperate cooperate —>c00perale

ooperate cooperate

cooperate = = ®

y

cooperate __Jm——— Cooperate —J- COOperate

fair scheduler

VM

IM--

Operating System

Figure 7: Implementation

What about Locks? As fair threads are basically cooperative, no lock is needed when
accessing a shared object. While executing, a fair thread cannot be interrupted by another
fair thread; thus, execution is atomic and there is no need of synchronized code. This
contributes to minimize deadlock situations which are the plague of concurrent programming.

What about Priorities? Priorities are meaningless in a fair context, where threads al-
ways have equal rights to execute. Absence of priorities also contributes to simplify pro-
gramming. Note that the effect of priorities in Java is rather unclear (see [6] for a discussion
on this matter).

What about Preemption? A preemptive strategy is sometimes needed, for example
to reuse a piece of code which was not designed to be run concurrently. In the context
of fair threads, preemption is possible through the notion of a fair process, assuming that
the operating system is preemptive. A fair process gives life to a standard process which
is executed by the operating system concurently with the JVM running the fair scheduler.
This gives the drawing of Figure 8, where the fair process is represented as a black box.
Note that one gets an instance of the many-to-many approach presented in section 2.2.

What about Parallelism? Up to now, one has only considered uniprocessor machines.
When several processors are available, several threads can be simultaneously executed; this
situation is often called parallelism. As threads are sharing the same address space, data

RR n° 4139

12 F. Boussinot

>
_’ cooperate cooperate S
cooperate = = ® —>cooperale —_—
cooperate __»———cooperale p—
fair scheduler
JVM L_process—
>— i c—

—

preemptive OS

Figure 8: Fair Process

protection becomes mandatory. Actually, the situation is very similar to the one with a
preemptive scheduling; in both cases, shared data have to be protected against concurrent
accesses, and it is the programmer’s responsability to avoid deadlocks.

Fair threads are designed for uniprocessor machines, and it is left for future work to
adapt them to multiprocessor ones.

What about Signals and Interrupts? In operating systems, signals can occur at any
moment during execution, and are to be processed without delay. Signals are useful to
implement interrupts, for example asynchronous IO interrupts. In the context of fair threads,
signals are quite naturally represented by events, which can be generated at any moment.
Fair threads also offer the possibility for generated values to be immediately processed:
generated values associated to events are broadcast to all components, and are received by
them without delay, that is during their generation phase.

4 FairThread API

The Fair Threads framework is contained in a Java package named fairthread. Three main
interfaces are defined in it: Event for events, FairThreadInterface for fair threads, and
FairSchedulerInterface for fair schedulers.

4.1 Event Interface

Interface Event basically defines two methods: one for hashcoding events, and one for
comparing them; these two methods are the minimum needed for implementing events.

INRIA

Java Fair Threads

13

public interface Event

{
boolean equals(Object object);
public int hashCode();

A possible implementation of events is the class StringEvent in which they are consid-

ered as strings:

public class StringEvent implements Event
{
public String identity;
public StringEvent(String s){ identity = s; }
public int hashCode(){ return identity.hashCode(); }
public boolean equals(Object object){
if (object instanceof StringEvent)
return identity.equals(((StringEvent)object).identity);
return false;

4.2 Fair Thread Interface

Interface of fair threads is the following:

public interface FairThreadInterface

{
void run(FairScheduler scheduler);
void start(FairScheduler scheduler);
void stop(FairScheduler scheduler);
void suspend(FairScheduler scheduler);
void resume(FairScheduler scheduler);

void cooperate();
void cooperate(long delay);

void join(FairThread thread);
void join(FairThread thread,long delay);

void generate(Event event);
void generate(String event);
void generate(Event event,Object val);
void generate(String event,Object val);

void await(Event event);
void await(String event);

RR n° 4139

14

F. Boussinot

void await(Event event,long delay);
void await(String event,long delay);

final static public Object NULL = new Object();
Object nextValue(Event event);
Object nextValue(String event);

Control over Threads

Method run(FairScheduler s) is the basic method executed by the fair thread; s is
the fair scheduler that runs the thread. By default, the method does nothing. This
method corresponds to the run() method of standard Java threads.

Method start(FairScheduler s) starts execution of the fair thread by s. It corre-
sponds to the start () method of standard threads.

Method stop(FairScheduler s) stops the fair thread run by s. It corresponds to
the stop() method of Java version 1, which is now deprecated.

Method suspend (FairScheduler s) is used to suspend the fair thread run by s; exe-
cution can be resumed by calling the resume (FairScheduler) method. It corresponds
to the suspend () method of Java version 1 which is now deprecated.

Method resume(FairScheduler s) resumes the thread, previously suspended by a
call to suspend(FairScheduler). It corresponds to the suspend() method of Java
version 1 which is now deprecated.

Cooperation

Method cooperate() is the method to be called by the fair thread to cooperate with
other threads; it is the basic mechanism of the fair threads framework. It corresponds
to yield () of standard threads.

By calling method cooperate(long n) the fair thread falls asleep during n phases.
The method corresponds to the sleep(long) method of standard threads. Actually,
cooperate(n) is a loop that runs cooperate() n times.

Joining Threads

Method join(FairThread t) waits for the termination of the fair thread t. It corre-
sponds to method join() of standard threads.

Method join(FairThread t,long n) waits for termination of the fair thread t during
at most n phases. It corresponds to method join(long) of standard threads.

INRIA

Java Fair Threads 15

Generation of Events

e Method generate(Event e) generates event e. All fair threads waiting for e auto-
matically receive it, because it is broadcast by the fair scheduler running the thread.
Actually, events correspond more or less to condition variables of Pthreads[9], and
generate (Event) is the counterpart of pthread_cond_broadcast. Method generate(String
s) is similar, s being converted to an event.

o Method generate (Event e,0Object o) generates e with o as generated value. Method
generate(String s,0bject o) is similar, s being converted to an event.

Awaiting Events

e Method await (Event e) waits for e. It corresponds to the function called pthread_cond_wait
of pthreads. Method await(String s) is similar, s being converted to an event.

e Method await(Event e,long n) waits for event e during at most n phases. It
corresponds to the function called pthread_cond_timedwait of pthreads. Method
await (String s,long n) is similar, s being converted to an event.

Generated Values

e Method nextValue (Event e) returns the next value of e generated during the current
phase. Value NULL is returned if the value generated was null. Value null is returned
if no new generated value is available. In this last case, nextValue remains blocked
up to the end of current phase, and returns during next phase (indeed, absence of a
value is impossible to decide before end of the current phase, as otherwise it could be
produced by a thread scheduled later in same phase). Method nextValue(String s)
is similar, s being converted to an event.

4.3 Fair Scheduler Interface

Interface of fair schedulers is the following:

public interface FairSchedulerInterface
{
void broadcast(Event event);
void broadcast(String event);
void broadcast(Event event,Object val);
void broadcast(String event,Object val);

void start(FairThread thread);
void stop(FairThread thread);
void suspend(FairThread thread) ;
void resume(FairThread thread);

RR n° 4139

16 F. Boussinot

e Method broadcast (Event e) broadcasts e to all executing fair threads. Method
broadcast (String s) is similar, s being converted to an event. Method broadcast-
(Event e, Object o) broadcasts e, with o as generated value. Method broadcast-
(String s,0bject o) is similar, s being converted to an event.

e Method start (FairThread t) startst. The call scheduler.start (thread) is equiv-
alent to thread.start (scheduler).

e Method stop(FairThread t) stops t. The call scheduler.stop(thread) is equiva-
lent to thread.stop(scheduler).

e Method suspend(FairThread t) suspends t. The call scheduler.suspend (thread)
is equivalent to the call thread.suspend(scheduler).

o Method resume (FairThread t) resumes thread t. The call scheduler.resume (thread)
is equivalent to thread.resume (scheduler).

4.4 Fair Thread Class

Fair threads are instance of the FairThread class which extends the standard class Thread.
Class FairThread implements interface FairThreadInterface and has two constructors:

public FairThread()
public FairThread(Fair fair)

e First constructor is used to create a fair thread with the default empty run (FairScheduler)
method. It corresponds to the constructor without parameter of class Thread.

e Second constructor creates a fair thread from a fair object (see section 4.6) given
as argument. It corresponds to the constructor with a Runnable parameter of class
Thread.

4.5 Fair Scheduler Class

Fair schedulers are instances of class FairScheduler which has one single constructor:
public FairScheduler()

Usually, a fair scheduler is created at starting of the main application method, and is
used later to start fair threads created during execution.

INRIA

Java Fair Threads 17

4.6 Fair Interface

Interface Fair is to be implemented by objects given to the fair thread constructor. It
corresponds to the Runnable interface of standard Java threads.

public interface Fair

{

void run(FairScheduler scheduler,FairThread thread);

}

e The run(FairScheduler s,FairThread t) method is the basic method executed by
fair thread t, run by the fair scheduler s.

4.7 Fair Process

A fair process corresponds to a standard process created by the call exec(String) of class
Runtime, with the difference that it can be safely immerged in the fair framework. Fair
processes are instances of class FairProcess which extends FairThread; it has one single
constructor:

FairProcess(String command)

The string in argument is interpreted as a command and it is parsed exactly in the same
way method Runtime.exec does.

5 Examples

Three examples are described. The first one is a very simple but complete example in which
two fair threads are run. In the second example, one defines a preemption mechanism to
stop a fair thread when an event becomes present. The third example considers generated
values and defines a way to process them.

5.1 Hello World Example

Here is a small example of a complete program that runs two fair threads. The first one
cyclically prints "hello, ", and the second one prints "world". The main method of the
program first creates a fair scheduler, and then starts the two threads in it.

import fairthread.*;
class Say extends FairThread
{

String msg;
public Say(String msg){ this.msg = msg; }

RR n° 4139

18 F. Boussinot

public void run(FairScheduler scheduler){
while (true){
System.out.print (msg) ;
cooperate() ;

}
}
}
public class HelloWorld
{
public static void main(Stringl[] args){
FairScheduler scheduler = new FairScheduler();
scheduler.start(new Say("hello, "));
scheduler.start(new Say("world!\n"));
}
}

Several points are important:

e Qutput is an infinite list of "hello, world" messages. This is because the first thread,
after printing first part of the message, always leaves the processor and thus lets the
second thread print last part of it.

e Qutput is always the same; the program is totally deterministic.

e Without the cooperate() call in Say, the program would cycle, printing "hello"
forever; this is because the fair framework is basically cooperative.

Using the Fair interface, previous program could be equivalently written as:

import fairthread.*;

class Say implements Fair
{
String msg;
public Say(String msg){ this.msg = msg; }

public void run(FairScheduler scheduler,FairThread thread){
while (true) {
System.out.print (msg) ;
thread.cooperate() ;

public class HelloWorld
{

INRIA

Java Fair Threads 19

public static void main(String[] args){
FairScheduler scheduler = new FairScheduler();
scheduler.start(new FairThread(new Say("hello, ")));
scheduler.start(new FairThread(new Say("world!\n")));

}

Main point is that, in this way, class Say can extend an other class; this is not possible with
the first program, as multiple inheritance is forbidden in Java.

5.2 Stopping Threads with Events

One defines a class Until which extends FairThread, with an associated class Controler.
Until runs a method, called controled, and starts an instance of Controler which stops
the Until thread when an event becomes present. Here is definition of Until:

import fairthread.*;

public class Until extends FairThread

{
String event;
public Until(String event){ this.event = event; }
public void controled(FairScheduler scheduler){}
public final void run(FairScheduler scheduler){
FairThread controler = new Controler(event,this);
scheduler.start(controler) ;
controled(scheduler) ;
scheduler.stop(controler) ;
}
}

class Controler extends FairThread

{
FairThread controled;
String event;

public Controler(String event,FairThread controled){
this.event = event; this.controled = controled;

}

public void run(FairScheduler scheduler){
await (event) ;
scheduler.stop(controled) ;

RR n° 4139

20 F. Boussinot

This example shows how it becomes possible, using broadcast events, to program sophis-
ticated user-defined execution strategies for fair threads.

5.3 Generated Values

A scanner is a thread which is associated to one event and which runs a special callback
method each time a value is generated for the event. The notion of a scanner comes from
the new version of the SugarCubes|[11] framework. Scanners must extends the following
Scanner class, redefining the callback method:

public class Scanner extends FairThread

{
String event;
public Scanner(String event){ this.event = event; }
void callback(Object obj){}
public void run(FairScheduler scheduler){
while(true){
await (event) ;
while(true){
Object obj = nextValue(event);
if (obj == null) break;
callback(obj);
}
}
}
}

At each phase, all generated values are processed during it; moreover, after last value process-
ing, call of nextValue blocks, waiting for next phase to return the null value.

6 Links with Reactive Programming

When considering the Until class of section 5.2, one can see that there is no real need for
using two distinct threads. Indeed, it would be possible to merge the instructions of the
controler with the ones of the controlled method; in this way, the Until thread would also
test for the event presence, at fixed moments, say, just before execution of the cooperate
method. Thus, unnecessary context switchings would be saved, which would leads to a more
efficient execution. Such a solution is of course more difficult to program and less modular
as there is a need to transform the code of the controlled method.

INRIA

Java Fair Threads 21

6.1 Reactive Programming

The fair framework offers a way to conciliate efficiency and programming ease through the
use of reactive programs. Reactive programs are basic elements of the Junior framework[4]
which is a set of Java classes for reactive programming. Junior programs are usable through
an APT called Jr[5]. Comparison of threads and of SugarCubes, a framework closely related
to Junior, can be found in [2]. The Web site [14] contains references to reactive programming.

Reactive programming is based on the notion of an instant which is shared by all con-
current components. Reactive programs are made of basic instructions, with semantics
defined in term of instants. For example, instruction Stop() of Junior stops execution for
the current instant, and execution at next instant restarts in sequence from it. Event based
programming is possible in Junior; events are instantaneously broadcast: an event generated
during one instant is received by all components waiting for it during the same instant.

Correspondance between fair threads and Junior is straigtforward: a Junior instant
corresponds to a fair scheduler phase, where all threads are executed once; events have
exactly the same semantics in the two contexts; the cooperate() method of fair threads
corresponds to the Stop() instruction of Junior.

Junior programs can be used in the context of fair threads, by the intermediate of class
JrProgWrapper which extends FairThread. For example, consider the class:

public class Kill extends Until
{
String msg;
public Kill(String s){ super("E"); msg = s; }
public void controled(FairScheduler scheduler){
for(int i = 0; i < 100; i++){
System.out.print (msg+"init ");
cooperate(5) ;
System.out.print (msg+"end ");

}

The equivalent class, made of a reactive program of type Program, is the following;:

public class Kill extends JrProgWrapper

{
Program prog =
Jr.Until("E",
Jr.Repeat (100,
Jr.Seq(Jr.Atom(new Print(msg+"init ")),
Jr.Seq(Jr.Repeat(5,Jr.Stop()),
Jr.Atom(new Print(msg+"end "))))));
public Kill(){ super(); setProgram(prog); }
}

RR n° 4139

29 F. Boussinot

6.2 Efficiency

Actually, instructions of concurrent programs in Junior are interleaved (by the Par operator)
during each instant, in a way that allows broadcast of events. This approach is different
from the one of threads, as there is no need of context switching in Junior; actually, context
switches are replaced in reactive programming by interleavings, as shown on Figure 9.

¥

(I

. corresponding
two fair threads reactive instruction

Figure 9: Merge of Reactive Instructions

The absence of context switching is a good point for efficiency. Let us return to the Kill
example of previous section. We consider N threads and measure time T (in milliseconds)
taken to run them (on a MacIntosh G3, without printing). For N=100, one has T=6533ms.
Now, running the equivalent JrProgWrapper gives T= 1577ms. For N=500, T=31189ms
with FairThread, and T=3685ms with JrProgWrapper.

Note that reactive programs consume less memory than threads; last experiment, with
N=500, needs 8.7MB with JrProgWrapper, and 79.3MB using threads. The overhead of
memory used by threads is a well-known problem; for example, with N=1000, it has not
been possible to run the previous example using threads, while no problem arise using a
reactive program.

7 Conclusion

One has defined a new framework for concurrent programming in Java, based on the notion
of a fair thread. Fair threads are run by fair schedulers which give threads equal rights to
get the processor and equal rights to receive broadcast events.

The fair threads framework makes a clear separation between the cooperative world and
the preemptive one. Fair threads are basically cooperative, and it is the programmer’s
responsability to program cooperation with other threads. However, there exists a way to
embed non-cooperative code in the fair framework, through the notion of a fair process.

Fair threads have a clear and simple semantics, relying on the reactive approach. As a
consequence, fair threads are basically deterministic and fully portable.

Fair threads are of valuable help with uniprocessor machines to get portable, simple, and
efficient code.

INRIA

Java Fair Threads 23

The API of the fair threads framework and its implementation are available on the Web
[15].

Acknowledgments
Thanks to Julien Demaria, Loic Henry-Gréard, Xavier Leroy, Fabrice Peix, and Jean-
Ferdy Susini for their valuable comments and suggestions on a previous version of the paper.

References

[1] Ken Arnold, James Goslin, The Java Programming Language, Addison-Wesley, 1996.

[2] F. Boussinot, J-F. Susini, Java threads and SugarCubes, Software Practice & Experi-
ence, 30(5), 545-566, 2000.

[3] Ralf S. Engelschall, Gnu Portable Threads, 1999.

[4] L. Hazard, J-F. Susini, F. Boussinot, The Junior reactive kernel, Inria Research Report
3732, July 1999.

[5] L. Hazard, J-F. Susini, F. Boussinot, Programming with Junior, Inria Research Report
4027, 2000.

[6] A. Hollub, Programming Java threads in the real world, JavaWorld, 1998, available at:
http://www.javaworld.com/jw-09-1998/jw-09/threads.html

[7] Doug Lea, Concurrent Programming in Java, Addison-Wesley, 1996.

[8] Xavier Leroy, http://pauillac.inria.fr/~xleroy/linuxthreads/

[9] B. Nichols, D. Buttlar, J. Proulx Farrell, Pthreads Programming, O’Reilly, 1996.
[10] J. Reppy, Concurrent Programming in ML, Cambridge University Press, 1999.
[11] Jean-Ferdy Susini, PhD. Thesis to appear.

[12] http://wuw.sun.com/solaris
|

[13] http://java.sun.com/products/jdk/1.2/docs/guide/misc/
threadPrimitiveDeprecation.html

[14] http://wuw.inria.fr/mimosa/rp

[15] http://www.inria.fr/mimosa/rp/FairThreads

RR n° 4139

/<

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - B.P. 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Lorraine : Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - B.P. 101 - 54602 Villers les Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38330 Montbonnot St Martin (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - B.P. 105 - 78153 Le Chesnay Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, B.P. 105 - 78153 Le Chesnay Cedex (France)
http:/ /www.inria.fr

ISSN 0249-6399

