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Abstract: Assessing statistical significance of overrepresentation of excep-
tional words is becoming an important task in computational biology. We show
on two problems how large deviation methodology applies. First, when some
oligomer H occurs more often than expected, e.g. may be overrepresented,
large deviations allow for a very efficient computation of the so-called p-value.
The second problem we address is the possible changes in the oligomers dis-
tribution induced by the overrepresentation of some pattern. Discarding this
noise allows for the detection of weaker signals. Related algorithmic and com-
plexity issues are discussed and compared to previous results. The approach
is illustrated with two typical examples of applications on biological data.
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Signification statistique de la
surrepresentation d’oligonucléotides

Résumé : La signification statistique de la surrepresentation de mots excep-
tionnels est un sujet important en bioinformatique. Nous Utilisons la théorie
des grandes déviations sur deux problemes. En premier, nous considerons un
motif H surrepresenté. Les grandes déviations permettent un calcul tres ef-
ficace de la queue de la distribution, la p-valeur des biologistes. En second,
nous considérons les changements dans la distribution des mots induite par la
surrepresentation d’'un mot donné. La suppression de ce bruit permet alors
la detection de signaux plus faibles. Les conséquences algorithmiques associés
et la complexité sont comparés aux résultats existants. Cette approche est
illustrée sur des données réelles dans deux exemples biologiques typiques.
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Abstract

Assessing statistical significance of overrepresentation of excep-
tional words is becoming an important task in computational biology.
We show on two problems how large deviation methodology applies.
First, when some oligomer H occurs more often than expected, e.g.
may be overrepresented, large deviations allow for a very efficient com-
putation of the so-called p-value. The second problem we address is
the possible changes in the oligomers distribution induced by the over-
representation of some pattern. Discarding this noise allows for the
detection of weaker signals. Related algorithmic and complexity is-
sues are discussed and compared to previous results. The approach
is illustrated with two typical examples of applications on biological
data.

Keywords: Promoter sequences, coregulation, motif statistics, large de-
viations, p-values.

1 Introduction

Putative DNA recognition sites can be defined in terms of an idealized se-
quence that represents the bases most often present at each position. Con-
servation of only very short consensus sequences is a typical feature of regu-
latory sites (such as promoters) in both prokaryotic and eukaryotic genomes.

*This research was partially supported by IST Program of the EU under contract
number 99-14186 (ALCOM-FT), REMAG Action from INRIA and IMPG French program.
ILaBRI, Université Bordeaux I, 351, Cours de la Liberation, 33405 Talence, France



Structural genes are often organized into clusters that include genes coding
for proteins whose functions are related. It is common for the genes coding
for the enzymes of a metabolic pathway to be organized into such a cluster.
Other related activities may be included in the unit of coordinated control.
A set of coregulated genes may contain similar promoter sequences, so that,
when needed, the expression of the corresponding proteins is activated by
the interaction of a common transcription factor, the so-called sigma factor.
There exists more than one type of sigma factor, each specific for a differ-
ent class of promoter. Changes in sigma factors appear in some cases when
there is a wholesale reorganization of transcription, in response to general
environmental changes (e.g. heat shock genes). Each sigma factor causes
RNA polymerase to initiate at a particular set of promoters, so that, in vivo,
recognition occurs efficiently only in the presence of the appropriate sigma-
factor, and so that transcription of different groups of enzymes is mutually
exclusive. Research is very active in this area [GK97, vHACV98, RHEC9S,
RVD98, VMS99, VGMMdA00, PMG00, KBCC00, BFW*00]. In these works,
one searches for exceptional patterns in nucleotidic sequences, using various
tools to assess the significance of such rare events.

Large deviation is a mathematical area that deals with rare events; to our
knowledge, it has not really been used in computational biology. Neverthe-
less, our recent results in [DRO1|, that extend preliminary results in [RS97]
show it may be a very powerful method to assess statistical significance of
very rare events. We discuss this approach on two biological examples found
in published papers.

The first problem we address is the following. One considers a candidate,
e.g. a word that occurs more often than expected. One needs to quantify
this difference between the observation and the expectation. Among the
classical statistical tools, the so-called p-values are much more precise than
the Z- scores (or the y-scores). The drawback is that their computation is
considered as much harder. Large deviations provide a very efficient way to
compute them in some cases.

As a second problem, we consider some consequences of the overrepre-
sentation of a word on a sequence distribution . In particular, it has been
observed that, whenever a word is overrepresented, its subwords or the words
that contain it, look overrepresented. Such words are called below artefacts
[BFW™00]. It is a desirable goal to choose the best element in the set com-
posed of a word and its artefacts. It is also important to discard automatically
the “noise” created by the artefacts, in order to detect other words that are



potentially overrepresented. An important example is the noise introduced
by the Alu sequences. An other one is the y-sequence GNTGGTGG in H. in-
fluenzae [Nic00]. We provide some mathematical results and the algorithmic
consequences.

Efficiency of this approach comes from the existence of explicit formulae
for the (conditioned) distribution. Large deviations allow for a very fast
computation. Moreover, due to the “simplicity” of the result -if not of the
proof-, their implementation is easy and provides numerically stable and
guaranteed computations. Hence, they occasionnally correct commonly used
approximations. Still, computing the correct result is much faster and precise
than computing the approximation. Approach is valid for various counting
models. For a sake of clarity, we present it for the most commonly used, the
overlapping model [Wat95].

In Section 4 and Section 5, we validate our approach by a comparison
with published results derived by other methods that are computationally
more expensive. In Section 6, we discuss possible improvements and present
further work.

2 Statistical tools in computational biology

Our aim in this section is not a formal and exhaustive discussion. We rather
remind basic useful definitions for statistical criteria. We briefly discuss their
limits, e.g the validity domains and the computational efficiency. Below, we
denote by O(H) the number of observations of a given pattern H in a given
sequence. Depending of the application, it may be either the number of
occurrences [PMG00, KBCCO00] or the number of sequences where it appears
[BFW00, vHACV98].

Z-scores Many definitions of this parameter can be found in the literature.
Other names can be used: see for instance the so-called contrast used in
[PMGO0]. A common feature is that they compare the observation with the
expectation and the variance. A rather general definition is

E(H) — O(H)

A= )

(1)

where H is a given pattern or word, O(H) is the observed number of occur-
rences, F(H) the expectation and V(H) the variance. Many recent works

3



allow for a fast computation of £ and V', hence Z. Relevant approximations
are discussed in [RLMO00], notably the Poisson approximation V = E. Nev-
ertheless, if Z-scores are a very efficient filter to detect potential candidates,
they are not precise enough. Notably, this parameter is not stable enough
for very exceptional words, e.g. when the expectation is much smaller than
1. This will be detailed in Section 4. Moreover, it is relevant only for large
sequences, and does not adapt easily to the search in several small sequences.

p-values For each word that occurs r times in a sequence or in a set of N
(related) sequences, one computes the probability that this event occurs just

“by chance”:
pval(H) = P(O(H) > r) . (2)

When the expectation of a given word is much smaller than 1, a single oc-
currence is a rare event. In this case, the p-value is defined as: P(O(H) >
r knowing that O(H) > 1), e.g.:
P(OH) > 1)
pval(H) = POMST) (3)

The computation is performed in two steps. The probability that H oc-
curs in a given sequence is known. An exact formula is provided in [RS97] and
used in [KBCCO00]. An approximated formula is often used, for instance in
[BEW™T00] or in software RSA-tools (http://copan.cifn.unam.mx/ jvanheld/rsa-
tools/). Then, a binomial formula provides (2). It may be approximated
[BFWT00] by the incomplete S-function. Nevertheless, any computation is
rather delicate, and machine dependent as numerical stability necessitates a
very careful use of real precision.

3 Main results

3.1 Basic notations

The model of random text that we handle with is the Bernoulli model: one
assumes the text to be randomly generated by a memoryless source. Each
letter s of the alphabet has a given probability p, to be generated at any
step. Generally, the p, are not equal.



Definition 3.1 Given a pattern H of length m on the alphabet S and a
Bernoully distribution on the letters of S, the probability of H is defined as

P() =[] pn

where py, denotes the i-th character of H. By convention, empty string € has
probability 1.

Finding a pattern in a random text is, in some sense, correlated to the
previous occurrences of the same or other patterns [PBM91]. Hence for
example, the probability of finding H; = ATT knowing that one has just
found Hy = TAT is - intuitively - rather good since a T right after H, is
enough to give Hy. Correlation polynomials and correlation functions give a
way to formalize this intuition.

Definition 3.2 The correlation set of two patterns H; and Hj is the set of
words w which satisfy: there exists a non-empty suffix v of H; such that
vw = Hj. It is denoted A; ;. If H; = Hj, then the correlation set is called the
autocorrelation set of H;.

Thus for example, the correlation set of H; = ATT and Hy = TAT is A, 5 =
{AT}; the autocorrelation set of H; is {€}, while the autocorrelation set of
H, is {¢,AT}. Empty string always belong to the autocorrelation set of any
pattern.

Definition 3.3 The correlation polynomial of two patterns H; and Hj of
length m; and m; is defined as:

Aij(2) = Y Pw)z"!,

wEA; j

where |w| denotes the length of word w. If H; = H;, then this polynomial is
called the autocorrelation polynomial of H;. The correlation function is:

D;;(z) = (1 — 2)A;;(z) + P(H;)z™ .

. When H; = Hj, the correlation function can be written D;.



The most common counting model is the overlapping model: overlapping
occurrences of patterns are taken into account. It is as follows. For ex-
ample, consider two oligonucleotides H; = ATT,H; = TAT and a sequence
TTATTATATATT. Sequence contains 2 occurrences of H; and 4 occurrences of
H,, as shown below:

H; H, H;
——
whiteT whiteT ATTTuh@®eT A T &Rtk DHE4ET A T whiteT T T
K + U > > K ,
H, H2 Ho

It turns out [DRO1] that our main results rely on the computation of the
(real) roots of a polynomial equation:

Definition 3.4 Let a be a real number such that a > P(H,). Let (E,) be
the fundamental equation:

Di(2)? — (1 + (a —1)2)Dy(2) —az(1 — 2)D}(z) =0 . (4)

Let z, be the largest real positive solution of Equation (E,) that satisfies
0 < zg < 1. z, is called the fundamental root of (E,).

3.2 p-value for a single pattern

Main result of this section is the theorem below, that provides the proba-
bility for the observed number of occurrences to be much greater than the
expectation.

Theorem 3.1 Let Hy be a given pattern, and k be its observed number of
occurrences in a random sequence of length n. Denote a = % and assume
that a > P(H;). Then:

pval(Hy) = Prob(O(H;) > k) ~ 200\/56 (5)
where
_ Dl(za)
I(a) = a1n<D1(za)+za_1)+lnza , (6)

s o (D) (=)Di)
7 = ala—1) “<D1<za> Dl<za>+<1—za>Da<za>) )



and z, is the fundamental root of E,. I(a) is called the rate function. Addi-
tionnally:
1
Prob(O(Hy) = k) & ——=¢""@ | (8)

oaV2mn

Remark: When a = P(H;), the number of Hj-occurences is equal to its
expected value. Conditional variance o, in (7) becomes: o = P(H;)(24,(1)—
14 (1 —2m)P(Hy)), e.g. the unconditional variance computed by various
authors [Wat95, RSWO00].

Remark: The two probabilities Prob(O(H;) > k) and Prob(O(H;) = k)
appear to be very similar in magnitude. Formulae above provide an attractive
alternative to the incomplete S-function, as they are easier to program, faster
and much more stable numerically.

3.3 Conditioning by an overrepresented word

In this subsection, we assume a pattern H; has been detected as an overrepre-
sented word and we provide mathematical results to investigate the changes
induced on the sequence distribution. Intuitively, the artefacts of an overrep-
resented word should look overrepresented. For example, if Hi = AATAAA,
any word H2 = ATAAAN is an artefact. A rough approximation of its ex-
pected value is O(Hy) x 28 As O(H;) >> E(H,), this is much greater

P(A)
than unconditioned expectation E(H;) X %

in [DRO1], establishes the precise formulae:

. The theorem below, proven

Theorem 3.2 Given two patterns Hy and Hs, assume the number of H;-
occurrences, O(Hy), is known and equal to k, with a = % > P(H;). Then,
the conditional expectation of O(Hy) is:

E(O(Hy)/O(H;) = k) =~ na (9)
where a 1s a function of a, autocorrelation functions and probabilities:

—a D1,2(Za) X D2,1(Za)
= O ) (Di(ea) + 70— 1) (10)

and z, is the fundamental root of Equation ().

Remark:In the central region, e.g. kK = nP(H;), substitutions a = P(H;) and
zo = 1 in (9) yield @« = P(H,), if H; and H, do not overlap.
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Once a dominating signal has been detected, one looks for a weaker signal
by a comparison of the number of observed occurrences of patterns with their
conditional expectations. This procedure automatically eliminates artefacts.
An example is provided in Section 5. It also allows for a choice of the best
candidate between a word and its artefacts.

Computational complexity Another approach is used in Regexpcount
[Nic00]. Although our formal proof of Theorem 3.2 relies on similar math-
ematical tools, our explicit formulae allow for skipping the expensive inter-
mediate computations (bivariate generating functions, recurrences,...), hence
provide a much faster algorithm.

4 Tandem repeats in B. subtilis and A. thaliana

In [KBCCO00], authors search for localized repeats with a statistical filter.
Software Except relies on a simple basic idea: long approximate repeats are
likely to contain multiple exact occurrences of shorter words. DNA sequences
are divided into overlapping fragments of size n. This size n is a parameter of
the algorithm chosen for each run. Typically, n ranges from 250 to 5000. In
each window, the p-value is computed for any pattern that occurs more than
once. As the total number of occurences remains relatively small (typically 3
to 5), exact computation through generating functions is (theoretically) pos-
sible. Nevertheless, this approach, chosen by the authors, is computationally
expensive. Typically, r repeated multiplications of polynomials of degree n.
This gives a time complexity O(nlognlogr), if a Fast Fourier Transform is
used, and numerical stability is rather delicate.

Large deviation computation for rare events reduces to the numerical
computation of real roots of a polynomial equation. This is efficiently im-
plemented in Maple. Results are given in Figure 4 for one 2008 nucleotides
long fragment in A. thaliana where 5 approximate tandem repeats of a 40-
uple were found. For each oligonucleotide, the first value is the number of
occurrences in the window, the second is the probability P(H), the third one
is the p-value computed by our large deviation formulae. The fourth one is
the p-value computed in [KBCC00] with a generating function method and
the last one is the Z-score. We notice that, for any pattern, the p-values
computed with two different methods are of the same magnitude order .
However, then can differ up to a factor 1.72. This can be due to a combina-



| Oligomer || Obs. | Probability | p-value (large dev). | p-value[KBCC00] | Z-score

AAGACGGTT 311876 x 1076 2.186 x 1076 2.780 x 1076 48.95
AATTGGCGG 218428 x 1077 8.059 x 104 8.343 x 104 48.71
ACGACGCTT 41 1.455 x 10~ 1.604 x 10~° 0.982 x 10~? 74.01
ACGCTTGG 411.107 x 10 5.374 x 10719 4.391 x 1019 84.93
ACGGTTCAC 311.455 x 10~ 2.265 x 107 1.458 x 10°° 55.49
GAGAAGACG 5| 5.487 x 1077 0.687 x 10~ 1.180 x 10~* | 151.10
TTTGTACCA 318430 x107° 4.350 x 10~° 4.611 x 1075 22.96

Figure 1: Measures on the 7 oligonucleotides considered in [KBCCO00]

tion of several factors, like the approximation done in our calculations and
the possible numerical instability of computations in [KBCCO00].

On the other hand, the last column of the table confirms that Z-score
is not adequate for very rare events. Patterns AAGACGGTT and AATTGGCGG
have the same Z-score 48, while p-values have a ratio 100. For patterns
ACGACGCTT and ACGCTTGG, the two parameters define a different order. The
same inversion appears between AATTGGCGG and TTTGTACCA.

5 Polyadenylation signals in human genes

In [BFW100], Beaudoing et al. study polyadenylation signals in mRNAs of
human genes. One of their aims is to find several variants of the well known
AAUAAA signal. For this purpose, they select 5646 putative mRNA 3’ ends of
length 50 nucleotides and seek for overrepresented hexamers. Pattern AAUAAA
is clearly the most represented: it occurs in 3286 sequences, for a total number
of 3456 occurrences. Seeking for other (weaker) signals involves searching for
other overrepresented hexanucleotides. Nevertheless, it is necessary to avoid
artefacts, e.g. patterns that appear overrepresented because they are similar
to the first pattern. The algorithm designed by Beaudoing et al. consists in
cancelling all sequences where the overrepresented hexamer has been found.
Hence, they search for the most represented hexamer in the 2780 sequences
which do not contain the strong signal AAUAAA.

Here we show how Theorem 3.2 gives a procedure for dropping the arte-
facts of a given pattern without cancelling the sequences where it appears.
Figure 5 presents the 15 most represented hexamers in the sequences consid-




Hexamer H Obs. ‘ Rank H Exp. ‘ Z-sc. ‘ Rank H Cond.Exp. ‘ Cond. Z-sc. ‘ Rank H

AAUAAA 3456 1| 363.16 | 167.03 1 1
AAAUAA 1721 2| 363.16 | T1.25 2 1678.53 1.04 | 1300
AUAAAA 1530 31 363.16 | 61.23 3 1311.03 6.05 404
UuuuuU 1105 4| 416.36 | 33.75 8 373.30 37.87 2
AUAAAU 1043 o || 373.23 | 34.67 6 1529.15 -12.43 | 4078
AAAAUA 1019 6 || 363.16 | 34.41 7 848.76 5.84 420
UAAAAU 1017 7 373.23 | 33.32 9 780.18 8.48 211
AUUAAA 1013 8 || 373.23 | 33.12 10 385.85 31.93 3
AUAAAG 972 9 || 184.27 | 58.03 4 593.90 15.51 34
UAAUAA 922 10 || 373.23 | 28.41 13 1233.24 -8.86 | 4034
UAAAAA 922 11 || 363.16 | 29.32 12 922.67 9.79 155
UUAAAA 863 12 || 373.23 | 25.35 15 374.81 25.21 4
CAAUAA 847 13 || 185.59 | 48.55 ) 613.24 9.44 167
AAAAAA 841 14 || 353.37 | 25.94 14 496.38 15.47 36
UAAAUA 805 15 || 373.23 | 22.35 21 1143.73 -10.02 | 4068

Figure 2: Table of the most frequent hexanucleotides. Obs: number of ob-
served occurrences. Ezp.: (non-conditional) expectation. Cond.Ezp.: expec-
tation conditioned by number of occurrences of AAUAAA.

ered in [BFW™00]. Columns 2 and 3 respectively give the observed number
of occurrences and the rank according to this criteria. Columns 4, 5 and
6 present the (non-conditioned) expected number of occurrences, the cor-
responding Z-score and the rank of the hexamer according to this Z-score.
Here, the variance has been approximated by the expectation; this is possible
as stated in [RLMO00]. Remark that rankings of columns 3 and 6 are quite
similar: only patterns UAAAAA and UAAAUA do not belong to both rankings. A
number of motifs look like the canonical one: they may be artefacts. This is
confirmed by the three last columns which present, respectively, the expected
number of occurrences conditioned by the observed number of occurrences
of AAUAAA, the corresponding conditioned Z-score and the rank according to
this criteria. It is clear that artefacts are dropped out, generally very far
away in the ranking. It is worth noticing that some patterns which seemed
overrepresented are actually avoided: this is the case for AUAAAU which goes
down from 5th to last place (among the 4096 possible hexamers, only 4078
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are present in the sequences). As AUAAAU is an artefact of the strong signal,
this means that U is rather avoided right after this signal.

The case of UUUUUU in rank 2 is particular: this pattern is effectively
overrepresented, but was not considered by Beaudoing et al. as a putative
polyadenylation signal because its position does not match with observed re-
quirements (around -15/-16 nucleotides upstream of the putative polyadeny-
lation site.) It should also be stated that the approximation of the variance
by the expectation that we do for all patterns is not as good for periodic
patterns like UUUUUU as for others [RLMO0]. By this way, variance of UUUUUU
is underevaluated; so its actual Z-score is significantly lower than the one
given in the table.

Now overrepresentation of AUUAAA (rank 3) is obvious; this is the known
first variant of the canonical pattern.

We remark that the following hexamer, UUAAAA, is an artefact of AUUAAA.
It suggests to define a conditional expectation, or, even better, a p-value that
takes into account the overrepresentation of two or more signals instead of
one: in this example, AAUAAA and AUUAAA. This extension of Theorem 3.2 is
the subject of a future work.

6 Conclusion and Perspectives

In this paper, we illustrated a possible use of large deviation methods in
computational biology. These results allow, in some cases, a very fast com-
putation of p-values that is numerically stable. These preliminary results are
quite appealing and should be extended in several directions. First, it may
be necessary to eliminate several strong independent signals [BEWT00]. A
second task is the simplification of our formulae for artefacts: this would al-
low to achieve automatically the choice between a word and its subwords. A
third task is the extension to the computation of the p-value for a set of small
sequences. Finally, regulatory sites may also be associated with structured
motifs [MS00] and extension to this case should be realized.
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