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Une méthode géométrique et un algorithme de
décomposition dimensionnele pour les équations de
Nayvier-Stokes 3-D compressible dans une turbine

Résumé : En utilisant le calcul tensoriel, nous dérivons les équations de Navier-Stokes sur une
variété bidimiensionnelle qui repésente la surface de courant. Nous définissons ensuite la fonction
de courant et nous dérivons les équations qu’elle satisfait. Un nouvel algorithme est ensuite proposé
basée sur la décomposition dimensionnelle. Ce nouvel algorithme est différent de la méthode de
décomposition de domaine. Dans une méthode de décomposition de domaine il faut résoudre des
problémes tridimensionnels dans chaque sous-domaine, alors qu’avec notre méthode nous avons
seulement des problémes bidimensionnels & résoudre dans chaque sous-domaine. Une expérience
numeérique concernant ’écoulement dans une turbine est présentée.

Mots-clés : couche de courant, surface de courant, méthode de décomposition directionnelle,
équations de Navier-Stokes, écoulement dans une turbine.
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1 Introduction

In [1], the authors studied two dimensional flow on the stream surface, derived a nonlinear bound-
ary value problem satisfied by stream function defined on the stream surface,and studied its finite
element approximation. In this paper we used classical tensor calculation to derive Navier-Stokes
Equations on the stream surface which are difference from that in [4]. Based this author proposal a
new method called "dimension split method".Main idea is to split the 3-D flow into a series of 2-D
problems on the stream surface and an one dimensional problem. Essential idea is how to generate
the Riemann Structures of the stream surface by using an order differential equation with initial
data. Indeed this method is a new kind of domain decomposition method. In our method,the
three dimensional domain occupied by the fluid is decomposed into several stream layers, therefore
a parallel algorithm can be applied. But the method is different from the classical domain de-
composition method because we only solve a two dimensional problem in each subdomain(stream
surface layer),instead of solving a 3-D problem.
As well known that On 2-D plane flow one can introduce a stream function :

o __, 9
or 7 Oy

= /u/y,

and convert the Navier-Stokes equations in velocity-pressure form
—Mu+ (u-V)u+Vp=F,

in the stream function form

2, 0¥, AY)

(1.1) AA*Y + 0wy rot f,
where u = (ug,uy) is the velocity field. Here the flow is assumed to be flat even the trajectory of
the fluid particle is plane curve. The plane flows means the flow on any plane perpendicular to
z-axes have the same dynamical behaviors.

By similar manner a two dimensional surface flow,as a flow on the two dimensional Riemann
manifold S with metric tensor aqg,if only if

(a) the velocity vector u = (u',u?) should be on its tangent space T'S;

(b) the flows on any geodesic superparallel surface have the same dynamical behavior.

We can derive the Navier-Stokes equations described two dimensional viscous flow on the 2-D
maniflod

(1.2) Oiu+ %uu—l/gu+Ku+€p:f,divu:o.
which are different from [4],where K is Gaussian curvature of S and
3 'l,[} = aaﬂ %a%ﬁ L

is a Laplace-Betrami operator on S.

If a flow is three dimensionl and we can define stream surface which is a two dimensionl manifold
S such that the velocity of the fluid at a point on it is on tangent space T'S at this point we derive
Navier-Stokes equations on it under a semigeodesic coodinate system:

our o

(1.3) —)\(5 u® + Ku®) + v {75 u® + a*? {7,3 p=[f+ /\(——8£2 +2(H65 +b%) o€ ),
0*u? ou’ 0 * *
2\ — - == a a By _ a, B 3
(1.4) )\(8{2 +2Hc‘9§)+8§p 2M\(u® Vg H + b3 Va u”) = bagu®u” + f°,

* 3
divu+aai£:0.
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It is shows that a flow is 2-D flow on a 2-D manifold if only if

Oy ou?
——— + 2(H +b5)—— =0.
662 + ( A + )\) 66
and third component of exterior fore f satisfies
—2A\(u® Vg H + b Va u) = bapu®u? = f2.

It is obvious that f3 = 0 for the plane flow owing to bag =0 and H = 0.
We define a stream function 1) on stream surface S:

eu*=e* Vg, Vs =eegar?,

where €3, is the permutation tensor on S and e(z) the thickness of the stream layer.Substituting
it into (1.3) we obtain

(15)  NA )+ T T 00V C Ta) 9 C 9o 9] = (7 - M),

where
* aaﬁ *

L?p =Va (T vﬁ ¢)J

and I(u) is defined by (3.27),a*”, a,g are contravariant and covariant metric tensor on S, A = Re~!
and Re the Reynolds number of the flow.
If the flow is a plane, e(z) is constant and I(u) = 0,

a®? = aap = bap =0, Eag&‘ﬁ}‘ =1,-1,0.

It follows that

e o Yy (L) = 2BV

8(1;171.2) 2 A¢)

1
b
oB *)\ 1 = * 1 =

Y (gva¢)VA(gVﬂ¢):0-

This ensure that (1.6) becomes (1.1).
Equation (1.6) includes inner geometry of 2-D manifold S. In Riemann manifold, the order of
the covariant derivatives can not be commuted because of

%a%ﬁ A :%ﬁ%a A+ R 5,0°,

and the Riemann curvature R.)‘aﬁo is not equal to zero usualy. Therefore (1.6) is different from
(1.1). Indeed, the observer is now in a Riemann space instead of an Euclidean space.

Second purpose of our paper is to develop a dimension splitting method for the 3-D Navier-
Stokes equations.nnnnn

2  Stream Surface and Stream Layer

Firstly, let us introduce some new concepts of Stream Layer.

"Stream Surface": A two dimensional manifold S is called a stream surface if the velocity vector
of the fluid at any point on S lies on its tangent space T'S at this point. There exists an unique
stream line passing a point on S and the interline between two stream surfaces is a stream line.

It is obvious that the stream surface which passes a given point in Q C R? occupied by viscous
fluid is not unique. There are two sort of stream surfaces, one is with boundary which is a part of
the boundary 012, the other is without boundary.
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"Stream Layer": The domain Q¢_;, which is surrounded by two geodesic parallel stream sur-
faces(PGSS) S;_1 and S;, is called a stream layer. For the first sort of stream surface, the boundary
i | =00nN: | is called lateral boundary of the stream layer, S;_; and S; are called lower and
upper surface of stream layer respectively. The Geodesic distence between two PGSS is called
thickness of stream layer and denoted by e. In general () is a fanction of point in §.

For every point in the stream layer, there is a unique geodesic parallel stream surface between
S;_1 and S; which passes this point.

Remark 1 we give an example to generate stream surfaces and compute its metric tensors.

Assume that x = (2!, 22, 2%) is a curvilineal coordinate system in Euclidean space R3. Let u be
the velocity of fluid particle, and z(t) = (x'(t), z%(t),z>(t)) be the path followed by fluid particle.
It is well known
(2.1) (é—f =u(z(t),t) z(0) =z
A stream line L at fixed time is an integral curve of (2.1), i.e. if 2(s) is a stream line parametrized
by s at the instant ¢, z(s) satisfies

dz
(2.2). 7= u(z(s),t) for fixed ¢
A trajectory is the curve followed by a particle as time proceeds. Therefore, a trajectory is a
solution of the differential equation (2.1) with suitable initial condition. If w is independent of ¢
(i-e. g—g = 0), the stream line and trajectory coincide. In this case the flow is called stationary.

In particular, we will deal with stationary flow. So (2.1) can be rewritten as

dx
(2:3) 75 = wx(s),  zls=o = 20(7)
Here we assume that the initial data zy depend upon one parameter 7. For fixed 7, (2.3) describe
a stream line and therefore a trajectory.

Assume that z(s,7) = z(s,zo(7)) is a solution of (2.3) and the Jacobian matrix reads

A(xt, z?, 2°)

(2.4) T67) = =567

In sequence, we assume that the initial data ensure that J(s,7)|s—¢ is nonsingular, i.e.
(2.5) RankJ(0,7) = 2.

Hence, we can choice ¢! = s,£% = 7 as the coordinate system on S. Let g;;, 9% be the covariant
and contravariant tensor of R® in local coordinate system z’ respectively in the neighborhood of
xo. Then the metric tensor aqp of two dimensional manifold S is given as

o L, e
. aa,@—gz]afaaé_ﬁ.

In view of (2.5) ,5% and 8% are independent,therefore det(aqg) # 0.

Later on, for further simplification we shall adopt the so-called Einstein summation conventions
in notation.
Combining (2.3)(2.6) leads to

(27) i Oz 8z§ ozt ox? Bzg 8z6

— ozt 8xd _ B0, — 2
a11 = gij 5et gez = Giju'w! = [wl*,
12 = 21 = GijW' 5.k 7> 022 = 9ij 5gF 51 D7 o7 -

where Jacobian matrix

1 .2 .3
2.9 o] = G20 ) i = i, m0(r)

(20,25, 75)’
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satisfy the following linear system of variationl equations

ot ou™ m m
(2.9) 8: = Wﬁm Or'ls=0 = 6.

According to the ordinary differential equation and the definition of the manifold, we assert
that the stream surface can be generated by the solution z* = z'(s,7) of (2.3) locally.

3 Nayvier-Stokes Equation Under Semigeodesic Coordinate
System

3.1 S-Coordinate System Based on the Stream Surface

In the sequel, we will study the N-S equations under a semigeodesic coordinate system based on
stream surface.
Assume that S is a two dimensional surface,P is a point in the neighborhood of S. O is the
original point.Therefore
R=0P =7+ ¢(#, 7= OP,, P,P =it

where P, is the intersection point of normal to S to P,i is a unit vector along P,P. Let (z!,z?)
be a coordinate on S, P can be described uniquely by (z!,z2,¢) which can be regarded as the
coordinates of P and is called S-coordinate system. Its basic vectors are
) .
ea:Ra:ra+£na; €3 = 6_§:n
In[5,Th.2.6-2] it shows that if :R? D D — R? is a C®-mapping,then the canonical extension
R of the mapping 7 defined by R(z,¢) = 7(z) + &ii(x),V(z, €) € QF is a C'-diffeomorphism from
QF onto E(QE) and and three vectors €, = R_'a,e'é = %are linear independent at all point of
Q¢ therefore (z,£) can be regarded as a coordinate in R® and called semigeodesic coordinate based
on surface S ( for simplicity,it is called S-coordinate System).
The first, the second and the third fundamental form of S are given by
Aap = Faf:g, baigA: ﬁFag = —%(ﬁaﬁg + Faﬁg), Cap = ﬁaﬁg = a*"ba)\bga;
a®Pagy, =62, bPbgy = 6%, e cpr = 65; 0% = a*aP7by,, P =a*aPcy,.

Mean and Gaussian Curvature H and K of §

_ det(bag) B 1 B
~ det(aqg)’ H= 2¢ bag-

Then it is easy to show following relation which will be frequently used
(3.1) K aag — 2Hbag +cag = 0, a*® — 2H} + K& = q;

Assume that €% e, are the permutation tensor on S defined by

Va, \/LE’ (o, B) : even permutation of (1,2),
€ap =4 —a, €ap= —%, (o, B) : odd permutation of (1,2),
0, 0, otherwise,

Then following formulae are hold

a)\a' — 8Aa€0ﬂaaﬁ’ KE)\(T — E)‘aEJBbag, K2é/\o' — EAaEUﬂCalg,
(3.2) Ea)‘&‘ﬁabagb,\g = 2K, Ea’\&"gaaagb)\a = 2H,
P chpere = 2K2,  £**eP7byper, = 2HK.
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b%Pcap = 2H, & =056, o =bgby, Kbg =2H,

K2a,38%% = 4H? — 2K, Kb,pe™® = 2H,

&by =07, carby = 2Heag — Kbag, &b,q = b,

b*cop = bg‘, baﬁbag =a*cy, = 4H? - 2K, b“ﬁcaﬂ =8H® -6HK

(3.3)

Furthermore, we have the following lemma,the proof is omitted.
Lemma 1 Under this coordinate system, the metric tensor, Christoffel symbols and the
covariant derivatives read

9o = Gap — 26 baﬂ + 62 CapB; 93a = Ga3 = 0, g3=1;
(34)
. gaﬁ — 0—2 Gaﬁ’ g30t — ga3 — 07 g33 = 17 g= det( ) a, a = det(aaﬂ)

where § =1 —2H ¢+ K €2, G*P = qF — 2K £b°P + £2 K2 ¢oB

35) T _rvaﬂ +OIRY 5, TS = 0715, T35 =Jup, T3 =T3, =T% =T3, =0.

*
Vau? =Va uf + 071(IPu® + Rzl\u}‘), Vaud = ggj + Japu?,
(36) Viud = 88—123, Vauf = % +0718u*,  rotu = (rotu)*e; + (rotu)37,
. *
divu =div u + 88—“; + u® %a 1n0+u3%9§‘/6),

(rot(w))* = 0716 (Vg u — gar 2, (rot(w))® = e gaa[97! Vo w* +672R), 0],

The Laplace operator can be expressed by

.. * * uﬁ
Au® = ¢giV,V,u® = gﬁo* VeV u® + Sk 2K 858 — (b + H6Z) %%
+071g%7 [(2R3\6; — Rp,6%) Vo u + 213 va W + (Vg Ig + 071 (RG\I2 — ITR), )]
+(07'¢%7 [V RS\ + 6 (RS, Ry, — R}, RY4,)] + 0 26%(K —4HKE + 2K (2H? + K)&? — AHK?¢®))u

Aud = g1V, V08 = g7 NV, ub + G + 2071 (Ke — H)BE — 071215 ¥, v + g% B, Vi o)
+977 (Vg Jon + 07 (Jpu RYy — JoaRS,)u? + 2072(K — 2H? — 2HKE + K262)u

AT+W8W(\/_( 2Kba5£+K2AO‘5§2)8 )

AT = ,
+073G (2 Vo HE= Vo KE) L + 6 (—H + K€)OT + 2T

@
!
@

where F*"’ag, 3, div, %a are the Christoffel symbols,Laplace Operator, div and V,, are on S,and
I§ = —b% + K63, Jap =bap — Ecap, RS, = — Vp 026+ Kb% Vg b€
In particular,é = 0,and u® = 0 on S ,then

37) 9aB = Gap, a3 =g3a=0,g33 =190 =a*P, ¢g¥=¢g%=0,¢9%=1,9=a
- * .
T, =T"ap, T8 =08 TI3;=bas, T%=Ti=0,

(3.8) Vau? =V, uﬂ, Vsuf = bﬁu Vaud = 8" + bagu Vsud = 88’2 ,

*
divu =div u + 8—“5, rot( ) = —saﬁa[g)\a—g, rot(u) =eP%ap) Vo u
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Au® =A u® + 852 - (ba+H6a)8“ + Ku®,

(3.9) Aud —855 —2H‘9€ +26% v, u + 208 Vg H,
AT AT+852 - HE.

where we use
* 3 of * % 3 * 3
Au’ =a*” VoVgu’ =0, V,u°=0 on §

by virtue of 43 = 0 on S. In sequece we will use notation

(3.10) rot u = [rot(u))®|s = eﬁ"am %U w = €ap V* uwf =P vy, ug

and it is called Curl operatornon on stream surface.

3.2 The Navier-Stokes Equations Under S-coordinate System

Let us consider stationary compressible viscous flow in turbomachinery. We employ coordinate
system fixed with impeller rotating around axis z with angular velocity w. Then govering equations
are given by

div(pw) =0, Continuous Eq.

—pAw + pwVw + V(p — §divw) + 2pw x w = pw x (w x R) + f,  Moment Egs.
div(pEw) + pdivw — div(kgradT) — ® =0, Energy Eq.

p=p(p,T), State Eq.

(3.11)

where w is the relative velocity of the fluid with respect to rotating coordinate system, p density,p
pressure,E = C, T interior energy per unit volume, C, constant for ideal gas, T temperature,x
heat conduct coefficient, v = ’é dynamical viscosity constant; 2w X w coriolis’s force, F =
% +w X (wx R), exterior and centrifugal forces per unit mass; and o stress tensor,® diccipative
function are given by

g 2 g g g 1. . o
(3.12) o =(—p+zp div w)g" +2pe(w), eY(w)= i(V’w’ + Vuwt).

3

.. 2 .
(3.13) S = 2pe¥ (w)e;;(w) + gu(divw)z.
Some time, instead of energy equation,one emploies entropy equation

as 1

(3.14) T WT

( AT + ®/p).
where S = Rlog(T77 /p) is entropy and W = gijwiwd.
By lemma 1 innertia terms and Coriolis’ force read :

w!Vjw® = wh %g w“+w38w +6- 1[2Iﬁwﬂw + R, whw?)
(3.15) wVw® = wh %gw + w3 2% ‘9“’ + Japww?,

w X w)® = 0g*Pe ,\w)‘w3—w3w)‘ w x w)3 = BeqgwwP.
B8 6

where we used lemmal and €343 = fe43. Then we obtain
Lemma 2 The Navier-Stokes equations (3.12) under S-coordinate system can be readed
(3.16a)

—ulg” V,@Va +28 12071 (2K 65¢€ — (b + H6)) 2

+07"g% (264 RS, — RY,68) Vo w* +2I5 Vo w?) + g% (07" Vg I2 + 6-2(RS, T2 — ISR, ))w?
+(0 3K 63 (1 — AHE + (AH? + 2K)¢% — AHKE®) + 671957 Vg RS, + 0~29°°(Rg,RY, — R}, R}, ))w

+pwP %g w® +pw38w + p07 ' 2IFwPw? + R\ wlw?]
+gaﬂ %,3 (p _ %(dlv +8w + w® Va né +w 381n(0\/_a)) + ZpHg“BEm(w’\'w3 _ w3w)\) Fe,

g
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(3.16b)
~ulg% VsV w* + S8 + 2071 (K¢~ H) 2L — 9721 v, w* + g% R}, Va v?)
+997(Vp Jor + 61 (J5, RYy — JoaRY,))w +20-2(K — 2H — 2HKE + K262)w?]
e — %(d;v w+ % +w* Vo Inf + w37‘91n§)€5ﬁ)))
+pwP %ﬁ w® + pw388—“§ + pJapww? + +2p09%Pe gy (WA — wW3WH)) + 2pfe4pw WP = F3;

3

(3.16¢) div (ow) :d’i‘v (ow) + agz] + ow® %a Inf + ow 5 ;

;0In(6/a)
€ =0

Concerning energy equation (3.15) we recall lemma 1 and

& = 2u(e (w)eas(w) + 265 (w)esa(w) + P w)ess(w)) + 5 p(divi)?,

1 * * 1
€as = §(gﬁ,\ Va 0t + gax Vg w) — 02 Jogw® + i(gaAng + gaaR), 0" .

Theorem 1 The Navier-Stokes equations (3.12) and (3.15) on S (£ = 0,43 = 0) can be written
as

(3.17a) —H(A w® + Kw®) + pw” %Ig w® + a*” %,6 (p— % div w)
8w Suw?
« A _ o o o
—2pa ﬁ&[@,\w Wwi=F +/L(—a—§2 + 2(H6S, +b)\)a—£),
0%w? ow? 0 0o
1 u(EY e om Ty L By
(3.17b) ( ez + 8£)+8§(p 3dlvw)
= 2p5aﬁwawﬂ + 2p(w™ %g H + b3 %a w) — pbagwawﬁ + F3,
; 0(ow)?
(3.17¢) div (pw) + =0,
o€
* 1 * 0*T oT
.1 = ——(k(AT +— — 2H— Py).
(317d) (V)8 = g (R(AT + 5 =2 50) +30)
where

- 1 ow* dwP 2 | x (w)?
_ ad  f[Bo - -z - _Z
Dy = 2000”7 eqpens +2,uaag 9 ¢ 3u(dw (w) + o ).

Remark 2 Theorem 1 shows that a flow is a curve flow on the two dimensional manifold if
only if

O w? ow?

=0, el

and third componet of exterior force I is not independent it is necessary to satisfy

=0,Vi=1,2,3;

(b) F3 = —2pe pwwP — 2p(w® %g H +bj %a wP) + pbasww?.
We have following lemma concerning rule of operator commutation:

Lemma 3

* * *

(3.18) rot (3 u+ Ku) —Arot u; rot (u- V)u) = (u- V) rot u + €45 V* u? %,\ ul.
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Proof Note
* * AV ﬁ"( * * * @
rotA u =exqa” a”" V,VgVy u”.

We use the Riemann curvature tensor R) 3+ to change the order of the derivatives:

ok K * ok x * n *
Vv VsV u® =VVuVy u® + Rguﬁ Vy u” — R"/Vﬁ Vi u®

* * ok * *
:Vﬂ (V’qu u® + Rfrx]y'yun) + R?;uﬁ V’Y (e RZVﬂ V’? u®

* ok k * * * *
=VgV4Vy u*+ Vg (R?;u'y)un + R%V’y Vp u" + R?;Vﬂ Vo — R‘nYVﬁ Vi u®.

By virtue of
of * *
Ea,@b =0, y Vi €apg =V Qqp = 0

and
(3.19) Raﬁ)\'y = blg)\ba’y - ba)\bg—y; bi‘bg&alg = KE)\,,
we derive that

exata” Vg (RS,,) =V (Exat™’ a”a® (byybsy — boybny))

=Vgs (a,\ab’n\baﬁ - 8,\ab)‘abg) =Vg (K&g)

Av a Av a
exaa™a? R, = Kel, e’ RE,; = Ke],

nvy
6>\aa’\”aﬁ”’RZUﬁ = 200" @70 (by,by5 — boubyp)
= exa (M — 2HWM) = €340 a" (~KaP7) = —Ke.

>From this, it follows that

* % * ok * * * ok *
rotA u =Arot u + a5 VP Ku® — K rot u =Arot u— rot (Ku).

Now we consider the inertia term.

* *
[e%

* * * * * *
rot (uP Vg u) = exaa™ V, (0P- V5 u®) = uPeraa™ V, Vs u® +eraa™ v, (v°) Vp u®.

Applying the Riemann tensor and (3.19), we have

*

* ok PR *
uﬁs/\aa/\u VVVE w® = ’U,B VEVV (E)‘aa/\uua) + UBE,\aa’\aRg,,gU" — uﬁ VgI'Ot} u,
and
weraa** RS, pu" = uPeara™ a®* (bugbny — buybnp)uu” = ead(b3b) — b**byg)u’u = 0.
Therefore,
* * * * *)\ *
rot (uﬁ Vg u) = uP Vprot u +exg V uP Vs u®.

The proof is completed.
Theorem 2 The Navier-Stokes equations(3.17) on S can be rewritten as

,

—p Arot w + p(w- %) rot w + peap V* wt Va wf + ap(w- %)wﬁ Vep
+2 %)\ (pwiw?) —rot (F — l(w)),

(3.20) § n(-%% +2HY) = (F° — T\/E H +4H? — 2HK — pbagw®w®)
—2pe qpww® + 2u(wP Vg H + b3 Vo wP),

div (epw) =0,
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The energy equation on S reads

* 8T oT ow’
(AT+6—£2_2H8£)+CUPW VaT+p(dsz+8—€)
* * 1 (9w owl 2 ow’
_ af _ = Z - 7= ; )2 =
21 e (w) eqp (w) 2u 9 ¢ + pu(div w + 3¢ )2 =0.

Here we use A w® =0 on S owing to w® = 0 and ¢ and I[(w) are defined by

,O0lne  Ouwd
(321) w Oz = W on S
and
N ?w™ N
(3.22) *(w) = — e +2(H6Y +b5)—=— 5
respectively.

Remark 3 ¢ defined by (3.21) has clear mechanical meaning. It is a related thickness between
two streams(seeing in[5])which is called the related thicknees of stream layer in sequel.
Proof Multiplying and contracted index

exat™ V
on both sides of (3.17) and using

*

eraa™” %,,zrot7 exaa™a® %,,67 (p— % d>ikv w) =0,
and
Exa@” %u (2pa*Pegww?) = 2exqa™ a*Peg, %,, (pww®) = 26"Peg, %,, (pw w?) = -2 V,, (pw”w®)
we obtain

—L rot (A w+ Kw)+ rot (p(w- %)w) +2V, (pw’w®) =rot (f — l(w)).

Applying lemma, 4 leads to the first of (3.20).
Next we prove the second of (3.20). It is well known that the components of the stress tensor
along normal to the stream surface S is proportional to mean curvature H of S. In S-Coordinate

System we find 033(w) = —7H, where 7 is a proportional divisor, and
ou? :
o%(w) = 2pe* — g®(p - % le) =2~ (0 - 3 divw)
Therefore
2u68w —(p— % div w) = —7H.
We assert 5 e 920?
B w

2 p-tq o

85(1) 3 ivw) = T8§+ a2
On the other hand (see[3])

O0H

9% _\/A H+4H? — 2HK.
ag VAam+

It follows that

0

% +T\/AH+4H3—2HK

b
b =2
(p 3dlvw) “852
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Combining above results, we derive

82 3 o 3 *
pl= g +2H 5) = (F° VA H 445 ~ 2HK — phogutu?)

—2p5agw°‘wﬁ + 2,u(wﬁ %g H + bg %a wﬁ).

This is the second of (3.20).
According to the theory of the first order partial differential equations, there is an integral
factor e(x) such that
«0lne  9(ow?)
dz> O3

By substituting above into (3.17c), the continuous equation can be expressed by

ow on S.
%a (eow™)=0 on S.

This leads to the last equation of (3.20).Applying lemma 3 complete our proof.

4 Stream Function Equation On the Stream Surface

In this section we will define the stream function 7 on S and derive the equation satisfied by .
>From the third equation of (3.20), we can define the stream function as follows

(4.1) gswﬁ =Pry, P, Vot = gesgawﬁ,

where €3, is the determinant tensor on S which is defined by (3.4).
In view of (4.1), we assert that

(4.2) 10t w =V (exaa™u) = = Vg (- Yy ¥) = ~L.

Substituting (4.1) and (4.7) into the first equation of (3.23) leads to an equation for stream function:
* 1 af & * af & 1 = */\ 1 =
A (LY)+ 26 Va ¥ Vi (L9) +pe™ Vi (22 Va9) V2 (22 Va ¥)

gaﬁ * * 1 = * * w3 * *
(4.3) +p_E Va¥ Vg (E Vi) VY p+2e* v, (? Vg ¥) =rot (f — pl).
Furthermore we must compute dissipative function via stream function. To do this recall
(4.4) Vo’ =Vad® =0, V. €8y =Va agy =0,
and by elemental calculation, it follows in view of (4.1) that
B (1) = L (a0 5 af PTG ) = LA S (oLl gy
(4.5) € (w)—i(a Vyw™ +a”" Vyw )—EA Va (e p 7 Vy ¥);

(4.6)

*

e (w) elp (1) = aavagy € () € () = B Ty (92) 7 V1 9) Vs (02) " o 9°),

(4.7) AXPNY = 0ABY L gPRear, BAOIT = g A1 0T A
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In addition,by vitue of (4.1),

(4.8) divw|5 = ngEflgaﬁ %a P %,3 p-

The density p of the fluid is a function of Vi which is defined at each point by the relations
for perfect gas:

aB
(4.9) P — g 4 kg =0, ¢2b2VYVY = as—zVanﬁ

where p denote p/ps, &k = %('y — 1)a2p?, ps,as denote the stagnant density and stagnant speed of
sound at the reference point.

(4.3) is a fourth order of nonlinear elliptic equation with respect to unknow 1. We have to
impose boundary conditions. Suppose boundary I' =T’y [JI's |JT'p of S consist of three components
where I'g is the inlet and exit of the flow, I'; intersecting between S and the walls, and ', an
artificial boundary. The boundary conditations are described as follows:

8 *
’dj I, = ws: %hs = Oa #aaﬂ VB ¢Ta|ro = waTa = go,
s 8 8
(410) ¢|Fp1 = ¢|Fp2+ Ga B_Qf"hzl = %Hw;
1 af o _ 1 _af o
250" Vg ¥7alr,, = ;0" Vg ¥Talr,,

*
wherel'), = T';;; [JT'p2, 7 is a unit vector normal to the boundary lying in the tangent plane of S,G
is the mass flow.

If flow is three dimensional then

ow®*

o€

(4.8) will couple with a one dimensional equation.

#0, hence I(w)#0.

5 Finite Element Solution

Let
ou ou ou
V= {ulu € H2(Q)7U|Fs = Ehjs = 07U|Fp1 = u|rp27 Ehpl = Elfﬂ}

be a Hilbert space. Let

. *\ _ i* o . . af & i* oo
(5.1) a(p,¢,¢)—u/55_pA¢A¢ ds, al(/’:d);d’)—ﬂ/sa Vagpvgwmp ds.

(52) Bloiw,v) = [ L0 ¥ v ¥a (D)4
S 3
* Eﬁa * * a,)"y * Eaﬁ * * * a,)"y *
P Va (E Vs ¥) Vs (5 Vo Y)W + 5 VapVa ¥V (g Vo P)*]dS,

w3 * * *
(5.3) Cy, ") = 2/ —eM Va ¥ Vy 97dS,  (f,9%) = (W)z/ peara®Pr? Vg *.
Q € Q

Note that

/ Lol G, g Vs (Dp)udS = / e 5 6 Vo (Las.
s € s ¢
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In addition,assume that there exist a ¢ € H2(f) such that ¢ satisfies boundarary condation
(4.10).Then variatiational formulation for (4.3) reads

find ¢ €V such that

(5.4) a(p; vo +¥,¥") + a1(p; o + ¥, ¥*) + B(p; tho + ¥, ¥*) + C(¢o + 9, ¥7)
={f,v*}, W eV
Suppose that Vy = {¢;,i =1,2,---, N} is a conforming finite elemnet subspace which is dence

in V. let ¥ x = 1o + c'¢; € Yo + V. Then finite element approximation is given by

find ¢Yn € {V +1o} such that
(5.5) a(pn; Yo + YN, ¥N) +a1(pn; Yo + YN, YN)
+B(pn; Yo + YN, UN) + C(o + YN, ¥N) = {f, 98}, Yoy eV

where pn = p(to + 1¥n).The corresponding algebraic equation is
(5.7) A(C)CF — F(C) =0
where
Agi = a(pn; Yo + bk, bi) + a1(pn; Yo + bk, di) + C(ho + ¢, ¢i),
Fi(C) = B(pn; o + YN, ¢i) — (f, ¢i)-

Following lemmae show the relationship between density p and flow Mach number M (see in

[1]):

lemma 4 In the compressible flow of perfect gas, p' = g—fl’ and M satisfy

2K
v+1

2K v—1
2pp’ = 14+ ——M?*)/(M*-1), —200' =
pp 7+1( + )/( ); oo

1+ 15y (07 - 1),

where 0 = p~ 1,k = TR
sls

lemma 5 p and o are descreasing and increasing monotone function with respect
to ¢ respectvely

(p(qr) — p(@2))(@1 —2) <0,  (p(q1) — p(@2))(q1 —q2) >0, Va1 # a1

lemma 6 The quasilinear form a(-;-,-) defined by (5.1) satisfies

(5.10) a(p(¥); ¥, ¥ — @) — alp(); 6, % — @) > 6||Y — Bll2,0, YU, ¢ € H*(Q),9 —p € V.

where ¢ is a conctant indepnendent of 9, ¢, p.

By similar manner in [1] we can prove following error estimate:

Theorem 3 Assume that 1,1y are the solutions of (5.5)(5.6) respectively. Further-
more, finite element subspace Vy is comforming.Then, for subsonic flow, following
error estimate holds

inf
¢ € VN |[v0 + 7% — 9ll2,0,

2
_ < -
14 = dnllze < (e +e27—75)

6 Dimensional Split Algorithm

Before considering the split of dimension, we need following lemma (see in [1]).
Lemma 7 The value of the stream function along any streamline remains constant.
Lemma 8 Suppose that L, L, are two streamlines on the stream surface S. The

difference between values of the stream function on L; and L, is equal to the mass

flow through the stream layer with thickness ¢ between L; and Ls.
Above two lemmas show that ¢ is a relative thickness between two stream surfaces.

The space between the two surfaces with thickness b is called the stream layer which
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enclosed by the upper and lower stream surfaces S;, S2, the lateral blade’s wall T,
the artificial boundary I', along the stream line, and the inlet and exit boundary T';
and T',.

The following "Dimension Split Method" is proposed according to the above dis-
cussion.

1). Partition of the Domain (.

A partition of the domain ) is assumed to be O = U;Q_,, where the subdomain
Qi_, is a stream layer and its upper and lower boundary surfaces S; and S;_;are the
geodesic supper parallel stream surfaces, the thickness ¢(z) of the stream layer Q¢ ,
is very small. §; can be represented locally by a diffeomorphism

F;:R’>>D — F;(D)=S; C R®.
Indeed, we assume that there exist a family of maps F(-,§) satisfying
(5.1) F(-,€) = 8(8), o nj=-H(En', on 5(¢),

where ¢ is the stress tensor on S(¢), H(£) is the mean curvature of S(¢) and S; = S(&;).
2). Assume that all information on S;_; are known. Then the information on S;
are determined by
a) Initial guess of velocity u on S;; let us recall lemma 2 ,we rewrite (3.16):

O*u N ay0u®
S~ 2005 + Heg) e =

(5.2) L§ (u) + L (w)€ + o(€?).

here L§(u) = 0 is leading term in view of first approximation.Using Goddazzi formula
we have

L%(u) = —(4HaP? + 2Kb°7) V5V, u® + 207" (Vg bS— Vg HEY) V, u

F(A DS +AKBE — BHESu — 2HuP Vg u® — u P Vp b8 — (4Ha*? + 2K5°P) V4 p.
Let

then (5.2) reads
oy«
(5.3) w( B 45v") = Liwe.

The corresponding eigenvalue problem is
(5.4) AL — AS| = 2|(\/2 — H)&5 — b3| = 2|1A85 — bg| = 0.

It is well known that the eigenvalues of (5.4) are the principal normal curvatures
ki, i=1,20of 9, i.e.

~

1
Ai=ki,i=1,2 (K =kiko; H = E(k‘l + kz))
Therefore
(5.5) M =2H +2ky =4H + 2/ H?2 - K; )Xo =2H +2ky =4H —2/H? - K.

Assume that s() = (sgi),sgi)) are corresponding eigenvectors. Then the fundamental
solution to the homogeneous equation (5.3) are given by

exp(Mié)st?), exp(oé)sl?

®(&) = exp(M&)ss?,  exp(Aa€)st?
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Hence the general solution of (5.3) can be expressed as
£

(5.6) Y =(YLY?)!=3(6)d 1 (0)Y(0) + / s®(£)®(s)dsLy(u).
0

(5.6) shows that % strongly depend upon the Gaussian and mean curvatures of
the stream surface.
Applying (5.5) and (5.6), we can get the approximate solutions

(5.7) uls; = uls,_, + (Y*(AE +Y(0))/2A¢,

(58) Y(A8) = H(AOBO) (¥ (0)+5 AL Fils,_,) = T+ O+ 0)AE)Y (0)+5 AL F]s,_,]

where we used
B(0)" = ((M(0) + 23(0))2(0).

Here we need calculate the derivatives of the principal normal curvatures by using
following formulae which will be proven elsewhere:

(i) H'=2= \/ZH+ AH? — 2K)H,

(i4) "*%—J“—( 5) A (H? - K) + 42H? - K)(H? - K)
(4H2|VH|2 2|VK|2+2K|VH|2 4H|VH||VK|)/(2H2 K)],

(i) M =(FH)(4H - (H - K)/[VH? - K), X,=(%) '(4H'+ (H* - K)'/VH* - K).

b) Calculate £(z) on S; via (3.21). Let us come back to lemma 5. We rewrite second
equation in lemma 4 into following

0X

(5.9) A +2HX = G(w), With two point boundare value or periodic condition

3
where X = 6_1%’

(5.10)  G(w) = 2u(w® Vg H+b3 Vo ©?) + (f* — phagw®w® — T\/ﬂ H +4H3 — 2HK).

c) Geometric Position and Metric Tensor of S;.
Assume that
ri-1(z) = F(§i-1)

is an equation describing S;_;, then
ri(x) = ri—1(z) + e(z)n

is an equation of S;.
Assume that (y',y2,4°) is the Descartes coordinate and

rioi(®) =y 1 (2)i +yi 1 (@)] +yi 1 (@Dk; i) = yi(@)i + y; (2)] + i ()
Therefore
v (z) = yi_y +e(@)A* Ja
where
Al — 8(%2—17%'3—1) A2 = 8(%3—1:%1—1) A3 — ‘9(%'1—1:%2—1)
o(zt, z2) ’ o(zt,22) ’ o(zt, z2)

The metric tensor is
= 9yt oyt
Gap = Oz Ozh

k=1

On the other hand, owing to (3.4) we assert
aa,6‘|si = aa’g|5i — 2¢b Y + &2 o

Above two formulae are eqgivalent.
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7 Numerical Computational Examples

Fist example on the impellers of T1102 and ARC No.3 are provided. Numerical
results which fit the experiment data very well are shown in Figs.1 and 2.

Thcond example is Gostelow’s compressor. Fig.3 shows that the numerical results
of the velocity distribution W is quite close to the exact values, and better than the
results obtained by the finite difference method,especially at the leading edge and the
trailing edge.

1.8

N
ey -
—_— e,
——— v,
_ =L —
FIG.1 1102-blade t = 0.7986, By = 59.7, static FIG.2 ARC No.3-blade,static
pressure distribution on blade faces pressure distribution on blade faces

FIG.3 Variation of the relation velocity along blade faces
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FIG.4 finit element mesh on stream surface FIG.5 Unshrouded Impeller with spinner
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