N

N

Tuning and Generalizing Van Hoeij’s Algorithm

Karim Belabas, Guillaume Hanrot, Paul Zimmermann

» To cite this version:

Karim Belabas, Guillaume Hanrot, Paul Zimmermann. Tuning and Generalizing Van Hoeij’s Algo-
rithm. [Research Report] RR-4124, INRIA. 2001. inria-00072504

HAL 1d: inria-00072504
https://inria.hal.science/inria-00072504
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00072504
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--4124--FR+ENG

ISSN 0249-6399

%I 1N RIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Tuning and generalizing van Hoeij's algorithm

Karim Belabas — Guillaume Hanrot — Paul Zimmermann

N° 4124
20th February 2001

THEME 2

apport
derecherche

% I N RIA

LORRAINE

Tuning and generalizing van Hoeij’s algorithm

Karim Belabas*, Guillaume Hanrot!, Paul Zimmermann?

Théme 2 — Génie logiciel
et calcul symbolique
Projet SPACES

Rapport de recherche n® 4124 — 20th February 2001 — 13 pages

Abstract: Recently, van Hoeij’s published a new algorithm for factoring polyno-
mials over the rational integers [11]. This algorithms rests on the same principle as
Berlekamp-Zassenhaus |2, 13], but uses lattice basis reduction to improve drastically
on the recombination phase. The efficiency of the LLL algorithm is very dependent
on fine tuning; in this paper, we present such tuning to achieve better performance.
Simultaneously, we describe a generalization of van Hoeij’s algorithm to factor poly-
nomials over number fields.

Key-words: polynomial factorization, lattice basis reduction, LLL algorithm,
factorization over number fields

* Département de mathématiques, Université Paris XI, F-91405 ORSAY Cedex, e-mail :
Karim.BELABAS@math.u-psud.fr

t e-mail : Guillaume.Hanrot@loria.fr

¥ e-mail : Paul.Zimmermann@loria.fr

Unité de recherche INRIA Lorraine
LORIA, Technopble de Nancy-Brabois, Campus scientifique,

615, rue du Jardin Botanique, BP 101, 54602 Villers-Lés-Nancy (France)
Téléphone : +33 3 83 59 30 00 — Télécopie : +33 3 83 27 83 19

Implantation efficace et généralisation de ’algorithme de
van Hoeij

Résumé : Van Hoeij a proposé récemment un nouvel algorithme de factorisation
de polynomes a coefficients entiers [11]. Cet algorithme repose sur le méme principe
que lalgorithme de Berlekamp-Zassenhaus [2, 13|, mais utilise des techniques de
réduction des réseaux pour ameéliorer drastiquement la seconde phase. L’efficacité
de 'algorithme LLL dépend fortement des parameétres d’entrée et de réglages var-
iés. Nous présentons dans cet article diverses modifications permettant d’obtenir de
meilleurs performances. En outre, on décrit une généralisation de ’algorithme de
van Hoeij permettant de factoriser des polyndémes sur des corps de nombres.

Mots-clés : factorisation de polyndémes, réduction des réseaux, algorithme LLL,
factorisation sur les corps de nombres

Tuning and generalizing van Hoeij’s algorithm 3

Introduction

Until 2000, the main two algorithms known for factoring a polynomial P over Z[X]
were Berlekamp-Zassenhaus algorithm, which starts by factoring P over Q,[X] for
suitable p and tries to recombine the p-adic factors, and Lenstra-Lenstra-Lovasz al-
gorithm, based on their famous LLL lattice reduction algorithm [5], which tries to
determine the minimal polynomial of a p-adic root of P. While the latter is polyno-
mial and the former exponential in the worst-case (P can have as much as Q(deg(P))
factors over Q,, which can lead to an exponential time for the recombination), the
former performs far better in practice. Lately, van Hoeij published an algorithm
which, while following Berlekamp-Zassenhaus argument, uses lattice basis reduction
to try to guess the correct recombination. The main idea is the fact that if (G;) are
the p-adic factors of P, and if [], G;* = G, is a rational factor, then any polynomial
in the coefficients of G, will be integers. Hence, they will be small compared with
the order of magnitude of the same polynomial evaluated for a non-rational recom-
bination. Van Hoeij’s idea is to use the Newton sums S;j(G) = > G(a)=0 o, which
are linear in the ¢;. The problem of finding a valid recombination is thus reduced
to finding simultaneous small values of linear forms with integer coefficients (or al-
ternatively solving a knapsack problem), one of the very situations where the LLL
algorithm is known to be of interest.

In the first section, we recall some of the technicalities of van Hoeij’s algorithm.
The second section requires some tuning and experiments with this algorithm. The
third section describes a generalization of van Hoeij’s algorithm to number fields.

1 Van Hoeij’s algorithm

Let P be a polynomial. Recall that the k-th Newton sum is defined as Si(P) =
> af, where the o; run through the roots of P. A trivial consequence of this
definition is the fact that Sk(PQ) = Sk(P) + Sk(Q). Furthermore, as a symmetric
function of the roots, it can be seen that Si(P) belongs to the same field as the
coefficients of P ; if P is monic with algebraic integer coefficients, then Si(P) is an
algebraic integer.

Let p be a prime not dividing the discriminant of P, and let (G;), 1 < i < n, be the
p-adic factors of P. We are looking for the set of the vectors ¢; such that P, =[], G}’
has itself integer coefficients. In practice, if the coefficients of the G; are known to
the precision pf with £ large enough, this will usually mean that the coefficients of
[1; G; are small with respect to p® (in any case, they should not vary with ¢ when £

RR n° 4124

4 Karim Belabas, Guillaume Hanrot, Paul Zimmermann

is large enough). As a consequence, the Newton sums S(G.) = >, €:Sk(G;) should
be close to a multiple of pf. This means that we are looking for {0,1} vectors (g;)
such that we have

n
> eiSk(Gi) + '+ =0, 1)
im1

for a small g which can be estimated by using bounds on the coefficients of a factor
of P (see van Hoeij’s paper). Note that in practice, we are not using p-adic values
Sk(G;) but rather truncated integer approximations with of course precision greater
than p’; those truncated values to the precision b are defined as

Sk(Gi) — (S}c(GZ’) mod pb)
pb

a—b
7

mod p

where b is such that p® is larger than the bound on the coefficients. Note that = mod y
is to be understood as: the integer congruent to £ modulo y which is in the interval
] - y/2a y/2]

Identity (1) can actually be seen as a knapsack problem.

Van Hoeij’s method is to see that the set of rational integer vectors (g;) solution
of (1) is a sublattice of Z", and solving our initial problem amounts to find a basis
of this sublattice.

To achieve this, van Hoeij’s applies an iterative process. Let

Cld,, 0 .
M—(g pelds) , Where S:=

S;,Gy ... S;,Gn
- . (2)
S; G ... S;.Gn

C is a suitable integer constant, and ¢ be the quadratic form defined by the
matrix M*M. Then we are looking for vectors of the lattice (Z™, q) of norm smaller
than some bound B. We can now compute a LLL reduced basis of this lattice, which
has the property to be close to orthogonal, and discard part of this basis by using
the following classical

Lemma 1.1 Let (b;) be a LLL-reduced basis with respect to the positive quadratic
form q. If q(bj) > B for j > jo, then if v has q(v) < B, v is in the subspace
(b17 cee abjofl)'

Note that the choice of M, and hence of ¢, depends on the parameter £ and on
the choice of the subset of Newton sums S;,. Repeating this process while varying

INRIA

Tuning and generalizing van Hoeij’s algorithm 5

the Newton sums and/or the precision usually decreases rather quickly the size of
the lattice under consideration.

To check whether we are done, we put the basis of our lattice in row echelon form,
and try to find vectors with {0, 1} coordinates. If we can achieve this and furthermore
have exactly one 1 in each row, we presumably have found out a factorization of P,
which can be checked as in the usual Berlekamp-Zassenhaus process (multiply the
factors, check for each coefficient if it is smaller than Mignotte’s bound, and finally
try to divide P by the putative factor).

2 Tuning van Hoeij’s algorithm

Let us first describe a slightly modified version of van Hoeij’s original algorithm. In
this version, each of the successive lattices L, that occur is embedded in Z" where
r = dim Ly, instead of remaining embedded into Z".

Algorithm SearchTrueFactors.

Input: a list of ng modular factors.

Output: the factors over the rationals.

Initialization: s = 1, n = ng, r = ng, BL the identity ng X ng matrix

done < false; repeat

Step 1 [construction of the LLL input matrix|: M is an (r + s)
square matrix, as in (2), where S is the product of the s x ng
matrix of traces up to degree s by BL (of dimension ngy X r).
Step 2 [lattice reduction]: LLL-reduce (in place) the (r + s) by
(r + s) matrix M (of rank r + s)

Step 3 [back to input factors]: replace the upper r x (r + s)
submatrix L of M by BL x L; M is now of dimension (ng +
8) X (r+ s), with rank r + s.

Step 4 [Gram-Schmidt]: perform Gram-Schmidt orthogonalization
on M. Let ¢;,1 <1 <7+ s be the norm of the sth orthogonal
vector.

Step 5: Let 7’ the largest value such that all ¢; of index larger
than 7' are of norm greater than

\/ C?ng + snd /4.

RR n° 4124

6 Karim Belabas, Guillaume Hanrot, Paul Zimmermann

Step 6: if ' = 1, return “irreducible”.

Step 7 [update BL]: let M’ the r x r' matrix whose entries are
those of the upper left part of M (after Step 2) divided by C
(the division is exact). Replace BL by BL x M'; BL is now
of dimension ng X r'. BL can also be obtained from the left 7/
columns of the matrix BL X L computed in Step 3, dividing
the coefficients by C.

Step 8: put BL in Gauss-Jordan form. If, possibly after di-
vision by a constant factor, each column contains only 0 and
1, and each row contains exactly one 1, we might have a valid
factorization, done < true. Otherwise, increase s, replace n
by r and r by 7.

until done.

The main feature of the present version is that the dimension of the matrix M
decreases quite rapidly (it is of dimension r + s instead of remaining of dimension
ng + $), which induces much faster LLL reductions.

We implemented the above variant in the NTL library version 5.0c [10], which
was configured to use GNU MP 3.1.1 as long integer library [4]. Our implementation
uses all-integer lattice reduction (the LLL routine from NTL). In addition, we used
the following strategies and parameters:

e the initial value p®® was chosen to have about three times as many bits as the

number ng of modular factors;

e the number s of traces considered at Step 1 is initially one. If the new dimension
r' of the matrix BL is not smaller than r, s increases by one, and a— b increases
too.

e the precision used for Gram-Schmidt orthogonalization of M in Step 4 equals
that of p®~P.

Our NTL implementation is freely available from http://www.loria.fr/~zimmerma/
free/ZZXFactoring.c. We obtained the following timings on a 1Ghz Athlon under
Linux (lucrezia.medicis.polytechnique.fr): columns Deg, Dig and ng give re-
spectively the degree of the corresponding polynomial, the number of digits of its
largest coefficient, and the number of p-adic factors; columns Lift, Knap and LLL
give respectively the setup time — small prime factorization and Hensel lifting —,

INRIA

Tuning and generalizing van Hoeij’s algorithm 7

the total recombination time using van Hoeij’s algorithm, and the part spent in LLL
reductions.

Pol. | Deg Dig mng | Lift Knap LLL
Py 462 756 42 | 13.2 23 0.8
Py 64 40 32 | 0.13 0.16 0.09
P; 384 57 76 | 4.14 1.98 1.56
P 972 213 54 | 235 0.9 0.5

Mias | 792 2813 72 | 44.2 420 40.7
Misg | 924 3937 84 | 73,5 96.5 76.1
S7 128 87 64 | 043 1.93 1.36
Ss 256 188 128 | 1.89 31.8 25.8
So 512 402 256 | 7.6 621. 546.

S0 | 1024 854 512 | 40.9 14440 13232
Se,7 192 127 96 | 1.17 9.76 7.38
S7o | 640 490 320 | 154 1696 1511
Sgo | 768 590 384 | 20.7 3579 3193

The polynomials Py to Py come from [14]; Py has two factors of degree 66 and
396, Ps to Py are irreducible. Mig 5 and Mjis ¢ are the 5th and 6th resolvents of the
polynomial f with Galois group M from Section 3.2 of van Hoeij’s paper [11]; M2 5
is irreducible whereas M2 ¢ has two factors of degree 132 and 792; these polynomials
are useful to check a particular implementation since they are non-monic. S, is the
Swinnerton-Dyer polynomial of degree 2" corresponding to the n first primes, and is
irreducible; Sy, ; is the product of the Swinnerton-Dyer polynomials of order n and
k.

The dimension decrease seems quite effective: for Sg, the first matrix to reduce is
of dimension 129, then it goes down to dimension 125, 113, 85, 47, 19, 7 and finally
3.

The polynomial Py was impossible to factor two years ago. At the last ISSAC
conference, Abbott, Shoup and Zimmermann managed to prove its irreducibility
using large tables to speed up Berlekamp-Zassenhaus searching phase [1]; it took
however of the order of one hour of cpu time. Now, thanks to van Hoeij’s algorithm,
the searching phase takes less than one second for that polynomial, and the most
time consuming phase is now Hensel lifting. The polynomial S is the first example
of a proof of irreducibility using the Berlekamp-Zassenhaus strategy for a polynomial
with at least 512 modular factors (for all p).

Comparing the Knap and LLL columns reveals that most of the recombination
time is now spent in lattice reduction. It would thus be of interest to combine our

RR n° 4124

8 Karim Belabas, Guillaume Hanrot, Paul Zimmermann

implementation with the new algorithm from Koy and Schnorr [12], to see how it
speeds up the LLL part.

3 A variant over number fields

In this section, we assume that a finite extension K of Q (a number field) is given, and
denote by Ok its ring of integers. By the primitive element theorem, we can write
K = Q(«), where h(a) = 0 with h € Z[Y], of degree d. We can choose a € Ok, i.e. h
monic. This implies that Z[a] = Z[Y]/(h) is a submodule of Ok of finite index. In
the sequel, we shall represent an element z of Og as z = Y ;4 ziol, where fz; € Z.
We do not insist that f be minimal (= [Ok : Z[a]]), in order to avoid computing an
integral basis for K: while well understood (it amounts to factoring h over @, for all
primes p whose square divides disc(h)), this process remains quite time-consuming
and involves factoring the discriminant of h. In contrast, a multiple f of the index
can be easily computed, for instance we can take for f any multiplicative bound for
the largest integer fo such that f2 divides disc(h), .e.g disc(h) itself after weeding out
some small prime divisors. It is worthwhile to try to obtain a somewhat minimal f,
hence to choose suitably the polynomial k. For how to perform this task and all the
other basic algorithms for number fields (e.g. decomposition of primes, “polynomial
reduction” algorithms), the reader is referred to [3, 7, 8.

Let also P be a polynomial of degree n with coefficients in K. For simplicity, we
will assume that P is monic and has coefficients in Z[a], which can always be achieved
by a change of variables. We write P = X" + Y7 p; X?, with p; = Z?;& pi;Y7 €
Z[Y]/(h) in “reduced form”. We shall further assume that P has no square factors,
which can be achieved by square free factorization.

As any other factoring algorithm over , van Hoeij’s method can be used to
factor P over K, by factoring the norm P, := resy(P(X — AY),h(Y)) € Z[X],
where the p; are lifted to Z[Y] and X is a small rational integer chosen so that Py
is squarefree. Each Q-factor G of P, is divisible by a unique K-factor of P, which
is extracted as gcd(G, P) over K[X]. Assuming efficient modular implementations
for the initial resultants and final gcds, the main bottleneck with this reduction to
the absolute case is the recombination phase during the factorization of P,. Van
Hoeij’s algorithm is very suitable for this kind of polynomials, and Galois resolvents
in general, since it is not too sensitive to the size of coefficients (besides the Hensel
lifting phase), and is able to cope with the huge number of modular factors which
are often intrinsic to the problem.

INRIA

Tuning and generalizing van Hoeij’s algorithm 9

We now sketch an application of van Hoeij’s ideas to the direct factorization in
K[X], which is superior to the norm approach since the number of modular factors
over K will usually be much lower than over Q (possibly by a factor of d), without
increasing the difficulty of the other steps. We follow the approach of Roblot [9], but
for the recombination, which we replace by van Hoeij’s knapsack. Also contrary to
Roblot, we don’t insist that computations should be done in Ok, and are content
with %Z[a].

We first recall classical upper bounds on the coefficients of a monic factor G =
X* + 3, p9i X" of P in K[X]. We measure the size of an element z of K in terms
of the quadratic form Ty(z) := Y |27|?, where o runs through the n embeddings of
K into C and z? := o(z). We can derive a uniform bound on the coefficients of G
by

Lemma 3.1 Let G =), gi X" be a monic divisor of P as above. Then all the g;
are integral and we have

Tz(gi) < T2(P) (k ; 1) [(k;l) +2<]::11>] +d<lz:11>2

where Ty(P) 1= 32, To(pi).
Proof. Let P = GH in K[X], then

cont(P) = cont(G)cont(H),

where cont(A) denotes the fractional ideal generated by the coefficients of A € K[X].
Since P € Ok[X] is monic, we have cont(P) = Ok. Since G is monic, so is H, and
their contents both contain Og. It follows that cont(G) = cont(H) = Ok, hence all
g; belong to Ok.

For each embedding o : K — C, the polynomial G’ divides P? in C[X]. Summing
(the square of) Mignotte’s bound for g7 over the o yields the T5 bound. O

Let now p be a prime number not dividing the discriminant of &, hence unramified,
and assume that p splits as [[; p;, with Np; = pfvi . For matters of efficiency it is
worth trying several primes p until one finds a p | p such that P mod p is squarefree
with few factors in Ok/p, and p is of residual degree f, as small as possible. A
good rule of thumb is to pick p which minimizes the product of f, by the number
of modular factors. Note that when K/Q is Galois, it is not difficult to find totally
split primes (probability 1/d by Chebotarév density theorem); this is not the case
for a “general” number field (where the probability is only expected to be larger than
1/d!).

RR n° 4124

10 Karim Belabas, Guillaume Hanrot, Paul Zimmermann

The following step is to lift the factorization over K, (the p-adic completion of K);
write P = [];%, Gj. The factors G; should be computed modulo p’, where £ is large
enough to enable reconstructing a genuine factor from its modular approximation,
given bounds on the size of its coefficients. More precisely

Lemma 3.2 (Lenstra [6]) Let v € Z[a], and assume that £ is so large that
2 d(d—1
¢ (afp 10g(p)) > log(C/d) + (% + 1) log 4

then there is at most one B € Z[a] such that 8 =~ (mod p*) and T»(B) < C.

Let M := My be the matriz (on the fized basis 1,... ,a%™1) of an LLL-reduced
basis of the lattice (p* NZ[a], Ty). If it exists, B equals v — M[M~'v|, where we still
denote y the vector giving vy on the Z[a]-basis. As usual, [x] is the operator rounding
to nearest integer (:= |z + 1/2|), and is to be applied coordinatewise.

Proof. Roblot states this result with Z[a] replaced by Ok but Lenstra’s argument
[6] applies mutatis mutandis. O

From a practical viewpoint, p¢ N Z[a] is generated by p* and U(a) over Zal,
where U is the symmetric lift in Z[X] of the factor of h modulo p corresponding to
p. It is easy to compute a Z-basis of this lattice, via an HNF reduction modulo p’
of the matrix giving the multiplication by U()* in Z[a]. Since p is unramified, it
is a uniformizer in K, ~ Q,[Y]/(U), where U is the Q,-factor of h reducing to U
modulo p. The polynomial U is monic and has degree f,; any integral element of K,
(in p-adic precision £) is written in reduced form as

> oaY (3)

where); belongs to | — p®/2,p%/2].
It only remains to introduce the adapted knapsack problem. The Newton sums

are computed from the Newton formulae as in the absolute case, and are easily
bounded

Lemma 3.3 Assume that the monic p-adic factor G of P is in fact in Og[X], then
for all integer k, the Newton sum Si(G) is in O and for any embedding o, we have

|Sk(G)?| < nBg

where B, is any bound for the modulus of the complezx roots of PC.

INRIA

Tuning and generalizing van Hoeij’s algorithm 11

Proof. The bound on Si(G)? is obvious. Since G is monic, the Newton sums are

integral combinations of the coefficients of GG, hence integral. O
Let V be the Vandermonde matrix associated to the complex roots (a?) of h,
and || - || denote the matrix norm given by

[[(m)|| := m?XZ ;]
%

We can now bound the coordinates of the Newton sums on the (o)

Lemma 3.4 The coordinates of fS(G) on (o) are bounded by

Ck == fn||V™"|(max B,)*

Proof. Let z = >, , z;0f, z; € Q; writing the d different embeddings of this
equation in C, we obtain

(z7) = (z;)V, hence (z;) = (z7)V !

and
.

max |z;| < max [z°| - ||V~
13 o
Now we apply the previous lemma. Note that V' ~! is easily evaluated from Lagrange
interpolation formula since its i-th column gives the coefficients of E; € C[X] such
that E;(a%) = 6;; for all j. O
The truncated traces associated to a p-adic factor G can be defined by

Sk(G) — (Sk(G) mod p°)

Sz,a (G) = pb

(mod p*~°)

which is easily computed in the representation (3) by applying van Hoeij’s truncation,
as seen in Section 1, to each of the);. Assuming that p¢ > 2C}, which will almost
certainly be the case if the reconstruction bounds from Lemma 3.2 hold, then we
can choose b < a < £ such that Sz’a(G) is 0 for any K-rational factor G. The next
knapsack-type lemma should be compared with van Hoeij’s Lemma 2.6.

Lemma 3.5 Assume that [[;°, G5 € K[X]. Then for all k, one has
e+ eSy(Gi) =0

where the coordinates of fe on (o) are integral, bounded by f|S|/2, and equal to 0
ifi> f,.

RR n° 4124

12 Karim Belabas, Guillaume Hanrot, Paul Zimmermann

Proof. Follows the same lines as van Hoeij’s, left to the reader. O
Now the matrix defining the quadratic form for the LLL reduction is

Id, 0
M — n
(S pz)
where S is as in the first section except the S;(P;) must be interpreted as the column
vector giving Sf"’a(Pj) in terms of (1,...,Y /1) and p} is a block-diagonal matrix,
where the f, x f, diagonal blocks are equal to the upper left part of Mo, ¢ =
1,...,k, which is assumed to be in upper HNF form. Since typically b; will be chosen
so that @ — b; is small, very few different M,; need to be computed. The size of the
matrix M is n + k fj.
Once this matrix M is computed, the computation run as in Section 2.

4 Acknowledgement.

The authors are grateful to Mark van Hoeij for several discussions about his algo-
rithm, to Victor Shoup for his help with NTL, and to Allan Steel for providing the
polynomials Mo 5 and My 6, together with some nice timings obtained with Magma,
which stimulated our NTL implementation. Section 2 timings were obtained thanks
to the Unité Mizte de Service Médicis (medicis.polytechnique.fr).

References

[1] ABBOTT, J., SHOUP, V., AND ZIMMERMANN, P. Factorization in Z[X]: the
searching phase. In Proceedings of ISSAC’2000 (2000), C. Traverso, Ed., ACM
Press, pp. 1-7. http://wuw.shoup.net/papers/asz.ps.Z.

[2] BERLEKAMP, E. R. Factoring polynomials over large finite fields. Mathematics
of Computation 24, 111 (1970), 713-735.

[3] CoHEN, H. A Course in Computational Algebraic Number Theory. Graduate
Texts in Mathematics 138. Springer-Verlag, 1993.

[4] GRANLUND, T. GNU MP: The GNU Multiple Precision Arithmetic Library,
3.1.1 ed., 2000. Available from http://www.swox.se/gmp/.

[5] LENSTRA, A. K., LENSTRA, H. W., LoVAsz, L. Factoring polynomials with
rational coefficients, Math. Ann. 261 (1982), 515-534.

INRIA

Tuning and generalizing van Hoeij’s algorithm 13

[6] LENSTRA, A. K. Factoring polynomials over algebraic number fields LN in
Comp. Sci. 144 (1982), 32-39.

[7] Poust, M. Computational Algebraic Number Theory, vol. 21 of DMV Seminar.
Birkhauser, Basel, 1993.

[8] PoHST, M., AND ZASSENHAUS, H. Algorithmic Algebraic Number Theory.
Cambridge University Press, 1989.

[9] RoBLOT, X. Algorithmes de factorisation dans les extensions relatives et appli-

cations de la conjecture de Stark a la construction des corps de classes de rayon.
PhD thesis, Bordeaux, 1997.

[10] Smoup, V. NTL: A library for doing number theory.
http://www.shoup.net/ntl/.

[11] van HoOEL), M. Factoring polynomials and the knapsack problem.
Journal of Number Theory (2000). To appear. Also available at

http://www.math.fsu.edu/ "hoeij/papers.html.

[12] Koy, H. AND SCHNORR, C. P. Segment LLL-Reduction of Lattice Bases.
Preprint, 2001. Available at http://www.mi.informatik.uni-frankfurt.de/
research/papers.html

[13] ZAssENHAUS, H. On Hensel factorization I. Journal of Number Theory 1 (1969),
291-311.

[14] ZIMMERMANN, P. Polynomial factorization challenges: a collection of polyno-
mials difficult to factor. http://www.loria.fr/~zimmerma/mupad/.

RR n° 4124

/<

Unité de recherche INRIA Lorraine
LORIA, Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-les-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38330 Montbonnot-St-Martin (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http://www.inria.fr

ISSN 0249-6399

