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Abstract: We consider the problem of the perturbation of a class of linear-quadratic sys-
tems where the change from one structure (for the dynamics and costs) to another are
governed by a finite-state Markov process where the transition are perturbed. The problem
above lead to the analysis of some perturbed linearly coupled set of quadratic equations
(Riccati Equation). We show that the matrix obtained as the solution of the equations,
which determine the optimal value and control, has Taylor expansion in the perturbation
parameter. We compute explicitly the term of this expansion.
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Systémes linéaires quadratiques multidimensionnels avec

sauts rapides

Résumé : Nous présentons une étude asymptotique d’un probléme de perturbation pour
des systémes linéaires quadratiques multidimensionnels dont la dynamique est modélisée
par une équation différentielle. Cette équation dépend, d’une part, de 1’état et du controle
instantané, d’autre part, d’un paramétre pouvant prendre un nombre fini de valeurs. Ce
paramétre varie dans le temps selon une dynamique markovienne & saut. Cette partie
markovienne de saut évolue beaucoup plus rapidement que la partie continue de 1’état du
systéme. Plus précisément, 'intensité stochastique du processus de Markov est multipliée
par un facteur 1/e.

L’objectif est d’étudier le comportement du systéme en fonction du paramétre e. En
particulier, nous montrons que la valeur optimale et la politique optimale qui contole la
partie continue, possédent un développement en série de Taylor en le paramétre €; de plus,
nous proposons des méthodes numériques efficaces pour le calcul des coefficients de cette
série de Taylor.

Mots-clés : Perturbation singulier, Processus Markovien, Série de Puiseux, Agrégation et
Horizon infini.
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1 Introduction

Many systems subject to frequent unpredictable structural changes can be adequately mod-
elled as piecewise deterministic systems, where the system dynamics takes on different forms
depending on the value of an associated Markov process, which is known as form or indicant
process associated with the controlled systems. In the linear case, these systems are also
known as jump linear system. Such a system model is useful particularly since it allows
the decision maker to cope adequately with the discrete events that disrupt and/or change
significantly the normal operation of a system by using the knowledge of their occurrence
and the statistical information on the rate at which these events take place. Research in
this class of systems and their applications into manufacturing management spans several
decades, with some representative papers in this area [1, 2, 3, 9, 11, 15].

The traditional QL problem in which the system matrices A and B are fixed, we allow
these matrices, depending on a Markov jump process with finite-state space. The corre-
sponding dynamic programming equation leads to analysis of a set of Riccati equations
involving the generator of the underlying Markov chain. In many applications, the state
space of the Markov chain is often large. In this case, it is difficult to obtain solutions to
these Riccati equations. To overcome this difficulty, we use singular perturbation techniques
in the modelling, control design, and optimization. The resulting systems naturally display
certain two-time-scale behavior, a fast time scale and a slowly varying one. Presence of such
a phenomenon is best expressed mathematically by introducing a small parameter ¢ > 0 and
model the underlying system as one involving singularly perturbed Markov chain.

The introduction of the small parameter stems from the following two aspect. First, in
reality, we often have to treat systems that involve rapid jumps leading to the use of two-
time-scale. Second, to reduce the complexity of large-scale Markov chain, it is natural to
use a small parameter to reflect the different rates of changes among different states leading
to singularly perturbed Markovian models with weak and strong interaction. A number of
examples given in Yin and Zhang [26]

In this paper we consider the optimal control of a singularly perturbed class of linear-
quadratic differential system with piecewise deterministic dynamics. The transition proba-
bilities are perturbed through small parameter ¢ > 0. The corresponding perturbed dynamic
programming equation leads to the analysis of a set of perturbed coupled algebraic Riccati
equations. By using averaging and aggregation techniques, we show that the set of coupled
algebraic Riccati equations possesses a unique solution which can be represented as a Taylor
series in € and moreover we present an algorithm for computing the terms of the Taylor
series.

RR n® 4123



4 El Azouzi, Abbad € Altman

Research on control systems with Markovian switching structure was initiated more than
thirty years ago by Krassovskii and Liskii [12, 14], and Florentin [10], with follow-up work
in the late sixties and early seventies addressing the stochastic maximum principle [13, 19],
dynamic programming [19], and linear-quadratic control [20, 24], in this context. Late
eighties and early nineties have witnessed renewed interest in the topic, with concentrated
research on theoretical issues like controllability and stabilizability [4, 9, 11, 22, 25] in linear-
quadratic systems in continuous time, see also [5, 18, 21] for discrete-time. Perhaps the first
theoretical development in differential games context was reported in [3], where a general
model was adopted that allows in a multiple player environment the Markov jump process
(also controlled by the players) to determine the mode of the game, in addition to affecting
the system and cost structure. Results in [17], also apply, as a special case, to zero-sum
differential games with Markov jump parameters and state feedback information for both
players. Some selected publications on this topic are [2, 22, 25].

An important paper related to ours is [16] which considers also linear dynamics with
jump parameters. The transition probabilities are subject to the same type of perturbation
that we consider. A more general setting is treated in that reference: that of an additional
disturbance, which is handled using an H* approach. The value of the limiting control
problem is obtained. Our approach allows us to get more than the limiting control problem,
as it gives the solutions in terms of a series expansion in the perturbation parameter. Our
paper also extends the results in [8] which already obtained a Taylor expansion for the
optimal value and policy in a similar setting, but for the special case of a one dimensional
linear system with a controlled Markov jump process.

The paper is organized as follows: Section 2 introduces the general model. In section
3, we present the motivation for singularly perturbed problems. Section 4 provides the
Taylor expansion of the solution to the coupled algebraic Riccati equations. We study
computational algorithms in section 5. The paper ends with the concluding remarks of
section 6.

2 General Model

The class of jump linear systems under consideration is described by

X = A0 + BO@W),  (0) =0, (1)

where z is the p-dimensional system state, zo is a fixed (known) initial state, u is an
r-dimensional control, taking values in R” , and 6(t) is a finite state Markov chain defined

INRIA
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on the state space S, of cardinality s, with the infinitesimal generator matrix
A=()\ij)7 i,J € 5.

The \;;’s are real numbers such that for any ¢ # j, A;; > 0, and for all ¢ € 5, Ajes =
- Zj;éi Aiaj-
With this system, the control u is generated by a control policy v according to

U(t) = ’7(t7$[0,t]7 0[0,15])7 t € [07 +OO)7 (2)

where v is taken to be piecewise continuous in its first argument, and piecewise Lipschitz
continuous in its second argument. Let us denote the class of all admissible controllers by
T'. Define the running (immediate) cost L : R? x $ xI" — R as:

L(x,i,u) =| &[5 + | ey, (3)

where Q(.) >0, R(.) > 0, and | z | denotes the Euclidean semi-norm.

The underlying probability space is the triple (Q2, F, P). Let E denote the expectation with
respect to the underlying probability space. For each initial state (z¢,4g) and strategy v € T,
we introduce the discounted (expected) cost function:

Jp(w0,90,7) = Ez i (/
0

where 8 > 0 is a discount factor.

+ oo

e—ﬁfL(w),e(t),u(t))dt) , @)

For this infinite-horizon, we have to ensure that the cost is finite for at least one stationary
policy. A sufficient condition for this is the following (see also Remark 2):

Assumption 1:

The pair (A(6(t)), B(0(t))) is stochastically stabilizable and (A(7),Q(i)) is observable for
eachi € S.

The problem is the derivation of a solution to

A~

Jp(z,1) = ;IelfIl‘ Ja(z,1,7). (5)

3 Singularly perturbed systems.

In many application, because of the various sources of uncertainties, the Markov chain in-
volved is often inevitably large dimensional. It is natural ti think of the large number of

RR n° 4123
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states to be grouped into different collections of states, based on whether the interaction
between any two states is weak or strong. Presence of such a phenomenon is best expressed
mathematically by taking the probability transition rate matrix A in an appropriate singu-
larly perturbed form, as already discussed in [6] and [7]:

. 1
Aij =vij + < Hij» (6)

where (v;;)sxs and (pi;)sxs are the transition probability rate matrices corresponding to,
respectively, weak interaction and strong interactions within the form process. The scalar e
is a small positive number.

We study the optimal LQ control problem by using the dynamic programming. Under
assumption 1, the optimal value ff, satisfies the Hamilton-Jacobi-Bellman equations (Theo-
rem 5 [11]) and this solution is given by the quadratic form 2 P.(i)x where P.(i) isap x p
symmetric matrix for each ¢ € S which is the unique positive definite solution [11] of the
following perturbed coupled algebraic matrix linearly Riccati equations:

BP.(i) = AT(i)P.(i) + P.(i)A(i) + Q(i) — Pe(i)B(i)R™" (i) BT (i) P.(i)
+ D) NP()), i€Ss. (7)
jES

Moreover, the optimal control is given by
Yopt(@,1) = =R~ (i) BT (i) Pe(i)z.

For any fixed €, one can find the optimal value and an optimal solution by solving the Riccati
equation. The advantage of presenting a Taylor expansion in € is to avoid having to solve a
Riccati equation for each small €. This expansion will be shown to have the useful feature
that the number of coupled Riccati equations involved in determining the coefficients is
smaller than in the original one. Thus the optimal value jg and the optimal controller are
determined for small value of € > 0 by solving well-behaved e-independent smaller problems.

4 The Taylor expansion.

In this section, we study the problem formulated in the previous section under the following
assumption which is stronger than Assumption 1.

INRIA
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Assumption 2

The matrices B(i) are nonsingular for any i € S and (A(?), Q(7)) is observable for each i € S.

Precisely the problem addressed in this section is to determine explicitly the solution of
Riccati equation according to the small parameter €.

We consider the Markov chain associated with the transition probability rates pu =
(wij)ijes. There exists a partition of S into a family of ¢ recurrent classes {1, &, .., &,
and a transient class T

S= (UL &) UT  with & N&Ey=0 if n#n.
Hence
wi; =0 if i€& and jE€&, n#n.
To each class £ is associated the invariant measure (row vector ) mg of the recurrent subchain
defined on the class £ € S where S = {£1, &2, ..,&:}. We shall denote by g¢(i) the probability

to end in the class £ starting from ¢. The ¢ functions (column vectors) gg(.) are the solutions
to ugg = 0, and form a basis of the c-dimensional subspace Ker(u).

Remark 1 If v is a solution to ). s pijv(j) =0, then

v(i) = (), Vieé
o(i) = Y ge(@(E), €T,

£es
where (v(£))¢ are some real numbers.

Theorem 4.1
The solution of equation (7) is a Puiseux series of the following form. There exists a positive
integer M such that

+co
P(i)y= ) Pu(i)e"'™,
n=—M

where P, (i) is p X p symmetric matriz for each i € S.

Proof
From Puiseux’s Theorem [23], we have
+oco
Py = Y Pali)er/ ®
n=—K

RR n® 4123
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for some integers K and M. Substituting the expression of (8) in (7), we obtain:

“+ oo

B Z Jer™M = Qi)+ AT(i) Y Pa(i)er/M + Z i)e" ™M A(i) 9)

n=—K

+ oo n
- Y Y (Perx(@)BEORT )BT (0) Pa iy i) (1)) €M (10)

n=—2K k=—2K

S IDIICELND i oI ORI

—K je8 —K—M jeS8
Next, we equate the coefficients of €/ for different n’s. We have to show that K < M.
Assume in the contrary that K > M. We shall show that all coefficients that correspond
to n < —M are zero. First set n = —2K in the above equation. Then P, (i) = 0 for all
i € S. Moreover, —2K < —M — K, so that there are no coefficients of €”/M except for those
appearing in (10). In (10) the number of terms in the second summation is one, which gives

for any i € S
P_(i))B())R™' ()BT (i)P_k (i) = 0. (12)

Since R~1(i) > 0 and B(i) is nonsingular, then P_ (i) = 0.

Ifn=-2K+4+1< —M — K, then by the same arguments we get
P_g1(i)B(i)R™ (i)BT (i) P_g11(i) = 0, i € S.

Since R~1(i) > 0 and B(i) is nonsingular, then P_x (i) = 0.

If we continue with same procedure for —2K < n < —K — M, it follows that:

P_g(i) = P_g41(d)... = P_y—1(i) =0, i € S,

and this concludes the proof. g

The previous theorem showed that the value and solution of the control problem have a
fractional expansion in €. Next we shall show that in fact, all coefficients corresponding to
non-integer powers of € vanish, and that we obtain a Taylor series.

From Theorem 4.1 and (7) it follows that:

“+ oo

8 Z )M = Q) +ATE) Y Pali)eM + Z DM A(i)

n=—M

- Z Z (Pet s ()B@)R™(0) BT (i) P (4 11 () €/

n=—2M k=—-2M

INRIA
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S OP WEITELE Dl AT

—M jeS n=—2M j€S8

Then we obtain the following set of equations:
If -2M <n < —M, then

Y Peest(@BOR )BT () Pa-ran @) + D miPasua (7), 1 €S,
k=—2M JES

If —M <n <0, then

BPa.(i) = AT(i)Pa(i) + Pa(i Z Paryr())B(E)R ™ (3) BT (6) P (kg a1y (i)
k=—2M
+ > v Pa() + ) wiiParm(i), €S
jes jes
If n =0, then
BPs (i)
= Q@)+ AT (i)Py(i) + Po(i Z Py () B(E)R™ (8) BT (i) P_(jy 11 (i)
k=—2M
+ZUUP0 +Z,U/1]PM ), 5 € 8.
JES JjES
If n > 0, then
BPa(i) = AT())Pa(i) + Pa(i Z Paryr())B(E)R™ (4) B (4) P (k4 1) (0)
k=—2M
+ Y v Pa(h) + > piiParm(i), Q€S
jes jes

From the above set of equations, it follows that, if n = —2M, then

> uiPe =P_y(0)BG)R ‘()BT (i)P_p (i), i€S. (13)
JeS

Since the equation (7 ) admits a unique positive definite solution for € small enough, then Vi €

S, Vo € RP, o7 P_ (i) > 0. Fix z arbitrarily in R? and let i* = arg max;cs 27 P_p(i)2.

Then
(> w2 [P (N > Y g Py (G
jES JjES
J#i* J#i*

RR n® 4123



10 El Azouzi, Abbad € Altman

and it follows that:

Zuz*]x P_y(5)x <0.
JES

From (13), since R~1(i) > 0 and B(4) is nonsingular, then 27 P_;(i*)z = 0 and 27 P_; (i) =
0Vie S,VzeRP, hence P_p (i) =0foralli e S.
Ifn=-2M+1< —M, we get (since P_p(i) = 0),

> i Powya(5) = 0. (14)
JES
Ifn=-2M+2< —M, then
> wiPoari2(j) = P ()B@ER (0B (i) P- a1 (i) (15)

JES

From (14) and Remark 1, we obtain:

M+1(§_) = P,M_H_(Z') for all i € §_

and

Popiga(i) = qe(i)Poprqa(€) for all i € T.
£es

Now, equation (15) can be written as:

D i Powya(d) = Poya (BB ()BT (1) Pop1a(8), i €&
JjES

Multiplying the last equation by mg(i) for each ¢ € £ and summing over §, we obtain:

DD medmi | Posrya(h) = Poaasa(€) (ng(i)[B(i)Rl(i)BT(i)]> P y11(8).

jeS | ief i€
=0

Since R~'(i) > 0 and B(i) is nonsingular, then P_yr41(i) = 0,4 € Sand ) s pij P-m12(j) =
0, 7 € S. By using the same procedure for the case where —2M < n < —M, we obtain:

P_M(i) =..= PL(_M_I)/QJ (Z) =0 €S, (16)

where |y| stands for the greatest integer which is smaller or equal to y and

Do wiP() =0, k=[(-M+1)/2)],...,—1. (17)

JES

INRIA
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In the sequel, we consider two cases for —M <n <0
Case 1: M is even
If n = —M, then

> #iiPo(j) = Pou ) BGRT )BT ()P-pu (i), i €S,

3
JES

By using the same technique to derive equations (14) and (15), we obtain

P u(i)=0 and Z,Uijpo(j) =0.
jes
If n =—M + 1, then
> wiPi(j) =0, i€ 8.
jes
Ifn=—M+2 <0, then

> hijPa(§) = Posses (1) B R ()BT () P2 (i), i € S.
JES
It follows that
Poass(i) =0, Y piPa(j) =0.
JjES

If we continue with the same procedure for —M < n < 0, it follows that:

and
> wiiPe(i) =0 for k=0,1,...,M—1.
jes
Case 2: M is odd
If n = —M, then
Zﬂijpo(j) =0, ‘€S
jes
Ifn=-M+1 <0, then

> 1iiPi(§) = Possss () B@R™ ()BT () Posrsa (i), i € S.

JjES

Therefore

P—I\/;+1('l)=0 N ;/L”P]_(])ZO, i€ S.
J

RR n° 4123
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By using the same procedure as in the case where M is even, we obtain analogous results.
If n =0, we get:

BPy(i) = Qi)+ AT(i)Po(4) + Po(i)A(i) — Po(i)B(i)R™ (4)BT (i)Po(i) + > _ vi; Po(4)
jES
+> niPu(j), i€s. (23)
JES

From (21) or (22), we have that:

> wiPo(j) =0, i€S. (24)
jES

Using the equation (24) and Remark 1, we obtain

Po(€) = Po(i), i€¢
{ Pili) = YeesaeP(@),  i€T %
Substituting the first expression of (25) in (23) to get:
BPy(€) = Q(i) — Ry(§)B(i)R™'(i)B )+ > wiiPu() + > visPolj), €& (26)

JES jES

Multiplying (26) by mg(i), i €  and summing up over &:

D [me@B] Pod) = D QMme(i) + Y me(i) AT (0)Po (&) + Po(§) Y me(i)A

ic€ ic€ ic€ ic€

- Po(f)z_[mg( )B(i) BT]Po(€+Z ng(z’)uij m ()
1=t JES | i€€

&es \ ied JET ief &€l
jee

We introduce the following notations:

A =Y me(DAG), Q€)=Y meH)Q(),

ief ief

INRIA
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1/2
B(¢) = (Z mg(i)B(i)R‘l(i)BT(i)>
icé
and
Vg“/ = Z <Z Vi + Z Qg: (‘])I/”) .
ief \je& JET

Thus, the equation (27) becomes:

BR(E) = Q&) +AT(E)P(E) + Po(§)A(E) — Po()B(E)BT (§)Po(€)
+ vee o (§), €€65. (28)

Note that §(t) defines an aggregated Markov chain defined on the state space S with the

infinitesimal generator matrix T' = (I/E‘, exe

Assumption 3

The pair (A(f), B(f)) is stochastically stabilizable and (A(£),Q(£)) is observable for each
£es.

Under Condition 2, the equation (28) admits a unique positive solution, hence Py is
uniquely determined by (23) and (24). Furthermore, the following jump linear system is
mean-square stable [11]:

i = D(0)x, (29)
where D(€) = A(&) — B(€)B*(§) Po(§).
If n =1, we have
BPi(i) = AT(i)Pi(i) + Py())A®) — Po())B(i)R™ ()BT (i) P (3)
— P(i)B()R™' ()BT ())Po(i) + > vi; PL(4) + D i Pusa(4), i€ S, (30)
JES jES
From (21), we have:
> i Pi(j) =0. (31)
JES

By using (31) and Remark 1, we obtain:

{ P(§=Pi(i), i€l )
Pu(i) = Yges ¢e()Pi(E), €T

RR n® 4123
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Substituting the first expression of (32) in (30) to get

BRI = AT()P(E) + Pi(EAG) — Po(§)BEHR™(i)B (')Pl(é)
— P@)BGORTOBTOP(E) + Y Y v Pu(€) + D misPua(h)- (33)

el jeé JES

Multiplying (33) by mg(i), i € £ and summing over £, we obtain:
BPi(§) = DT(O)Pi(&) + P(€)D(E) + Y vea P (). (34)

Since the model (29) is mean-square stable, one applies Proposition 2 [4] to show that
equation (34) has a unique solution. Since 0 is solution to (34), then 0 is the unique solution
0 (34). Thus, it follows from P;(i) =0, ¢ € S and (30) that

> wiPuia(j) =0, i €5. (35)
JES

If M # 1, then for 0 < n < M, we have

BPu(i) = AT(i)Pa(i) + Pa(i )A(i) — Po()B(i)R™ (i) BT (i) Pa(4)
— Pu(i)B@)R'(i)BT(i)Po(i) + > pij Payns(§) + Y v Pu(4)
jes jes
From (21), it follows that }°. ¢ pijPn(j) = 0. Then we can derive P (i) = .. = Py—1 =0,
and
> wiPayn(j) =0 n=0,1,..,M — 1. (36)
JjES
If n = M, then
BPu(i) = AT(0)Pu (i) + Pa(3)A®6) — Po()N (i) Pa (i) = Par (i) N (4) Po (i)
+ Z,Uz'jPQM J) +2VijPM(j)7
jes j€S
where N (i) = B(i)R™(i) BT (i). From (23), we get
S wiPu() = ali),  i€S, (37
jES

where a(i) = BPy(i) — AT (i) Po(i) — Po(i)A(i) + Po(i))N(i)Po(i) — Q(i) — X ;5 vis Po(4)
If M #1, then for M < n < 2M, we have

BPu(i) = AT(i)Pu(i) + Pu(9)A(i) = Po())N (i) Pa(i) = Pu(d)N (i) Po (i)

+ Zuu - (J +ZVz'an(J)

JES jES

INRIA
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From(36), we have that } . s pijPn(j) = 0, and therefore P,(j) = 0, Vj € S and n =
M+1,.,2M —1.
Similarly, we have that:

;U
—~
-,
=
Il
p

n<0
Py(i) > 0, €S
n# kM, kelN*.

m
—~
-~.
=
I
=

Now, we can state the following result.

Theorem 4.2 Let assumption 2 and 3 hold. Then the coupled algebraic Riccati equation

(7) admits a unique positive solution, which can be expanded as a Taylor series.

Remark 2 It follows from the proof of Theorem 1 in [15] (without disturbance) that the
Jump linear system (1) is stochastically stabilizable for sufficiently small € > 0, if the ag-
gregate jump linear system (29) is stochastically stabilizable, and with assumptions 1, 2, 5,
and 6 in [15], the solutions of the perturbed coupled algebraic Riccati equations (7) are of
the form P + O(e).

We introduce the following condition:

Assumption 4:
The initial probability distribution of the Markov chain 6(t) is positive for any state of teh
Markov chain.

A by product of Remark 2, Theorem 4.2 and its proof, is the result given in the following

corollary:

Corollaire 1 Let assumption 8 and 4 hold and assume that the jump linear system (1) is
observable. Then there exists €y such that the perturbed coupled algebraic Riccati equations
(7) admits a unique positive solution which can be erpanded as a Taylor series, for any
€ € (0, ).

5 Computation algorithms

The next theorem is about the computation of the terms in the expansion of
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16 El Azouzi, Abbad € Altman

P. and moreover the proof of the theorem is constructive in the sense that it provides
an algorithm for calculation.
Notation
Let Ker(C) denote the Kernel and I'm(C) the range of the operator C(f), i.e

Ker(C)={yeR/Cy=0} and Im(C)={yeR’/Ize R’ ,y=Cxz}.

Theorem 5.1 Let assumption 2 and & hold. Then the solution of the algebraic Riccati
equation (7) P. has the expansion 3.1 P,(i)e”, where (Po)i = (P + (Po)r and
(P = (Pa(@))et)ics € Im(n) and Pyt = (Pu(@))t)ics € Ker(). The sequence
((Pn), (Py)) is uniquely determined by the following iterative algorithm.:

1. Py(i), i € S is given by:
{ o) = Po(é), i€l VEeS.
Py(i) = Yeesg ie(0)Po(§), i€T.

where Py(€), € € § is a unique solution of the Coupled Algebraic Riccati Equations:

BPy(€) = QE)+AT ()P (€)+Po(€_)A(£_)—Po(£)B(E)BT(£_)P0(§_)+ZVggf o), E€8.

2. P,(1),1 €8, n>0 is a unique solution to the linear system:

1Pk = (1)t (39)

where

ap(i) = BPR(i)— Qi) — AT (i)Py(i) — Py(i)A(3) + Po(i) B(i)R™" (i) BT (4) Py (d)

=Y viiRo(j),

JjES
and
an(i) = BP.(i)—AT()P, (i)—Pn(')A(')+Po(')B(')R‘l(i>BT(i)Pn(i)
+ P,(i)B({)R™'(i)B ) =Y viiPu(§) + fali), n >0,

JjES

with fn(i) = Y32t Pe(i)B()R™ (i) BT (1) Pk (i).
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3. P,(i),1 €S, n >0 is given by:

{ Po(i)=Pa(§), i€l VEeS.

BP.(€) = DT(§)Pu(€) + Pa(§)D(E) + ZV'@R(E’) +Tn(6), £€6, (40)

e’
where
To(&) = D me(i)[=BPu(i) + AT (0)Pa(i) + Pn(i)A(i) — Po(i)B(i)R ' (i)B” (i) P (4)
ief
—  Pu(i)B)R™ ()BT (i) Po(i) + Y vi; Pa(f) — fnld)),
JjES
Proof

1. In the proof of theorem 4.2, we showed that Py(i), ¢ € S, is given by (24) and (28)
and this conclude (1).

2. p admits the eigenvalue 0 because > jes iy = 0. This eigenvalue is semi simple (the
eigenspace associated to the eigenvalue 0 admits an eigenvectors basis) this can be
shown easily by noting that gg, & € § defined before, form a basis of the c-dimensional
subspace Ker(u). From this property we have the decomposition: R® = Ker(u) @
Im(u), where Ker(u) denotes the kernel and Im(u) the range of the operator u.

Therefore, (Pn)ki = (Pn)ii + (Pn)i where (Po)r € Ker(p), (Po)u € Im(p), and

1 < k,l < p. Substituting this structure for n > 0 in (7), we obtain that (P,) is
solution (39) and since P, € Im(u), then (39) admits a unique solution.

3. Since (P,)r; € Ker(u), then

{ Pu(i) = Pa§) Q€S (41)

Substituting this structure (41) in (7), multiplying each equation by mg such that i € £

and summing up over £, we obtain:

ﬂpn(f_) = DT(E)Pn(g) + Pn(E)D(g) + Z V_E'Pn(gl) + Tn(f_)v f_e 57 (42)
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By using the same procedure to derive the uniqueness of equation (34), we conclude
that equation (42) admits a unique solution. g

We present an iterative algorithm to compute Py and another algorithm to compute P,,
n > 0.

Iterative algorithm to compute Py:

1- Set PY(i)=0,i€ S.
2- Compute PL(i),i € S,1 > 0, iteratively by solving the following set of quadratic equations:

(B+ve) Pyt (§) = AT(O) Pyt (&)+ Pyt () AE) - Pyt (§) B(E) BT () B (§)+Q(F, §),
(43)
where

~—~
Iy

) + vePy(€)

and 1/5— :| 1/5—5— |
Note that the sequence thus generated is monotonically nondecreasing [15], and therefore
possess limits, with former satisfying (38).

Iterative algorithm to compute P,,n>0

Let H be a solution to:

BH(E) =1+ DT(E)H(E) + HED(E) + ) vea H(E). (44)
S

LAl
951

Choose p such that the matrix T,,(€) = Ty, (€) + pI is positive definite (where T,, is defined
in (5.1)).

1- Set PO(€) := pH(E) VE € S.

2- Compute P.(£), £ € S, 1> 1, iteratively by solving the following set of coupled algebraic
Lyapunov equations:

(B +va) Pyt (&) = DT(OPM () + P, (E)D(E) + T(P,(€), ), (45)

where T(P,(£),€) = Yges vee Pr(&') + Tn(8) + vg P (8)-
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Let P, (£) = P.(&) + pH(E), then from (42) we have

(B+v)Pu(€) = DT(E)Pu(E) + Pu@)DE) + Y vger Pal(€) + Tu(é) + vgPu(§)
+ pl(B+veH(E) - DTHE) - HEDE) - > vga H(@)

— veH(E)]. (46)

By using the same procedure to derive equation (34), we conclude that equation (44) admits
a unique positive solution (since I > 0). Hence the equation (46) becomes:

(B+ve)Pu() = DT(E)Pu(E) + Pu(E)D(E) + Y vea Pa(€)

+ P (&) + Tn(€) + pI (47)

The equation (47) admits a unique positive solution 13” which can be computed by the
following iterative algorithm

1- Set P2(¢):=0, £ € 8.

2- Compute PL(£), £ € 5, 1> 1, iteratively by solving the following set of coupled algebraic
Lyapunov equations:

(B + vg) P (€) = DT (€) PIH(€) + PH(€)D(€) + Tu(PL, €), (48)

where

Tu(PLE =TE) + Y vea PL(E) + vePL(E).
(S

[95]

From the definition of T,,(P!, &),
it  PtN€) > Pué) VEeS then T,(PiH.&) >T.(PhE VEeS.  (49)
Note that if P'+2 and P!*1 are the solutions to
(B +ve)BLT*(€) = DT(E)PLF(&) + PL(§)D(€) + Tu(PLH, )
and
B+ ve) P (€) = DT(E)PLH (&) + P (€)D(E) + Tn(PL, )

respectively, then by subtraction we obtain:

(B+ve)(PH2() — PHY(E) = DT (E)(PH2(E) — PEY(E)) + (PH2(€) — PLL(€))D(€)
+ (T (P E) - To(PLE)) (50)
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If
T.(PH,6) 2 Tu(PL(E), O,
then the last equation admits a unique positive solution, hence

PH2(E) > PHY(D). (51)

In view of the fact that P1(£) > PY(£) := 0, (49) (51) establish by induction the desired result
that the sequences 13711 are monotonically nondecreasing sequences, which have to converge
to the solution of (47). It can be also observed that the sequences P! defined above satisfy
Pl = PL — pH hence the sequences P. are monotonically nondecreasing sequences which
have to converge to the solution of (42).

Remark 3 The system can be solved recursively in n:
Py is computed by the iterative algorithm,

P, is solution of (39)1,

P, is computed by the iterative algorithm

P, is solution of (39)2,

P, is computed by the iterative algorithm ,

and so on .....

6 Conclusion

In this paper, we have presented a study to the perturbation of multidimensional linear
quadratic systems with Markov jump parameters. Under perfect state measurements for
infinite horizon, we have showed that the optimal policy and value admit a Taylor expansion
in the perturbation. This was done by using the solution of a corresponding set of CARE
(coupled algebraic Riccati equations). A computation of the Taylor expansion was presented.

Results presented here could be extended in several direction. The first, is the case where
the Markov chain is controlled too. In [8] we already investigated that direction, however we
restricted to the case in which the state is one dimensional; the quadratic structure of the
optimal value does not seem to extend to multidimensional case. We shall carry on future
research to study the limit of the optimal value for such hybrid systems, as the singular
perturbation parameter tends to zero. Other extensions are to problems in which the linear
dynamics has another component of noize, in which case, one can still obtain the linear
quadratic structure for the Gaussian disturbance, or for the worst case analysis (formulated
as an H* control problem).
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