N

N

Walking in a triangulation

Olivier Devillers, Sylvain Pion, Monique Teillaud

» To cite this version:

Olivier Devillers, Sylvain Pion, Monique Teillaud. Walking in a triangulation. RR-4120, INRIA. 2001.
inria-00072509

HAL Id: inria-00072509
https://inria.hal.science/inria-00072509
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00072509
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--4120--FR+ENG

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Walking in a triangulation

Olivier Devillers — Sylvain Pion — Monique Teillaud

N° 4120
Fevrier 2001

THEME 2

apport
derecherche

% I N R I A

SOPHIA ANTIPOLIS

Walking in a triangulation

Olivier Devillers, Sylvain Pion , Monique Teillaud

Théme 2 — Génie logiciel
et calcul symbolique
Projets Prisme

Rapport de recherche n® 4120 — Fevrier 2001 — Appendix — 4 pages

Abstract: Given a triangulation in the plane or a tetrahedralization in 3-space, we inves-
tigate the efficiency of locating a point by walking in the structure with different strategies.

Key-words: Computational Geometry, Delaunay, triangulation, location

This work was partially supported by the ESPRIT IV LTR Project No. 28155 (GALIA).

Unité de recherche INRIA Sophia Antipolis

2004, route des Lucioles, B.P. 93, 06902 Sophia Antipolis Cedex (France)
Téléphone : 04 92 38 77 77 - International : +33 4 92 38 77 77 — Fax : 04 92 38 77 65 - International : +33 4 92 38 77 65

Stratégies de marche dans une triangulation

Résumé : Etant donné une triangulation dans le plan ou une tétrahédrisation dans I’espace,
nous étudions efficacité de plusieurs stratégies de localisation par marche.

Mots-clés : Géométrie algorithmique, triangulation, Delaunay, localisation

Walking in o triangulation 3

1 Introduction

Given a triangulation 7 of n vertices in the plane and a point p, finding the triangle of 7
containing p is a fundamental problem in computational geometry. Several sophisticated
structures exist to answer such location queries in optimal O(logn) time [11, 8] but they are
often too complicated and some practitioners may prefer to implement simpler techniques,
such as traversing the triangulation using adjacency relations between triangles. This idea
can be used directly to locate a point in a triangulation from a known starting point. It is
also possible to choose a good starting point in some clever way [10, 9, 4].

There exist different strategies to find the triangle containing the query point p from the
triangle containing a source point g. The simplest strategy, that we will call the straight
walk, consists in visiting all triangles along the line segment ¢p. A second strategy, the
orthogonal walk, visits the triangles along an isothetic path moving from ¢ to p by changing
one coordinate at a time. Finally, we call visibility walk a very popular strategy for the
Delaunay triangulation: from a triangle ¢ not containing p we move to the neighbor of ¢
through an edge e if the line supporting e separates t from p; there may be one or two such
edges for a triangle ¢, if there are two we may move to any of these two neighbors. This walk
is used for the Delaunay triangulation because in that case it can be proved that it actually
reaches the right triangle [6, 3, 7]. In the case of any triangulation the walk may loop. We
consider a variant of the visibility walk: the stochastic walk in which we decide that if we
can choose between two neighbors of ¢, then the choice is done at random.

All these walking strategies generalize to higher dimensions.

The purpose of this paper is to study the performances of the different strategies from
both theoretical and practical points of view, in R? and R®. Hardly anything is known
on this topic. The only theoretical result states that the number triangles visited by the
straight walk in a Delaunay triangulation of n random points in the plane, to reach a point
p from a point ¢ is O(|gp|\/n), where |gp| denotes the distance from ¢ to p [2, 5].

We are interested in counting not only the number of simplices visited by a walk, but
also the cost of visiting one simplex. We consider the robustness issues raised by the imple-
mentation of the different strategies.

Section 2 defines the framework of this study. Then we give a detailed description of
the different strategies (Sections 3, 4 and 5) in dimensions 2 and 3 together with complexity
results. We prove in Section 5.2 that the stochastic walk actually has a zero probability of
looping forever, in any dimension. In Section 6 we present some experimental results on the
implementation of the different strategies.

2 Framework
Let S be a set of n points in R, d = 2,3. We will consider triangulations (simplicial com-

plexes) whose domain covers the whole convex hull of S. All the simplices of a triangulation
are positively oriented.

RR n° 4120

4 O. Devillers, S. Pion, & M. Teillaud

Given such a triangulation 7 of S, we study different strategies to reach a query point
p starting from a given starting vertex g of 7, walking in 7 by using adjacency relations
between the simplices of 7.

It is not straightforward to decide which strategy is the best one. The paths followed by
the different strategies have different lengths in terms of number of simplices. The number
of evaluations of predicates (simple geometric questions) when visiting a given simplex also
depends on the strategy, as well as the nature itself of the predicates involved.

There are theoretical results on the number of triangles visited by the straight walk in
the plane, but nothing is known about the visibility walk.

The basic predicate in the straight walk (Section 3) and the visibility walk (Section 5) is
the orientation predicate, which is defined over d + 1 points by the sign of a d dimensional
determinant, expressed below for 2 and 3 dimensions respectively:

(12 32
By —ay 1y — oy

/Bz_az Yz — Og 6z_aw
orientation(a, 8,7,6) = sign| | By —ay Yy — 0y by — oy
ﬂz_az ’Yz_az 6z_az

orientation(a, 3,7)

When two points have all but one coordinate equal, the expression of orientation simpli-
fies to a determinant of dimension d — 1. We take advantage of this in the orthogonal walk
(Section 4), which uses mostly comparisons of coordinates in dimension 2 and more gener-
ally lower dimensional orientation predicates, which are faster and of course more robust
than the full dimensional orientation tests, since they involve lower degree computations.
The orthogonal walk only uses the d dimensional orientation predicate a constant number
of times.

The algorithms also use basic operations such as:

e neighbor(t through pq) returns the triangle sharing edge pq with the triangle t.

e l=vertex of t, 1#q, 1l#r; chooses 1 as the third vertex of a triangle whose two
vertices are already known.

(the same notation will be used in the pseudo-code given in Appendix).

These two operations are similar in 3 dimensions for the neighbor of a tetrahedron or
the fourth vertex of a tetrahedron. They need a constant number of pointers access or
comparisons; the exact number depends on the internal representation of the triangulation,
which may be any variant of the DCEL or may be based on simplices or vertices as in CGAL

1.

INRIA

Walking in o triangulation 5

Figure 1: The straight walk.

3 Straight walk

3.1 2 dimensions

This method consists in traversing all the triangles of the triangulation 7 that are intersected
by the line segment originating from a given vertex ¢ of 7 and ending at the query point p.
This is performed using the adjacency relations between the triangles.

More precisely, the algorithm first performs an initialization step: from one triangle
incident to ¢ we turn around ¢ until a triangle intersected by the ray ¢p is found. During
this initialization step, one orientation test is needed for each visited triangle and the number
of visited triangles is at most the degree of ¢, thus at most n triangles.

Once the initialization step is completed, the straight walk really starts. At a given step
of the walk, we traverse some triangle ¢, and the ray gp goes out of ¢ through edge e. By
testing on which side of e lies p, we decide if ¢ contains p or if the walk must go on. In the
later case, the walk goes to the neighbor of ¢ through e and the new vertex of that triangle
is located with respect to the line gp to decide by which edge of that triangle the ray gp
goes out (see Figure 1-left). Therefore, the number of orientation tests performed for each
visited triangle is exactly 2. The straight walk cannot visit the same triangle twice, thus the
worst case length of a straight walk is at most the number of triangles of the triangulation
which is less than 2n.

Of course, visiting a linear number of triangles seems big, but the general idea of the
walking strategy is that in practice you visit less triangles in a reasonable triangulation,
although the 2n + O(1) bound is tight, as shown by Figure 1-right. In the special case of
Delaunay of points evenly distributed, it can be proven that the number of visited triangles
during the walk is O(|pg|\/n) [5].

We give a pseudo-code for a detailed description of the walk (see Appendix).

RR n° 4120

6 O. Devillers, S. Pion, & M. Teillaud

Figure 2: Straight walk in 3 dimensions (main loop).

3.2 3 dimensions

The principle of the walk is similar in higher dimension although a little bit more intricate.

Given vertex ¢ of 7 and a query point p, the initialization step consists in finding
the tetrahedron incident to ¢ intersected by the ray g¢p, starting from another tetrahedron
incident to gq. This problem is in fact the 2 dimensional problem of locating the ray gp
in the set of rays having ¢ as origin and triangulated by the tetrahedra incident to ¢ in
7. This initialization step is thus solved by the 2D Straight Walk algorithm. Notice that
the orientation test for three rays emanating from ¢ is the usual orientation test in three
dimensions. The results of the previous paragraph on the number of visited triangles or the
number of predicates per triangle apply here.

After this initialization, the main part of the walk begins. At a given step, we know
that the ray goes out of some tetrahedron t by a facet e, then we must decide if the walk
terminates in ¢ by looking on which side of e lies p (see Figure 2). If the walk continues in
the neighbor of ¢ through e, then the ray ¢p goes out of that neighbor by a facet which is
determined by two orientation tests involving ¢, p, the new vertex and a vertex of e.

Thus the number of orientation tests per visited tetrahedron is exactly 3. As in two
dimensions, the number of visited tetrahedra is clearly bounded by the number of tetrahedra
of 7 since a tetrahedron cannot be visited twice. This number is quadratic in the worst case
and a quadratic bound may be reached as shown by the example of Figure 3.

3.3 Degenerate cases

The above algorithms do not handle degenerate cases. When the ray ¢p goes exactly through
a vertex of the triangulation, or through an edge in 3D, the next cell traversed by the ray
is not a neighbor of the previous one. In such a case, the algorithm must perform a kind of
initialization step to be able to continue the walk.

Actually coding a robust version of the straight walk which handles degenerate cases
yields to an intricate code.

INRIA

Walking in o triangulation 7

3D set of points Horizontal cross section

Figure 3: A quadratic example for the straight walk in three dimensions.

Figure 4: The orthogonal walk.

4 Orthogonal walk

The cost of evaluating an orientation predicate increases with the dimension, thus an idea
to improve the efficiency of the algorithm consists in decomposing the walk in pieces parallel
to the coordinate axis and to get an orthogonal walk (see Figure 4 left).

If the ray pq is parallel to a coordinate axes, then the orientation tests of the straight
walk involving both p and ¢ become simpler as noticed in Section 2. This is the case of the
orientation tests involved in the initialization phase and of the tests to decide by which edge
of the triangle (resp. facet of the tetrahedron) the ray goes out. It remains one test per
triangle (resp. tetrahedron) to decide if the walk ends in that tetrahedron; this test cannot

RR n° 4120

8 O. Devillers, S. Pion, & M. Teillaud

be simplified in general, but a cheaper sufficient condition for the ray to continue can be
evaluated first: if p is further than the triangle bounding box in the axis direction, then the
walk continues and only otherwise the orientation test is performed.

In the worst case, the orthogonal walk can visit the same simplex at most d times, thus
the worst case length of an orthogonal walk is trivially linear in the number of simplices of
the triangulation. A bound of 4n + O(1) can be reached in 2 dimensions (Figure 4 right).
The orthogonal walk can be quadratic in 3 dimensions as shown by the example of Figure
3.

For the special case of the Delaunay triangulation of random points in the plane, the
number of visited triangles during the walk is O((|pa| + |ag|)v/n) [5]. In the orthogonal
walk, the dimension of the orientation tests decreases, compared to the straight walk, but
the number of visited triangles increases. The average ratio between the length of the
straight and the orthogonal walks is the average, on the unit sphere in d dimensions, of the
sum of the absolute values of the coordinates, which is d times the average of the absolute
value of one coordinate, which we show below to be 4/7 ~ 1.27 in 2 dimensions, and 3/2 in
3 dimensions.

In 2 dimensions :

™

2 [8 [4 x4
%-/o |cos€|d6—%/0 cos6d9-;[sm0]0 =

In 3 dimensions :

3) cosf2r sinfdb 3 [Fsin20d8 3

JiF 27 sin6 do 2 2

We give in Appendix a detailed pseudo code description of the algorithm in two di-
mensions. The two dimensional orientation tests are replaced by comparison of coordinates
denoted by below, above, left or right in the pseudo code.

5 Visibility and stochastic walks

5.1 Description

The wisibility walk is extremely simple. Let us describe it in 2D. The 3D case is similar,
triangles just have to be replaced by tetrahedra and edges by facets. The algorithm starts
from a triangle incident to the starting vertex ¢. Then, for each visited triangle ¢, the first
edge e is tested. If the line supporting e separates ¢ from p, which reduces to a single
orientation test, then the next visited triangle is the neighbor of ¢ through e. Otherwise, the
second edge is tested in the same way. In case the test for the second edge also fails, then
the third edge is tested. The failure of this third test means that the goal has been reached
and that ¢ contains p.

INRIA

Walking in o triangulation 9

Figure 5: A cycle for the visibility walk.

In addition to its simplicity, the advantage of this walk is that it does not have to deal
with degeneracies. If, for an edge e, p lies on the supporting line of e, then the method will
look at the next edge. At least one of the edges of each triangle is such that its supporting line
strictly separates the triangle from the query point. The only degeneracies to be considered,
namely the different cases when p lies on the boundary of a triangle, occur at the end of the
walk, when the goal is reached.

The visibility walk is not completely specified: it depends on the implementation of the
triangulation, since there is no intrinsic numbering of the edges of a triangle, no intrinsic
definition of the “first” edge. The straight walk can be seen as a possible particular execution
of the visibility walk algorithm. This is not the case for the orthogonal walk.

The visibility walk in a Delaunay triangulation always terminates, in any dimension [3].
Unfortunately, for non Delaunay triangulations, the visibility walk may fall into a cycle, even
in 2D, as illustrated by the famous example of Figure 5. Non-Delaunay triangulations (e.g.
the constrained Delaunay triangulation) are also interesting in practice and they cannot be
eluded. Therefore, to avoid infinite loops into cycles of non-Delaunay triangulations, a little
bit of randomness can be introduced into the algorithm. As already noticed, the visibility
walk depends on the numbering of the edges of the triangles. Using this degree of freedom,
we may choose between different possible visibility walks.

The stochastic walk is obtained by replacing the access to the first edge of ¢ by the access
to a random edge of t. This ensures that, if the walk enters a cycle of the triangulation, it
cannot loop into this cycle forever. The termination of the stochastic walk in any kind of
triangulation will be proven in the next section.

The stochastic walk performs 1 to 3 orientation tests in each visited triangle. More
precisely, suppose a triangle has only one edge whose supporting line separates it from p,
then, this edge is chosen as the first one with probability 1/3, and only one test is needed,

RR n° 4120

10 O. Devillers, S. Pion, & M. Teillaud

Figure 6: The directed graph G of neighborhood relationships towards p.

the previous one is chosen with probability 1/3, and two tests are performed, or the next
one is chosen, and three tests are performed. This amounts to 1/3-1+1/3-2+1/3-3 = 2.
In the case when the triangle has two edges whose supporting lines separate it from p, the
number of tests is 2/3-1+1/3-2 = 4/3. Thus, the average number of orientation tests is
less than 2, whereas it is 2 for the straight walk. Similar computations show that in 3D, the
average number of tests is less than 2.5, whereas it is 3 for the straight walk.

A variant of the stochastic walk is the remembering stochastic walk whose pseudo-code is
given in Appendix. In a given triangle, the visibility (stochastic or not) walk can test the edge
where it comes from, and thus performs an orientation test that was already performed in
the previous visited triangle. This can be avoided by remembering, for each visited triangle,
the edge that was just crossed by the walk. Then, before testing an edge, it compares it
with the remembered edge. This comparison consists of a constant number of comparison
of pointers, as mentioned in Section 2. Computations analogous to the ones done above for
the variant without memory lead to an average number of orientation tests less than 1.5 in
two dimensions and less than 3 in three dimensions. It is not clear whether remembering the
edge and performing the comparisons for each triangle is less expensive in practice than a
useless orientation test in some triangles. The two variants will be compared experimentally
in Section 6.

5.2 Expected validity of the stochastic walk

Let us analyze the algorithm in dimension d.

Given p, we define the directed graph G, from 7, as follows. The nodes of G are the
simplices of 7 (we will use the same notation for a simplex and its associated node), and
there is an oriented arc from node ¢ to node #' if the corresponding simplices are adjacent
through a facet e, in such a way that ¢’ and p lie on the same side of e (see Figure 6).

INRIA

Walking in o triangulation 11

Lemma 1 Given a facet e shared by simplices t and t' and such that the arc of G is oriented
from node t to node t', the probability that a stochastic path reaching t goes to t' is greater
than ﬁ.

Proof: If the path goes through ¢, then a facet of ¢ having p on the other side must be
chosen to continue the stochastic path. e may be chosen first, then the stochastic path uses
it since p is on the good side of e; this happens with probability ﬁ (the d + 1 facets have
equal probability). If another facet is chosen first, then p may be on the wrong side and e can
be chosen after; this happens with a probability depending of the geometric configuration,
the probability is just lower bounded by zero to get the result of the lemma. []

Theorem 2 Given a triangulation T and a query point p in dimension d, the stochastic
walk terminates with probability 1.

Proof: The out-degree of a node of G is between 1 and d. As noticed before, the graph G
may have cycles, but we will prove that the stochastic walk cannot cycle forever and will
necessarily reach the only sink of the graph G, i.e. the simplex S containing p.

Let us label all the nodes of G by their distances to S in G, where the distance between
a node to S is the minimum number of arcs to be followed to reach S from this node (by
the definition of G, there is always a path from any node to S). Then by construction, for
any node t of label k, there exists an arc of G from t to at least one node of label k£ — 1.
Thus if ¢ is visited, then a node of label k£ — 1 is visited with probability higher than ﬁ by
Lemma 1.

Assume that a stochastic walk visits Vi nodes of label k. Then N,_1 > % and by an
immediate induction: Ny < (d + 1)¥*Np. This relation clearly proves that Ny # 0. So, the
walk terminates and reaches S, which is the only node of label 0. [|

Additionally, this proof yields an exponential bound on the length of the stochastic walk:

A A
C’ostSZNkS (d+1)k <
k=0 k=0

(d + 1)A+1
d

(Ng = 1) where A is the maximal length (in terms of number of arcs) of a shortest path
in G from any node to S. Since the straight walk is a particular case of visibility walk,
A is bounded by the longest straight walk in the triangulation, that is A = O(n) in two
dimensions and A = O(n?) in three dimensions.

Unfortunately, for very special configurations of points, this exponential length of the
stochastic walk can actually be reached.

The triangulation depicted on Figure 7 consists of one central triangle containing the
point p to be located and k layers of cycles around it. These cycles go through a rectangle
formed by k x k2 small squares.

Any triangle having two outgoing arcs in graph G, in this example, is as shown in Figure
7: the ingoing edge e is chosen first with probability 1/3, then the walk must cross the next

RR n° 4120

12

O. Devillers, S. Pion, & M. Teillaud

probability 2/3
-
‘.. probability 1/3

EN

Figure 7: The stochastic walk may have exponential length.

INRIA

Walking in o triangulation 13

edge €', which forces the walk to follow a cycle. €’ can also be chosen first with probability

1/3. So, the walk stays in the cycle with probability 2/3. The edge e’ allows the walk to

leave the cycle. It is crossed only when it is chosen first, which occurs with probability 1/3.
Let a stochastic walk start in triangle ¢ defined in the figure.

It reaches p through edge « if, for each visited triangle, it chooses the edge out of the cycle,

which occurs with probability (1/3)*. Tt reaches p through edge 3 if it chooses i times the

edge of the cycle, then it chooses the edge in the cycle, then it chooses k — i times the edge

out of the cycle. This occurs with probability k.(2/3).(1/3)*. Analogously, it crosses edge 7

with probability (+41).(2/3)2.(1/3)*.

Thus, the walk enters the k x k? rectangle by one of the k edges § with probability

1 - (1/3)F — k(2/3).(1/3)% — (+37).(2/3)2.(1/3)".

Let us consider a path entering the rectangle through 6. Giving a tight bound on the proba-

bility that such a path goes out of the rectangle through one edge of ¢ is quite complicated.

Let us use a loose bound equal to (1/2)*~1. If the path does not go out through &, then

it necessarily reaches its starting triangle ¢, and using the previous bound, this occurs with

probability greater than 1 — (1/2)F~L.

Summarizing, a path starting at ¢ reaches t again with probability greater than

2k2+8k+9_ 1

(1= (1/3)" = k.(2/3)-(1/3)" = (+41) (2/3).(1/3)") (1 = (1/2)" 1)) > 1-——55 k1"

J
So, the expected number of times that t is visited is greater than 3522 g (1 - 2’“234;# - 2;%1) =

1

2k248k49 41
k2 ok—1

a vertex on the convex hull of the points. Its length is k2 + 2k + 6. So, we get an expected

length for stochastic walk greater than t2k6 > ok+1,

3k+3 T 3E-T

Moreover, this triangulation has (k 4+ 1)(k? + 1) + 2(k + 1) < (k + 1)? vertices. Thus, we
proved the following result:

. The shortest cycle from ¢ to ¢ is obtained by traversing the triangles having

Theorem 3 There exists a triangulation T of n points in dimension 2 and a query point
p, such that the expected length of the stochastic walk is greater than 2Vn

6 Experimental results

We experimented different walking strategies for locating points in a Delaunay triangulation
of 100.000 or 1.000.000 points evenly distributed in a square or in a cube. The walk was
performed in the standard way, starting the walk at some known vertex of the triangulation,
or as a tool in the Delaunay hierarchy [4] which walks in a hierarchy of more and more
refined samples; using this method, locating a query involves few (O(logn)) walks visiting
a relatively small number of triangles.

The algorithms are coded in C++. The orientation tests use the usual floating point
arithmetic. Robustness issues due to degenerate cases or rounded computations are solved

RR n° 4120

14 O. Devillers, S. Pion, & M. Teillaud

by perturbation and static filtering, which do not have a significant influence on the running
time for these random data.

For each strategy we count the number of visited triangles or tetrahedra (fA), the number
of full dimensional orientation predicates (forient) and the running time (benchmarks are
done on a Sun Ultral0 440MHz, 768Mo; times are obtained with the clock command, and
averaged on 500.000 locations in 5 different random triangulations, times for each run are
given in appendix).

The four strategies presented above are compared in the following tables. In fact, since
the tests were performed on Delaunay triangulations, the visibility walk (without random-
ness) does not cycle and produces results similar to the stochastic walk, in both basic and
remembering versions.

100.000 points 1.000.000 points
Walk Hierarchy Walk Hierarchy
ﬂA | ﬁorient | MUS ﬁA | ﬁorient | MUS ﬁA | ﬁorient | MS ﬁA | ﬁorient | JI5]
per point per point per point per point

Stochastic 2D 74 133 | 65| 23 49 | 41 || 225 391 | 161 || 29 61 | 48
Visibility 2D 78 136 | 64 || 23 44 1 39 || 224 386 | 152 || 29 56 | 47
Rem. stoch. 2D 70 126 | 65 | 23 49 | 42 || 220 382 | 168 || 29 61 | 49
Rem. visib. 2D 77 104 62 23 35| 39 | 224 296 | 147 28 42 45
Straight 2D 72 145 | 68 || 20 42 | 43 || 193 387 | 158 | 24 52 | 50
Orthogonal 2D 84 6| 62| 27 9|43 | 283 51162 | 33 11 | 50
Visibility 3D 184 381 | 187 || 30 74| 65 || 359 736 | 420 || 36 87 | 81
Stochastic 3D 167 325 | 183 || 30 69 | 65 || 335 641 | 402 || 35 80 | 82
Rem. visib. 3D 184 301 | 178 || 30 59 | 66 || 359 581 | 403 || 35 67 | 81
Rem. stoch. 3D || 167 261 | 176 || 30 56 | 64 | 335 516 | 392 || 35 65 | 81
Straight 3D 157 466 | 204 | 25 75 | 70 || 309 919 | 438 || 31 91 86
Orthogonal 3D 198 11 | 206 42 21 | 86 || 417 12 | 452 48 21 | 109

The running times of all strategies are of the same order.

The straight walk has the best performances in terms of visited simplices, both theoret-
ically and experimentally, but it has the worst cost per triangle. Another drawback of the
straight walk is the management of degenerate cases which make the code quite intricate,
especially in three dimensions.

For walks of large length in terms of visited simplices, the orthogonal walk is faster. In
fact it will be the right choice when using expensive arithmetic (e.g. multi-precision exact
arithmetic).

7 Conclusion and open problems
We presented four strategies for walking in a triangulation to locate a point: the straight

walk, the visibility walk with or without memory, and the orthogonal walk. We studied
them from both theoretical and practical points of view.

INRIA

Walking in o triangulation 15

The best method to implement is the stochastic visibility walk, since it performs ex-
perimentally a little bit better than the straight and the orthogonal walks, and since it is
easier to code and does not encounter any problem with degenerate cases. The orthogonal
walk can also be considered when an expensive arithmetic is used or when a large number
of simplices must be traversed.

Open questions remain about the stochastic visibility walk. We showed that it always
terminates, but it can have an exponential complexity on cases that are very pathologic,
both in the choice of the triangulation and in the choice of the query point. It might be
possible to get results under some hypotheses on the triangulation and on the query point:
Is the expected complexity in the case of a Delaunay triangulation of n random points in
dimension d equal to /n? Would it be possible to get an amortized complexity for the
successive locations of n points incrementally inserted into a Delaunay triangulation?

References

[1] Jean-Daniel Boissonnat, Olivier Devillers, Monique Teillaud, and Mariette Yvinec. Tri-
angulations in CGAL. In Proc. 16th Annu. ACM Sympos. Comput. Geom., pages 11-18,
2000.

[2] P. Bose and L. Devroye. Intersections with random geometric objects. Technical report,
School of Computer Science, McGill University, 1995. Manuscript.

[3] L. De Floriani, B. Falcidieno, G. Nagy, and C. Pienovi. On sorting triangles in a
Delaunay tessellation. Algorithmica, 6:522—-532, 1991.

[4] Olivier Devillers. Improved incremental randomized Delaunay triangulation. In Proc.
14th Annu. ACM Sympos. Comput. Geom., pages 106-115, 1998.

[5] Luc Devroye, Ernst Peter Miicke, and Binhai Zhu. A note on point location in Delaunay
triangulations of random points. Algorithmica, 22:477-482, 1998.

[6] H. Edelsbrunner. An acyclicity theorem for cell complexes in d dimensions. Combina-
torica, 10(3):251-260, 1990.

[7] Paul-Louis George and Houman Borouchaki. Triangulation de Delaunay et maillage.
Applications aux éléments finis. Hermes, Paris, France, 1997.

[8] D. G. Kirkpatrick. Optimal search in planar subdivisions. SIAM J. Comput., 12(1):28—
35, 1983.

[9] C. Lemaire. Triangulation de Delaunay et arbres multidimensionnels. Thése de doctorat
en sciences, Ecole des Mines de St-Etienne, France, 1997.

[10] Ernst P. Miicke, Isaac Saias, and Binhai Zhu. Fast randomized point location without
preprocessing in two- and three-dimensional Delaunay triangulations. In Proc. 12th
Annu. ACM Sympos. Comput. Geom., pages 274283, 1996.

RR n° 4120

16 O. Devillers, S. Pion, & M. Teillaud

[11] F. P. Preparata. Planar point location revisited. Internat. J. Found. Comput. Sci.,
1(1):71-86, 1990.

INRIA

Walking in o triangulation Appendix - 1

Appendix: pseudo-code

Algorithm 2D Straight Walk(q,p)
// traverses the triangulation 7, following the line segment from q to p.
// t=qrl is a triangle of 7.
if orientation(rqp)<0 while orientation(1lqp)<0 {
r=1;
t=neighbor (t through ql);
l=vertex of t, 1#q, l#r; }
else do {
1=r;
t=neighbor(t through qr);
r=vertex of t, r#q, r#l;
} while orientation(rqgp)<0;
// end of initialization step
// now gp has v on its right and | on its left.
while orientation(prl)<0 {
t = neighbor(t through rl);
s = vertex of t, s#r, s#l;
if orientation(sqp)<0 r=s; else 1l=s; }
// t contains p.

Algorithm 3D Straight Walk(q,p)
// traverses the triangulation 7, following the line segment from q to p
// t=uvwq is a tetrahedron of T .
if orientation(vuqp)>0 while orientation(wuqp)>0 {
V=W,
t=neighbor(t through quw) ;
w=vertex of t, w#u, w#v, w#q; }
else do {
W=V}
t=neighbor(t through quv);
v=vertex of t, v#u, v#w, v#q;
} while orientation(vuqp)<0;
// now v and w lie on opposite sides of plane ugp,
// vuqp is positively oriented and wugqp negatively.
while orientation(vwgp)>0 {
t = neighbor(t through qvw);
s = vertex of t, s#v, s#w, s#q;
if orientation(suqp)>0 v=s; else w=s; }
u = vertex of t, s#v, s#w, s#q;
// end of initialization step,

RR n° 4120

Appendix — 2 O. Dewillers, S. Pion, & M. Teillaud

// qp intersects triangle wvw,
// wugp, vugp and uwqp are positively oriented.
while orientation(uwvp)>0 {
t = neighbor(t through uvw) ;
s = vertex of t, s#u, s#v, s#w;
if orientation(usqp)>0 // qp does not intersect triangle usw,
if orientation(vsqp)>0 // qp intersects triangle vsw,
u=s;
else // qp intersects triangle usv,
w=s;
else // qp does nmot intersect triangle usv,
if orientation(wsqp)>0 // qp intersects triangle usw,
v=s;
else // qp intersects triangle vsw,
u=s;
// t contains p.

Algorithm 2D Orthogonal Walk(q,p)
// traverses the triangulation T, using the orthogonal walk from q to p,
// t=gqrl is a triangle of 7. wlog, we assume p is above and to the right of
q.
a=point (xp,yq);
if r below q while 1 below q {
r=1; t=neigbor(t through ql); l=vertex of t#qr;}
else do {
1=r; t=neigbor(t through qr); r=vertex of t#ql;
} while r above q;
// q has r below and [above.
while ((r and 1 at left of a) or orientation(arl)<0){
t = neighbor(t through rl);
s = vertex of t#rl;
if s above q 1l=s; else r=s; }
// a inside t
1 = vertex of t#rl;
r = vertex of t#rl;
// D has r at right and [at left.
while ((r and 1 below p) or orientation(prl)<0) {
t = neighbor(t through rl);
s = vertex of t#rl;
if s at left of p 1l=s; else r=s;}
// t contains p.

INRIA

Walking in o triangulation Appendix — 3

Algorithm Remembering Stochastic Walk(q,p)
// traverses the triangulation 7, using the remembering stochastic walk

// from q to p. t=gqrl is a triangle of T.
previous=t; end=false;
while (not end) {

e = random edge of t;
if (p not neighbor of previous through e) and (p on the other side of e)

{previous=t;t=neighbor (t through e);}
else {

e = next edge of t;
if (p not neighbor of previous through e) and (p on the other side of e)

{previous=t;t=neighbor (t through e);}
else {

e = next edge of t;
if (p not neighbor of previous through e) and (p on the other side of

e)
{previous=t;t=neighbor (t through e);}

else end=true;

}

}
// t contains p.

RR n° 4120

Appendix — 4 O. Dewillers, S. Pion, & M. Teillaud

run times 100.000 points 1.000.000 points
on 5 # Walk Hierarchy Walk Hierarchy
inputs BA | forient | s || §A | forient | us fA | forient | ps || §A | forient | s
per point per point per point per point
Stochastic 2D 73 131 64 23 49 | 40 || 192 334 | 142 28 60 47
69 126 62 22 46 | 40 244 425 | 171 29 62 47
68 124 62 23 49 | 40 || 264 459 | 184 28 60 47
84 151 70 24 51 | 41 193 338 | 144 29 62 47
72 130 64 23 49 | 41 || 230 398 | 164 28 59 47
Visibility 2D 80 138 65 21 41 | 38 || 285 488 | 183 29 55 47
84 149 67 23 46 | 39 || 220 379 | 150 30 58 46
63 112 57 22 43 | 39 || 180 310 | 129 29 57 46
67 119 59 22 43 | 39 242 418 | 162 28 56 46
92 159 70 23 45 | 39 || 194 334 | 135 28 54 46
Rem stoch 2D 61 111 60 23 49 | 41 || 235 409 | 176 29 62 49
84 151 71 24 50 | 41 || 196 341 | 153 28 60 49
72 131 68 22 48 | 41 213 371 | 164 30 62 49
60 110 60 23 49 | 42 || 221 384 | 168 28 60 48
69 124 64 23 49 | 41 232 404 | 176 28 60 48
Rem visib 2D 86 116 65 23 35 | 39 || 257 340 | 163 28 42 45
70 95 59 22 34 | 38 || 254 337 | 162 28 42 45
70 95 59 23 34 | 39 || 227 299 | 148 28 42 45
96 128 71 22 34 | 38 || 177 233 | 123 27 41 45
61 85 55 23 34 | 38 || 204 268 | 136 28 42 45
Straight 2D 94 188 80 20 43 | 43 || 168 337 | 142 23 51 49
75 151 69 21 44 | 43 189 380 | 155 22 49 49
57 116 60 20 42 | 43 224 449 | 178 24 51 49
71 146 68 18 40 | 42 || 200 402 | 163 25 54 51
59 121 62 19 40 | 42 || 180 363 | 151 23 51 50
Orthogonal 2D 84 5 61 24 8 | 41 223 5 | 133 31 11 49
95 6 65 27 8 | 42 || 269 5 | 161 31 10 49
76 5 60 28 8 | 43 || 288 5 | 167 34 11 51
86 5 62 26 9 | 42 333 5 | 180 33 10 50
78 5 60 28 8 | 43 || 300 5 | 165 33 10 50
Orthog visib 2D || 116 97 76 36 36 | 45 || 301 245 | 170 44 49 54
101 83 69 39 39 | 46 || 263 196 | 150 43 42 52
95 71 66 35 35 | 52 || 261 191 | 149 40 42 52
107 91 71 35 37 | 44 || 416 306 | 213 42 45 52
96 72 66 37 36 | 47 || 327 247 | 176 41 44 53
Visibility 3D 171 353 | 175 29 73 | 64 || 400 819 | 467 34 84 80
182 380 | 187 28 71 | 64 || 369 757 | 428 36 87 81
186 382 | 186 31 76 | 66 || 324 665 | 383 37 88 80
181 380 | 185 29 72 | 64 || 375 765 | 436 38 91 81
197 406 | 197 32 78 | 67 || 326 670 | 383 34 82 80
Stochastic 3D 158 308 | 174 29 69 | 67 || 354 679 | 424 34 79 83
167 326 | 181 29 69 | 64 || 343 657 | 410 33 7 80
168 327 | 182 30 70 | 65 || 315 604 | 380 33 T 80
167 326 | 190 28 66 | 64 || 340 655 | 409 37 85 83
172 334 | 186 29 68 | 64 || 318 610 | 383 35 81 80
Rem visib 3D 171 280 | 167 30 59 | 65 || 400 646 | 444 36 69 81
182 299 | 179 30 58 | 66 || 369 598 | 415 34 65 79
186 301 | 176 31 61 | 65 || 324 524 | 365 35 67 83
181 299 | 176 30 57 | 64 || 375 606 | 422 34 65 80
197 320 | 188 29 58 | 65 || 326 528 | 367 36 68 81
Rem stoch 3D 158 247 | 168 29 56 | 64 || 354 547 | 412 34 63 78
167 262 | 177 30 57 | 64 || 343 529 | 400 35 66 81
168 263 | 177 30 57 | 64 || 315 486 | 372 36 66 82
167 262 | 176 29 55 | 64 || 340 527 | 402 35 65 81
172 269 | 180 || 29 55 | 63 | 318 490 | 371 || 34 64 L Sia
Straight 3D 146 434 | 192 || 24 74 | 70 || 343 1022 | 477 || 31 91 |85
155 462 | 203 24 71 | 68 || 319 950 | 453 32 96 86
159 472 | 206 26 77 | 70 278 827 | 397 30 89 86
155 460 | 202 25 75 | 69 || 323 963 | 457 30 89 87
168 501 | 216 25 74 | 71 || 280 834 | 402 30 90 85
Orthogonal 3D 214 8 | 204 41 20 | 85 || 522 8 | 538 47 21 | 106
192 15 | 205 44 20 | 86 || 487 8 | 496 48 21 | 108
198 8 | 217 40 20 | 84 || 326 19 | 398 49 21 | 108
182 8 | 191 41 20 | 85 || 340 15 | 406 48 21 | 110
199 11 | 212 41 20 | 85 410 8 | 421 48 21 | 111

/<

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - B.P. 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Lorraine : Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - B.P. 101 - 54602 Villers les Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38330 Montbonnot St Martin (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - B.P. 105 - 78153 Le Chesnay Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, B.P. 105 - 78153 Le Chesnay Cedex (France)
http:/ /www.inria.fr

ISSN 0249-6399

