N

N
N

HAL

open science

Additive Symmetric: the Non-Negative Case

Marc Daumas, Philippe Langlois

» To cite this version:

Marc Daumas, Philippe Langlois. Additive Symmetric: the Non-Negative Case. Theoretical Computer

Science, 2003, 291 (2), pp.143-157. 10.1016/S0304-3975(02)00223-2 . inria-00072516

HAL 1d: inria-00072516
https://inria.hal.science/inria-00072516
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://inria.hal.science/inria-00072516
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--4115--FR+ENG

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Additive symmetric: the non-negative case

Marc Daumas, CNRS
Philippe Langlois, INRIA

No 4115
Février 2001

THEME 2

apport
derecherche







RHONE-ALPES

Additive symmetric: the non-negative case

Marc Daumas, CNRS
Philippe Langlois, INRIA

Théme 2 — Génie logiciel
et calcul symbolique
Projet Arénaire

Rapport de recherche n~° 4115 — Février 2001 — 13 pages

Abstract: An additive symmetric b of a with respect to ¢ satisfies ¢ = (a + b)/2. Existence and uniqueness
of such b are basic properties in exact arithmetic that fail when a and b are floating point numbers and the
computation of ¢ performed in IEEE-754 like arithmetic. We exhibit and prove conditions on the existence,
the uniqueness and the exact correspondence of an additive symmetric when b and ¢ have the same sign.

Key-words: Floating point arithmetic, additive symmetric, correction, IEEE-754 standard.

(Résumé : tsup)

This text is also available as a research report of the Laboratoire de DI’Informatique du Parallélisme
http://www.ens-1lyon.fr/LIP.

Unité de recherche INRIA Rhone-Alpes
655, avenue de I’Europe, 38330 MONTBONNOT ST MARTIN (France)
Téléphone : 04 76 61 52 00 - International: +33 4 76 61 52 00
Télécopie : 04 76 61 52 52 - International: +33 4 76 61 52 52



Symétrique additif: le cas positif

Résumé : Un symétrique additif b de a par rapport a ¢ vérifie ¢ = (a + b)/2. L’existence et I'unicité d’un
tel b est une propriété de base en arithmétique exacte qui disparait quand a et b sont des nombres & virgule
flottante et quand le calcul de c¢ est effectué dans une arithmétique de type IEEE-754. Nous présentons et
nous prouvons des conditions sur l'existence, 'unicité et 1’égalité avec le symmétrique exact dans le cas ou
b et ¢ sont de méme signe.

Mots-clé : Arithmétique a virgule flottante, symétrique additif, correction, norme IEEE-754.



1 Introduction

“Floating point arithmetic is by nature inexact”. This quotation from Knuth [1] summarizes that floating
point arithmetic only approximates real arithmetic. The discrepancies between the approximate and the
exact arithmetics are numerous and are due to the finite precision of F, the set of the floating point num-
bers. Failures of fundamental laws of algebra are well-known for floating point arithmetic. For example,
the associativity of the addition or the multiplication, the cancellation or the distributivity laws are no
longer valid in F [2]. Two other fundamental axioms for real algebra state the existence and the uniqueness
of the additive inverse (—a) and the multiplicative reciprocal (1/b) for a € R and b € R*. These axioms
also fail in floating point arithmetic as proved in [3] and [4] and illustrate well how subtle the discrepancies are.

Here we consider the existence and the uniqueness of an additive symmetric in the floating point number
set F. An additive symmetric a of b with respect to c, satisfies

c=ﬂ<a;b), (1)

where b and ¢ are two given floating point numbers in F. The classic notation fI(z) € F represents the
rounded floating point value of z € R. Of course,

ae = 2c—b, (2)

is the unique additive symmetric where rounding affects none of relations (2) and (1).

Let b and ¢ in F when F is a set of floating point numbers ¢ la IEEE-754 arithmetic — a symmetric set of
binary floating point numbers with denormalized (subnormal) numbers — and for the “round to the nearest
(even)” rounding mode.

Existence. Does an additive symmetric a exist within F?

Uniqueness. Is the additive symmetric unique?

Consistency. Does a = @, where a, = fl(a.)?
In this paper, we answer to these three questions when a and b have the same sign. Choosing for instance a
and b non-negative, we consider the non-negative case of the additive symmetric.

To derive the answers to these questions, we interpret additive symmetry as a correcting operator. Let
Z be a floating point number in F. Correcting T with the correcting term z € F means computing

7(2) = f1(5 +2). 3)

Let y be a correcting term that yields « € F from Z, that is Z(y) = z. This correcting term y is an additive
symmetric of Z with respect to /2 when z/2 € F. Again, where no rounding affects neither the computation
of the correcting term, nor the correction in relation (3),

ye:z’_%a (4)

is the unique ezact correcting term. Existence, uniqueness and consistency of the additive symmetric corre-
spond now to the following three questions Q1-3 we examine in the sequel.
Q1. Does a correcting term y exist within F?
Q2. Is the correcting term unique?
Q3. Does y = Ye, where g, = fl(y.)?
The paper is organized as follows. We present the motivations with an introductory example and con-
nected results in the next Section. We summarize the properties of the additive symmetric in Section 3

and devote following Section 4 to the proofs — the main result of the paper is the summary Figure 1. We
conclude describing questions that remain open.
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e Notations. We use the classic following notations defined for F. We denote u(z) = ulp(x), one unit in
the last place of the floating point € T, and u = u(1), one ulp of one. Let z = (—1)%1.f x 2¢, with a p
bits fraction-nary part f. We have u(z) = max{2°7?, Az}, and u(0) = Agq, where A4 is the smallest positive
denormalized floating point number. We verify that u(2* x ) = 2¥u(z), for z and (2¥ x z) in F. The IEEE-
754 standard defines p = 23 for single precision and p = 52 for double precision. Since F is a discrete set,
we denote z~, the predecessor and zt, the successor of each floating point number z provided no overflow
occurs. For z > 0, these floating point numbers verify, z= = z — u(z)/2 when z = 2% 2= = z — u(2)
elsewhere, and zt = z + u(x).

2 Motivations and connected results

We illustrate the motivations of the questions Q1-3 with an introductory example and then discuss more
general applications of the additive symmetric. We end this section presenting connected results about the
additive inverse and the multiplicative reciprocal.

2.1 An introductory example

We propose three simple pairs of floating point numbers (b, c) that exhibit the different possible cases of
existence and uniqueness of a corresponding additive symmetric. We denote AS[b, ] an additive symmetric
of b with respect to c. We use the correspondence between the correcting term y that yields z from Z, and
the additive symmetric of b = Z with respect to ¢ = /2 when z/2 € F. We have y = AS(Z,z/2).

Example 1. The additive symmetric AS[2",1/2] exists and is unique. We consider the corresponding
correction of Z = 2% that returns # = 1. The exact correcting term y. = —(1+u(2)) belongs to F, s0 Je = ye.
The correcting term 7, verifies

T+ :’/J\e =1,
that yields the expected value z = 1. The two neighbors of 7, in F are 7 = -1 —u, and 7, = -1 — 3u.
We have
T+ g =1+u=zt
and

Z+y, =l—-u=2"",
where "~ is the predecessor of z~. Thus, the corrected values of T corresponding to consecutive correcting
terms are
(g )=2"", )=z, and T(§)=z".
The monotonicity of the rounding map fI ensures that 7 is the unique correcting term that returns z. So
it is for the additive symmetric of b with respect to ¢ for the considered value (2F,1/2).
We remark that Z(y, ) and Z(y.) are not consecutive and Z(y, ) < 1~ < Z(y.). We verify that no

correcting term exists for x = 1~ and T = 2%, or similarly, no symmetric additive of b = 2% with respect to
¢=1/2 —u/4. We detail a similar case of non-existence in the following example.

Example 2. The additive symmetric AS[5,(1/2)*] does not exist. Relation (3) gives no correction
of Z =5 that returns z = 17. We have yo = —4+u = —4 4+ u(2)/2. The tie-breaking strategy of the “round
to the nearest (even)” yields 7, = —4, and

T+ Pe=1<um.
With the larger value 77 = —4 + u(2), we have now
T+ U =1+u2) =1

where 171 is the successor of z. The corrected values that correspond to the two consecutive correcting
terms 7, and 7 are
Z(y.) =2, and T(FS)==x".
INRIA



These values enclose the target value x but neither are equal to x. Therefore it does not exist an additive
symmetric of b = 5 with respect to ¢ = (1/2)*.

Example 3. The additive symmetric AS[1, 1] is non-unique. This case is less surprising rephrased as
follows: the three correcting terms 7., 7, and 7} return z = 2 from Z = 1. For these values, the exact and
rounded correcting terms verify y. = y. = 1. We have

T+ @\6:2,
T+ yh=2+u,

and
T+ Yy, =2—u/2.

Using the tie-breaking strategy of the “round the nearest (even)” in the two last equalities, we conclude that
#(3e) = () = 7§ ) = =.

2.2 Motivations

The original motivation to the theoretical study of the additive symmetric comes from the CENA method
introduced by one of the authors in [5], [6].
e The CENA method. The CENA method provides an automatic correction of the first-order effect of
floating point rounding errors on the result of numerical algorithms. This correction is applied to the final
result of a computation but correcting sensitive intermediate variables is sometimes interesting. Depending
on some algorithm properties, the final correction improves the accuracy of the computed result and the
intermediate correction enhances the numerical stability of the algorithm.

The principles of the CENA method are the following. Given a computed Z, the method yields a corrected
T defined as

f:fl(§+ EL). (5)

The correcting term A 1. is the computed linearization of the error in Z with respect to the rounding errors
introduced in the intermediate computations. For example, let f be the floating point evaluation of a
program that computes Z = Zy at the datum X = (x1,...,2,). The computation of the intermediate
variables Zp41,..., TN, generates the vector of the absolute elementary rounding errors § = (6pt1,..-,0N)-

So, the first order approximate is Ar, = Eg:n 41 %(X ,0) - 0. The computation of Ay, uses algorithmic

differentiation and rounding error estimates to return the correcting term Ar. The CENA method also
provides a confidence threshold associated to the corrected result T. These last more technical aspects are
not necessary hereafter and are described in [6].

Let z = fl(f) be the most accurate answer that can be returned by the program. Relation (5) returns
this optimal z when A r is an additive symmetric of the computed result Z with respect to /2. The CENA
method returns a number close to this x provided that the error of the evaluation fcontains mostly first-
order effect of the elementary rounding errors. In this paper, we exhibit cases of such functions where the
optimal correction is not possible since the computed result Z does not have a symmetric with respect to
x/2.

Another motivation for the additive symmetric is described in the next paragraph.

e New value = Old value 4+ Correction. Numerical methods often consist in such update strategy,
as remarks for example HIGHAM in [7]. Computing a more accurate approximate adding a correcting term
to a previous approximate is the core of iterative methods. Newton’s method and the classic iterative
refinement that improves the accuracy of the solution to a linear system Az = b are examples that implement
this strategy. It is also the case for integration schemes for ordinary differential equations. To ensure the
convergence of iterative methods, the correcting term is designed to tend to zero. For example, the correcting
term of the iterative refinement is the residual » = b — Az. This small correction is a particular case of the
additive symmetric. A full precision accuracy of the new value is necessary in specific iterations, as for
example in the computation of the elementary functions. Again, the answers to questions Q1-3 highlight the
limitations of this general strategy when it is applied in finite precision.
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2.3 Connected results

In the Introduction, we have noted that the existence and the uniqueness of the additive inverse (—a) and
the multiplicative reciprocal (1/b), b # 0, fail in floating point arithmetic. We summarize some recent results
concerning these connected problems.

e The additive inverse. An additive inverse (—a) € F satisfies fl(a+ (—a)) = 0, for a € F. In [3],
KuLiscH discusses the uniqueness of the additive inverse in a discrete symmetric subset S C R, and for a
general rounding map fI defined from R to S. He proves that fI=(0) C]—e¢, €[, where € = ming yeF,zy |[2—Y/,
guarantees the existence of a unique additive inverse. This result applies to the four rounding modes of the
IEEE-754 floating point arithmetic — the “round to the nearest (even)” default rounding mode, and the
directed rounding modes “round towards zero” and “round towards infinities”. It is not surprising that
unique additive inverses exist for the four rounding modes when denormalized (subnormals) floating point
numbers and gradual underflow are available — as it is the case for the IEEE-754 arithmetic. KULISH also
points out that the “rounding away from zero” mode satisfies fl (z) = 0 <= =z =0, for z € S, with and
even without denormalized numbers.

e The multiplicative reciprocal. The multiplicative reciprocal (1/b) satisfies fI(b x (1/b)) = 1, for
b € F*. The existence and the uniqueness of this reciprocal depends on the rounding mode and the value
of b. MULLER proves the following results in an IEEE arithmetic-like context when underflow and overflow
are neglected [4]. A unique multiplicative reciprocal exists for the “round towards +o0” rounding mode.
The other modes yield at most 2 reciprocals for b € F*: the floating point numbers that enclose (the real
value) 1/b. The existence of the multiplicative reciprocal depends on the mantissa length p of the floating
point number. MULLER conjectures that the number v(p) of floating point numbers with no multiplicative
reciprocal is such that the ratio «(p)/2” tends to the constant (1 — 31log(4/3))/2 when p goes to infinity. A
recent proof of this conjecture is proposed in [8].

EDELMAN shows a less general property for the IEEE-754 double precision floating point numbers and
the “round to the nearest (even)” rounding mode in [9]. After having proved that z x fI(1/z) € {1—u/2,1},
he exhibits the smallest double precision number 1 < z < 2 such that fI(z x fl(1/z)) # 1. Such a result
illustrates that the computations of fI(z x fl1(1/y)) and fl(x/y) are not equivalent and remind us a famous
chip flaw [10], [11].

3 Properties of the non-negative case of the additive symmetric

Relations between b and ¢ govern the existence and the uniqueness of the additive symmetric of b with
respect to ¢. We answer to questions Q1-3 proving relations on the corresponding correction problem (3)
with £ = 2c and Z = b. We chose to parameterize the discussion with respect to the initial value Z of the
correction problem

z=fl(Z+vy). (6)
We prove conditions on the target value z, depending on a given T, such that a correcting term y that
verifies relation (6) exists and is unique.

Let z be of the same sign than Z, for example positive. We distinguish six regions Ry, ..., Rg, that
depend on Z in [0, A], the positive part of F where A denotes the largest positive floating point number. The
existence and the uniqueness of a correcting term y verifying relation (6) vary with respect to the region
where z belongs. We summarize these properties with Figure 1 and devote the next section to the proofs.

These regions depend on the following functions U and A. The function U(x) measures the distance
between z and its closest floating point neighbor,

U(z) = min{zt —z,2 — 2 }.

We verify that U(z) = u(z), except for z = 2% where U(z) = u(z)/2. In all cases, U(z) > Ag. The function
A(z) defines the smallest number ag such that fl(a + |z|) = a for all the floating point numbers a > ag. We
have
A(z) = min{ fl (a + |z|) = a}.
acF

We verify that A(z) = 2¢7P+2 for z = (—1)*1.f x 2° (f has p bits), and A(0) = 0.
INRIA



R1 R2 R3 R4 R5 Rs Region

I I I I I I |

0 Xd U(Z) 53/2 2T A(7Z) A

l I:llllllllllllll_mﬂl‘:— Q1

5 33/ u(Z) € N Tie breakmg y exists
- |||||||||||||— Q2

: See Section 42 y is unique
" uuuuuuu_:::l:_ Q3

Ue 1S an answer
mmm YES @D Mostly YES, others NO or Not Applicable
C—1 NO #== Mostly NO, others YES

Figure 1: Summary of results on questions Q1-3 of the correction problem. Answers to the original problem
are obtained by scaling the figure by a factor %, 7 become b and § becomes c.

4 Proofs of the properties

We recall the important result from Sterbenz [2] that gives a sufficient condition for an “exact subtraction”
in F (hypothesis on F arithmetic are defined in the Introduction).

Lemma 1 (Sterbenz) Let a and b be in F with a < b < 2a. Provided b — a does not overflow, the floating
point subtraction fl(b— a) introduces no rounding error, i.e.,

flb—a)=b-—a.

This property enables us to derive direct proofs of the existence, and in some cases of the uniqueness, of the
correcting term y expected in relation (6). We gather this kind of derivation is next Section 4.1. The other
proofs need to explicitly discuss a lot of possible correcting terms that depend on the actual values of Z and
. We present as simple as possible proofs of these cases in Section 4.2.

4.1 Results obtained using F properties

We recall that the floating point numbers x and Z share the same sign and we suppose that they are both
positive. It is straightforward to check that except in the trivial case = Z, any acceptable y must have the
same sign as x — T.

(Rl) x=0
This is the additive inverse case which is analyzed in a more general point of view in [3] as previously
mentioned. For completeness, we propose the following proof in the current context.

Relation (6) is satisfied for y = y. = —Z. The exact correction y, is the unique solution. Let
y = — T + z be any correcting term with z € R Either z = 0 or |z| > U(Z) by definition of U(Z).
Then fl(Z +y) = fl(2) but |fl(z)| > fI(U(Z)) > 0.

(R2) Aa <x < U(%).
This condition implies that Z # 0 and y. = 2 — Z < 0. We only look for y < 0, since y > 0 gives
fl(Z+y) >z >U(Z) >z We distinguish three cases to prove that fI(Z + y) # z.
1. When —y > 2%, Z+y<—Zand fl(Z4+y)<-Z <0< 2.
RR n°4115



2. When —y < /2, we have T > 2)\4 for y # 0. It follows that /2 > U(Z) and as T+ y > Z/2,
we prove that fl(Z +y) > fl(Z/2) > U(Z) > .

3. When z/2 < —y < 27, the “exact subtraction” result from Sterbenz applies. This means here
fl(Z+y) = T+ y. The number z — T ¢ T, since it is closer to Z than Z + U(Z), its closest
neighbor in F. Therefore no floating point number y satisfies relation (6).

No correcting term y satisfies relation (6) for z in this region R,.

(R3) U(X) <x< X/2.
We prove the existence for z in this region such that z/u(Z) is an integer. We define the positive
integers m = Z/u(Z) and m = z/u(Z). For z in this region, u(z) < u(Z) and Z —z = (m — m)u(z)
verifies | — m| < M < u~!. Therefore z — Z € F and . = fl(z — T) = ¢ — T verifies relation (6).

This proof extends Sterbenz equality for the subtraction Z — z to z < Z/2 provided that z/u(Z) is an
integer. Nothing direct seems to be derivable in region Rz about the uniqueness, nor when z/u(Z) is
not an integer. We consider these remaining aspects in Section 4.3.

(Ry) X/2<x<2%

From Sterbenz equality, we have y. = fl(x — Z) =2 — Z and fl(Z + ¥.) = fl (z) = z. Existence and
Ue = Ye is proved in region Ry.

Again, discussing the uniqueness uses actual values and is considered at the end of Section 4.3.

(Rs) 2x <x < A(X).
A similar discussion as in region Rj3 yields analogous partial results on existence and exact correction.
We chose to present the complete discussion of this region in next Section 4.2.

(Rs) A(X) <x<A.
We recall > A(7T) means fl(x + T) = z. In these regions, relation (6) is satisfied for y = z = ..
We prove uniqueness while discussing region Rj in following Section 4.2.

4.2 Results obtained using the actual values of the floating point numbers

Using the actual values of the floating point numbers Z and z, we prove conditions on existence and unique-
ness for y satisfying relation (6) in the regions Ry and Rg, that is for

2z <z < A. (7)
e Principles of the proof. We compute
fl(Z+y) for y € {a,B,7,0}. (8)
The four numbers a < f < vy < § are such that
[@,0]NF C {a,B,7,0}, BEF, ~e€F and y.€[B,7] 9)

We note that 8 and v are consecutive floating point numbers and 8 = ¥, or v = J.. In most cases, a and §
are such that « = 8~ and § = 7.
¢ Notations for the proof. Let T and z be positive integers that verify previous condition (7). We define
the integer

m = xz/u(z), (10)
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and a unique 4-uple (k,g,r,s) with k € N, g € {0,1}, r € {0,1} and s € [0,1) such that

a:(k+%+ri's>u(x). (11)

Normalized notation for z provides u™! < m < 2u~!. The condition 27 < =z yields 0 < k < m/2, so
m—k>m/2>m/2+1>u"'/2+1. Equality holds only for m =u'.
>From relations (10) and (11), y. = x — T verifies

1—g (1—r)+(1—s)>u($)‘

ye=(m—k—1+ 2 + 1

(12)

The next three tables detail the computation of relation (8) for each value of y and the different values
of the parameters r and s that govern the rounding of relation (12) and relation (8). We define the reference
point

z=(m—k—1u(z), (13)

that will vary around y.. Since u™'/2 < m —k —1 < 2u™!, z is a floating point number not necessarily

normalized. We discuss the computation of relation (8) for varying u(z) with the following tables. From
relation (13), we have u(z)/2 < u(z) < u(z). The different cases for the ulp of z and its neighbors are
u(z)/4, u(z)/2 and u(z); these values guide the following discussion. We consider the cases u(z) = u(z)/2
and u(z) = u(x) — values for the neighbors appear implicitly in the discussion.

The tables also present 7., the rounded value of relation (12). Comparing ¥, and y when fl(Z+y) =z
yields the answer to Q3. We indicate some cases where y. = (3 or « is sufficient to derive a (positive or
negative) answer to Q3.
¢ Discussion.

1. u(z) = u(x).
When u(z) # Mg, it means that z is normalized and m — k —1 > u~!. Let 8 = z, its successor
is 2t = (m — k)u(x). Tts predecessor is 2~ = (m — k — 2)u(z), except when m —k — 1 = u~!

where 2= = (m — k — 3/2)u(z). We note that m # u~!. If u(z) = A4, most relations still hold and
27 =(m—k—2)u(z).

We verify that the guard bit g is not used when computing relation (8) since no value is shifted. Thus
we simplify the notations defining 7' € {0,1} and s’ € [0,1) such that

4 2

g rt+s r'+54
2 1 T

Now we explore the table with respect to (r',s’) that governs the rounding in fI(Z + y).

Rounding conditions =0 =1

s'=0 | s #0
| Je | m—k | Bory | m—k—-1 |
y | y/u(@) (Z+y)/u(@) fU(Z+y) [u(z)
§|m—k+1|m+2E +1 m+1 >m+1 >m+1
vy im—k m—{—# m even(m,m+ 1) m+1
B m—-k-1 m+#—1 m—1 even(m — 1,m) m
a|m-k-3 m+#—% <m-1 <m-1 m—1

This explicit computation gives the following answers to questions Q1-3.

e QI is positive except when (7', s") = (1,0) for odd m,
e Q2 is positive except when (1, s") = (1,0),
RR n°4115



e Q3 is positive with Q1, and

e two correcting terms exist when (r', s") = (1, 0) for even m.

2. u(z) = u(x)/2.
In this case, u!/2 < m—k—1 < u~!. The mantissa of z is shifted to compute relation (8) and the guard
bit g introduces the quantity (1 —g)/2 we consider to round y.. We use 8 = (m—k—1+52)u(z). We
note that u(8) = u(z) = u(z)/2. This gives us relations to define a and ~ as the respective neighbors
of § and 3 satisfying relation (9). We separate two cases with respect to m = u~! and we build the
table with respect to (g,r, s) since (r, s) governs the rounding in fI(Z + y).

(a) When m # u~L.

Rounding conditions r=0 r=1
s=0 | s#0

| g | m_k+5" -3 [ Bory
y y/u(x) (2 +y)/u(z) fl(z +y) [u(z)

) m—k+1%g m+ 4+ L even(m,m + 1) m+1 m+1
vy m-k+ 52— [m+ m m m
Blm—k+52—1m+2E—1 even(m — 1,m) m m
a m—k-l—l—ga—% m+ T —1 m—1 m—1 m—1

We note that § does not necessary belong to F. The conclusions are now the followings.

e Q1 and Q3 are positive in all the cases,

e Q2 is positive when (r, s) = (0,0) and for odd m,

e two correcting terms exist when r =1 or (r,s) = (0, s) with s #0,
o three correcting terms exist when (r,s) = (0,0) and for even m.

(b) This last table gives the answer when m = u~!.

Rounding conditions r=0 r=1
s=0 | s#0

| 7 T s S W T
y y/u(z) (2 +y)/u(z) fi(z +y) [u(z)

) m—k—}—l%g m+ 4 2 m (1) m+1 m+1

Ty 1

v m—k+ng—§ m+ 2 m m m
Blm—k+32-1 | m+=E—12 m—% m—3 m
alm-—k+52 -2 |m+"F -1 <m-—gz <m-—1 <m (®

We derive the following conclusions.

e Q1 and Q3 are positive in all the cases,
e Q2 is positive when (r,s) = (0, s) with s # 0,

I The value of the cell is obtained from even rounding since m = even(m,m + 1). It means that § is the last quantity that
may return m. When g = 0 and m—k = u—!, § is not a floating point number and we may use J +u(x)/2 to obtain a correction
to (m + 1)u(z). In this case, the solution ¥. is unique.

2Here again, the value of the cell is obtained by even rounding m = even(m,m + 1). We present the safest bound for a,
that only occurs for m — k + I_Tg —1=u"1/2. This conditions yields that k — £ + 1 =u~!/2 and finally k =u~!/2, g =1
and r = 1. As it is impossible, we conclude that the result is strictly less than m.
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e two correcting terms exist when r = 1 or eventually when (r,s) = (0,0).

e Conclusion for the regions Rs-Rg. Now we derive the answers for questions Q1-3 in the regions R5-Rg
from the results of the previous discussion.

We prove that Q1, Q2 and Q3 are positive in Rg. In this region, A(Z) < z gives k = g = ' = 0. When
u(z) = u(z), the column ' = 0 in the first table yields the result.

When u(z) = u(z)/2, the condition u=1/2 < m—-k—-1< u! yieldsm—1 < u™! for k = 0. As
u~! <m < 2u7l, the case u(z) = u(x)/2 is only possible when m = u~!. This case corresponds to the last
table. The discussion of this case when g = r = 0 gives the expected positive answers. The case r = 1 would
imply that z = A(z) that is not permitted by the definition of Rsg.

We prove that Q1 and Q3 are positive in Ry provided the tie breaking mechanism does not prevent any
y to be the correct answer. The answer to Q2 is known from the three tables but we cannot simplify the
conditions on Z and z to a few high level relations. If the answer to Q2 is no, there are at most three
acceptable correcting terms.

4.3 Results that could be obtained using the actual values of the floating point
numbers

The following cases remain from the direct discussion of Section 4.1. We explicit the remaining cases to
prove using similar explicit computations.

e Q2 in region Ry when z/u(Z) € Z, and Q1-3 otherwise,
e Q2 in region Rgj.

Similar explicit computation will yield the answers of these questions. We do not propose another long
discussion in this paper but we illustrate the answers presented with Figure 1 exhibiting examples of the
different cases.

Region R3. Example 1 in Section 2.1 illustrates the positive answers to questions Q1-3 in the region Rg.

We verify that = 1 and Z = 2% satisfy z/u(Z) € F.

Region R3. Example 2 in Section 2.1 illustrates the negative answer to question Q1 in the same region Rs.
Here z = 11 and Z = 5 are not such that z/u(Z) € F.

Region R4. Example 3 in Section 2.1 illustrates the negative answer to question Q2 in the region Ry.

Region R4. With the following Example 4, we exhibit a case where the correcting term is unique and so a
positive answer to Q2 in the same region Ry4.

+

Example 4. We chose Z=1* =1+uand Z=1" = 1 + lu. The exact correcting term is

1 1 ~
Ye = — 5-‘,-511 = Ye-

The computation of the correction fI(Z + y) for the two neighbors of ¥, yields
fl(Zz+7y,)=2" and [fI(Z+7y))=2a".

The unique correcting term is ..
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5 Conclusion

Additive symmetry is a basic operator in exact arithmetic with well known properties providing numerous
applications. We have considered this operator in floating point arithmetic and discuss the elementary
properties of existence, uniqueness and consistency of the additive symmetric in the non-negative case.
Results and proofs have been presented using the corresponding correction operator and restricting our
study to a particular arithmetic — IEEE-754 arithmetic and the “round to the nearest (even)” rounding
mode.

Motivations of this study are its connections with the automatic correcting method CENA and the classic
update strategy “New value = Old value + Correction”. As regions of non-existence of a correcting term
have been exhibited, we validate intrinsic limitations of the CENA method. The main domain of limitation
(Region Ry) corresponds to an inaccurate initial (absolute) result that is too large with respect to the exact
value to be corrected in finite precision arithmetic. When inaccuracy grows with the computation, such a
limitation is circumvent with the correction of intermediate variables. Of course designing a general dynamic
choice of such a switch is a difficult task. The existence of a correcting term in region R4 validates the classic
update strategy since the correcting factor is designed to tend to zero. Hence the difficulty remains the choice
of a good initial value for these iterative processes that ensures such convergence.

The way the results are proved in this paper are significant of the derivation of properties satisfied by
floating point arithmetic. When general properties apply, direct proofs are possible and consist in simple
algebraic derivation. Alas, the most cases need long and tedious computation to cover all the possible cases.
As this kind of derivation may suffer from human-mistakes, automatic formal provers should be applied to
validate such results. Examples of formal validation of floating point properties are [12, 13, 14] and [15]. Of
course, validated results are the general theorems that promote future direct proofs.

When no existence is proved, the natural following question is to explicit the best approximate additive
symmetric — or similarly the best correcting term. When the existence is proved, the exact additive
symmetric — or correcting term — is (one of) the solution(s) of the problem. Let us consider now for
example the following slight generalization of our correction problem 3. Let Z be a floating point number
and z be a real number. Is the answer of question Q3 still positive when Q1 is positive? The following
example suggested by MULLER illustrates it is not the case. When z = 8 + u(4) +u(2) —u(1) — &, with £ > 0
small enough, we have

fl(z) =8" .

Choosing T = 1 —u(1), we verify that 7, = 7t = 7+ u(4) and
[z +7.)=8=fl(z)",

whereas
fU(z+7gr) =8t =fl(x).

The non exact 7 yields the expected corrected value. “Floating point arithmetic is by nature inexact”.
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