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Abstract: The purpose of adaptive observer is to perform joint state-parameter estima-
tion of parameterized state space system. In this paper, we propose a new approach to
adaptive observer design for multi-input-multi-output (MIMO) linear time varying (LTV)
or state-affine systems. It is conceptually simple and computationally efficient. In the
case of noise free system with constant unknown parameters, global exponential conver-
gence for joint state-parameter estimation is established. In the presence of noises, it is
proved that the estimation errors are bounded and converge in the mean to zero if the
noises are bounded and have zero means. We also present a unified formulation for some
known adaptive observers based on dynamic transformations. This general framework
enhances the conceptual simplicity of the proposed approach. Potential applications of
the adaptive observer are on-line continuous-time system identification, fault detection
and isolation, and adaptive control. Two numerical examples are presented to illustrate
the performance of the proposed adaptive observer.

Key-words: adaptive observer, state and parameter estimation, multi-input-multi-
output, linear time varying system, state-affine system, continuous-time system, system
identification.
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Observateur adaptatif pour des systèmes linéaires variables

dans le temps multi-entrée-multi-sortie

Résumé : Les observateurs adaptatifs ont pour but d’estimer conjointement les états
et les paramètres de systèmes dynamiques. Nous proposons dans ce rapport une nou-
velle méthode de conception d’observateur adaptatif pour des systèmes linéaires variables
dans le temps multi-entrée-multi-sortie ou pour des systèmes affines en état. C’est une
méthode conceptuellement simple et efficace en terme de calcul. Dans le cas où le système
considéré est sans bruit et ses paramètres inconnus sont constants, la convergence globale
et exponentielle pour l’estimation des états et des paramètres est établie. En présence de
bruits, il est démontré que les erreurs d’estimation sont bornées et leur moyennes con-
vergent vers zéro si les bruits sont bornés et de moyennes nulles. Nous présentons aussi
une formulation unifiée pour des méthodes existantes pour la conception d’observateurs
adaptatifs. A travers ce cadre général, la simplicité conceptuelle de la méthode pro-
posée devient évidente. Des applications potentielles des observateurs adaptatifs sont:
l’identification en-ligne de systèmes en temps continu, la détection et le diagnostic de
pannes, et la commande adaptative. Deux exemples numériques sont présentés pour
illustrer la performance de la méthode proposée.

Mots clés : observateur adaptatif, estimation d’état et de paramètre, multi-entrée-
multi-sortie, système linéaire variable dans le temps, système affine en état, système en
temps continu, identification.
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1 Introduction

State estimation for linear systems has well established solutions with observers and the
Kalman filter. Joint estimation of state and some unknown parameters has also several
known solutions, with the so-called adaptive observers (Kreisselmeier, 1977; Bastin and
Gevers, 1988; Marino and Tomei, 1995b; Besançon, 2000). Though the former problem
has no particular difficulty for multi-input-multi-output (MIMO) systems, it is not the
case for the latter one. As a matter of fact, most published adaptive observers are in
single-output form, and their generalization to MIMO systems is not simple. Moreover,
because the convergence analysis of adaptive observers is often based on the strictly
positive realness of some transfer function, most of them are restricted to linear time
invariant (LTI) systems.

In this paper, we propose a new approach to the design of adaptive observers. It
is conceptually simple, computationally efficient, and well suited to MIMO linear time
varying (LTV) systems.

1.1 Problem statement

We consider state space systems of the form

ẋ(t) = A(t)x(t) +B(t)u(t) + Ψ(t)θ (1a)

y(t) = C(t)x(t) (1b)

where x(t) ∈ R
n, u(t) ∈ R

l, y(t) ∈ R
m are respectively the state, input, output of the

system, A(t), B(t), C(t) are known time varying matrices of appropriate sizes, θ ∈ R
p is

an unknown parameter vector assumed constant unless otherwise specified, Ψ(t) ∈ R
n×p

is a matrix of known signals. All the matrices A(t), B(t), C(t),Ψ(t) are assumed piecewise
continuous and uniformly bounded in time. The problem considered in this paper is the
joint estimation of x(t) and θ from measured u(t), y(t) and Ψ(t).

Remark 1 The class of systems considered in this paper includes in fact the so-called
state-affine nonlinear systems, in the form of

ẋ(t) = A(t, u, y)x(t) +B(t, u, y)u(t) + Ψ(t, u, y)θ + ϕ(t, u, y) (2a)

y(t) = C(t, u, y)x(t) +D(t, u, y)u(t) (2b)

where the dependence of A,B,C,D,Ψ, ϕ on t, u, y can be nonlinear. As we do not need
the time derivatives of A,B,C,D,Ψ, ϕ in the proposed algorithm, their dependence on the
known signals u and y can simply be viewed as the dependence on the time t. This class
of systems has been considered in (Besançon, 2000) as an example of adaptive observer
design for nonlinear systems. Particular cases with constant matrices A,C and single
output y have been considered in (Bastin and Gevers, 1988; Marino and Tomei, 1995b) as
canonical forms obtained by some nonlinear transformations of nonlinear systems. Note
that the extra terms ϕ(t, u, y) andD(t, u, y)u(t) do not increase any difficulty, since we can
incorporate them into B(t, u, y)u(t) and y(t), respectively. Therefore, we do not explicitly
consider these two terms in this paper for presentation simplicity. �
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Remark 2 It is known that nonlinear systems of the form

ζ̇ = f(ζ) + g(ζ, u) + p(ζ, u)θ

y = h(ζ)

can be transformed into the form of (2) with a coordinate change and output injection if
some differential-geometric conditions are satisfied (Marino and Tomei, 1995b; Hammouri
and Kinnaert, 1996). These conditions are, however, very restrictive and difficult to check,
as they involve multiple Lie-derivatives-brackets and the solution of partial differential
equations. �

1.2 Relation with the Kalman filter

A natural idea for joint state-parameter estimation is to consider the extended system
by putting the unknown parameters θ into the state. When system (1) is considered, the
extended system remains linear, so the Kalman filter can be applied. However, note that
even in the case with constant matrices A,B,C, the extended system is time varying. It
is not easy to guarantee the convergence of the Kalman filter for time varying systems.
Application of classical results requires uniform complete observability (Jazwinski, 1970).
In practice, it is difficult to check the uniform complete observability of the extended
system that should take into account some persistent excitation condition. Therefore, the
application of the Kalman filter to the extended system is not a trivial problem.

1.3 Motivations

The first motivation for the study of adaptive observers is on-line system identification.
In this case the main purpose is parameter estimation. Note that, apparently in the
considered system (1), the unknown parameters are required to be linear coefficients in
front of some measured signals. This requirement is in fact not as restrictive as it seems,
since in some situations where it is not apparently satisfied, some transformation may put
the system into the required form. For example, consider the single-input-single-output
(SISO) system

y(n) = a1y
(n−1) + a2y

(n−2) + · · ·+ any + b1u
(n−1) + b2u

(n−2) + · · ·+ bnu

with the unknown parameters θ = [a1, . . . , an, b1, . . . , bn]
T . Arbitrary state space realiza-

tions of this system may not be in the form of (1), as unknown parameters appear in front
of the derivatives of u and y. However, as pointed out by (Marino and Tomei, 1995b),
the following equivalent representation

ẋ =











0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · 0











x+











y 0 · · · 0 u 0 · · · 0
0 y · · · 0 0 u · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · y 0 0 · · · u











θ

y =
[

1 0 · · · 0
]

x

fits into the form of (1) (or rather, the form of (2)).
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The second motivation for the study of adaptive observers is adaptive control. Due
to their ability for on-line state and parameter estimation, adaptive observers can be
integrated into model-based controllers.

Another motivation is fault detection and isolation (FDI). In a model-based approach,
faults are typically modeled as parameter changes. Adaptive observers can provide direct
and indirect ways for the detection and isolation of parameter changes (Ding and Frank,
1993; Zhang, 2000). The use of continuous-time models, i.e., ordinary differential equa-
tions (ODE) is particularly well suited to FDI, as physical models of faulty systems are
often in continuous-time.

1.4 Some existing methods

Adaptive observers for linear systems have been studied since 1970’s. In (Lüders and
Narendra, 1973), an adaptive observer was proposed with a parameter adaptation algo-
rithm suggested by integrating the state estimation error equation. Several years later,
three adaptive observers with exponential convergence were proposed in (Kreisselmeier,
1977), each based on the minimization of a particular criterion.

More recent developments of adaptive observers are often based on dynamical trans-
formations putting the original system into some canonical form in which the presence of
the unknown parameter θ is simplified to some extent (Bastin and Gevers, 1988; Marino
and Tomei, 1995b; Besançon, 2000). Typically, for single output systems, the transformed
system has the form

ż(t) = Aoz(t) +Bu+ γξT (t)θ

y(t) = coz(t)

where the matrix Ao and the vector co are in some special form, γ ∈ R
n is a constant

column vector, ξ(t) ∈ R
p is a vector of signals obtained by filtering u(t), y(t). It is

important to notice that the parameter vector θ affects the state equation through the
scalar product ξT (t)θ and the column vector γ. In Section 4 we will give a unified summary
of such methods and compare them with the one proposed in this paper.

In (Marino and Tomei, 1995a), some results on the design of adaptive observers with
arbitrary exponential convergence rate are presented. The adaptive observer of (Marino
and Tomei, 1995b) is revisited by (Marino and Santosuosso, 1999) for robustness issues.

1.5 Main contributions of this paper

The first contribution of this paper is to propose a new approach to the design of global
exponential adaptive observers for MIMO linear time varying systems. It is of wider
scope than most existing adaptive observers restricted to single output linear systems
with constant matrices A and C. Up to our knowledge, the adaptive observer proposed
by (Besançon, 2000) is the only existing one covering also MIMO linear time varying
systems (among some more general nonlinear systems). Compared to this adaptive ob-
server, our algorithm has a better convergence result, is computationally more efficient
and conceptually simpler. See Section 4 for a more detailed comparison.

Another main contribution is to present a unified formulation for some known adaptive
observers based on dynamic transformations. Through this general framework, presented
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in Section 4, the functioning of these adaptive observers and their relation with the one
proposed in this paper become clear.

We also provide some robustness analysis of the proposed adaptive observer in the
presence of modeling and measurement noises. In particular, the analysis of the conver-
gence in the mean for noise corrupted systems seems to be the first result of this nature
for adaptive observers.

The paper is organized as follows. In Section 2 the proposed adaptive observer is
presented. Some robustness issues of the adaptive observer in the presence of noises are
discussed in Section 3. Section 4 is devoted to a unified overview of some existing methods
through the framework of a general dynamic transformation and to the comparison of
these methods with our proposed one. Two numerical examples are presented in Section 5.
Finally, some concluding remarks are drawn in Section 6.

2 The proposed adaptive observer

Before formally formulating the proposed adaptive observer, we first present some heuris-
tics.

2.1 Some heuristics

First rewrite (1a) as

ẋ(t) = [A(t)−K(t)C(t)]x(t) +B(t)u(t) +K(t)y(t) + Ψ(t)θ

with some feedback matrix K(t). It can be seen that two different kinds of “exogenous
excitations” contribute to the generation of x(t), namely B(t)u(t) +K(t)y(t) and Ψ(t)θ.
Accordingly, let us split x(t) into x(t) = xu(t) + xθ(t) with

ẋu(t) = [A(t)−K(t)C(t)]xu(t) +B(t)u(t) +K(t)y(t)

ẋθ(t) = [A(t)−K(t)C(t)]xθ(t) + Ψ(t)θ

It is easy to estimate xu(t) with the observer

˙̂xu(t) = [A(t)−K(t)C(t)]x̂u(t) +B(t)u(t) +K(t)y(t) (3)

Let us try to estimate xθ(t) with

˙̂xθ(t) = [A(t)−K(t)C(t)]x̂θ(t) + Ψ(t)θ̂(t) + ω(t) (4)

where θ̂(t) is an estimate of θ computed somehow and the meaning of ω(t) will be explained
later. Assume that there exists a time varying matrix Υ(t) ∈ R

n×p such that

x̂θ(t) = Υ(t)θ̂(t) (5)

Then equation (4) becomes

Υ̇(t)θ̂(t) + Υ(t)
˙̂
θ(t) = [A(t)−K(t)C(t)]Υ(t)θ̂(t) + Ψ(t)θ̂(t) + ω(t)
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If we let ω(t) = Υ(t)
˙̂
θ(t), then equation (5) can be ensured by generating Υ(t) through

Υ̇(t) = [A(t)−K(t)C(t)]Υ(t) + Ψ(t)

Notice that Υ(t) is generated from the known signal matrix Ψ(t).
Now let us combine x̂u(t) and x̂θ(t) to estimate x(t) by x̂(t) = x̂u(t) + x̂θ(t). Then,

according to (3) and (4), x̂(t) satisfies the equation

˙̂x(t) = [A(t)−K(t)C(t)]x̂(t) +B(t)u(t) +K(t)y(t) + Ψ(t)θ̂(t) + Υ(t)
˙̂
θ(t) (6)

where we have used the relation ω(t) = Υ(t)
˙̂
θ(t).

In the adaptive observer presented below, the state estimation follows the scheme
of (6). The parameter estimation algorithm and the convergence analysis will be detailed
in the following.

2.2 Main result

The result presented below essentially states that, if for any known parameter θ an expo-
nential observer can be designed to estimate the state x(t) of system (1), then under some
persistent excitation condition, an adaptive observer can be designed to jointly estimate
x(t) and θ.

Now we state some assumptions.

Assumption 1 Assume that the matrix pair (A(t), C(t)) in system (1) is such that there
exists a bounded time-varying matrix K(t) ∈ R

n×m so that the system

η̇(t) = [A(t)−K(t)C(t)]η(t) (7)

is globally exponentially stable.

Assumption 2 Let Υ(t) ∈ R
n×p be a matrix of signals generated by the ODE system

Υ̇(t) = [A(t)−K(t)C(t)]Υ(t) + Ψ(t) (8)

Assume that Ψ(t) is persistently exciting so that there exist two positive constants δ, T
and some bounded symmetric positive definite matrix Σ(t) ∈ R

m×m such that for all t the
following inequality holds

∫ t+T

t

ΥT (τ)CT (τ)Σ(τ)C(τ)Υ(τ)dτ ≥ δI (9)

Assumption 1 states that, for any given parameter θ, a state observer can be de-
signed for system (1) with the gain matrix K(t). Assumption 2 is a persistent excitation
condition, typically required for system identification.

The proposed adaptive observer is stated in the following theorem.
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Theorem 1 Let Γ ∈ R
p×p be any symmetric positive definite matrix. Under Assump-

tions 1 and 2 and for constant θ, the ODE system

˙̂x(t) = A(t)x̂(t)+B(t)u(t)+Ψ(t)θ̂(t)+
[

K(t)+Υ(t)ΓΥT (t)CTΣ(t)
]

[y(t)−C(t)x̂(t)] (10a)

˙̂
θ(t) = ΓΥT (t)CT (t)Σ(t) [y(t)− C(t)x̂(t)] (10b)

is a global exponential adaptive observer for system (1), i.e., for any initial conditions
x(t0), x̂(t0), θ̂(t0) and ∀θ ∈ R

p, the errors x̂(t)−x(t) and θ̂(t)−θ tend to zero exponentially
fast when t → ∞.

Note that substituting (10b) into (10a) will lead to an equation equivalent to (6).
The proof of this theorem requires the following two lemmas.

Lemma 1 Let φ(t) ∈ R
m×p be a bounded and piecewise continuous matrix and Γ ∈ R

p×p

be any symmetric positive definite matrix. If there exist positive constants T, α, β such
that ∀t

αI ≤

∫ t+T

t

φT (τ)φ(τ)dτ ≤ βI (11)

then the system

ż(t) = −ΓφT (t)φ(t)z(t) (12)

is globally exponentially stable.

A proof of this lemma is given in Appendix A.

Lemma 2 If the autonomous linear time varying system

ζ̇(t) = F (t)ζ(t)

is globally exponentially stable, u(t) is bounded and integrable, and u(t) → 0 when t → ∞,
then z(t) driven by u(t) through the ODE system

ż(t) = F (t)z(t) + u(t)

is bounded and also converges to zero. If moreover u(t) vanishes exponentially fast, then
z(t) also vanishes exponentially fast.

A proof of this lemma can be found in Appendix B.
Now we are ready to prove Theorem 1.

Proof of Theorem 1. For notation convenience, we do not explicitly write the depen-
dence on t of the variables, though the proof is valid for time varying systems.

Substitute (10b) into (10a) to obtain

˙̂x = Ax̂+Bu+Ψθ̂ +K(y − Cx̂) + Υ
˙̂
θ
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Let x̃ = x̂− x, θ̃ = θ̂ − θ and notice that θ̇ = 0, then

˙̃x = (A−KC)x̃+Ψθ̃ +Υ
˙̃
θ (13)

The key step of the proof is to define the following linear combination of x̃ and θ̃:

η(t) = x̃(t)−Υ(t)θ̃(t)

then we have

η̇ = (A−KC)(η +Υθ̃) + Ψθ̃ − Υ̇θ̃

= (A−KC)η + [(A−KC)Υ + Ψ− Υ̇]θ̃

Because Υ is generated by (8), we have simply

η̇ = (A−KC)η (14)

By assumption system (14) is globally exponentially stable, so η → 0 with global and
exponential convergence.

Now we should study the behavior of θ̃. As θ̇ = 0, then

˙̃
θ = ΓΥTCTΣ(y − Cx̂)

= −ΓΥTCTΣCx̃

= −ΓΥTCTΣC(η +Υθ̃) (15)

Let us first look at the homogeneous part of system (15), that is

˙̃θ = −ΓΥTCTΣCΥθ̃ (16)

As Ψ is bounded, Υ generated from the exponentially stable system (8) is also
bounded. From the persistent excitation condition (9) and by applying Lemma 1 with

φ = Σ
1

2CΥ, system (16) is globally exponentially stable.
Now from the exponential convergences of η and of system (16), by applying Lemma 2,

we obtain the global and exponential convergence to zero of θ̃ governed by system (15).
Finally, from η → 0, θ̃ → 0 and the fact that Υ is bounded, we conclude x̃ = η+Υθ̃ → 0

with global and exponential convergence. �

Remark 3 A remarkable point in the proof of this theorem is that the variable η(t) is
completely decoupled from θ̃(t) and x̃(t). Its stability is guaranteed by simply assuming
that K(t) is an observer gain matrix for system (1) when θ is known. This property of
η(t) does not require the persistent excitation condition. However, when the excitation
condition is not satisfied, neither θ̃(t) nor x̃(t) can be guaranteed to converge to zero.
In this case, we can only show that C(t)x̃(t) → 0 (Zhang and Delyon, 2001). It simply
means that the prediction error C(t)x̂(t)− y(t) converges to zero. �

Remark 4 Though the total gain matrix in the state estimation equation is K(t) +
Υ(t)ΓΥT (t)CTΣ, it is K(t) that mainly plays the role of stabilizing state estimation, or
at least stabilizing the transformed dynamics of η(t). This is the only requirement on
K(t). In principle, Σ(t) can be any uniformly bounded positive definite matrix and Γ any
constant positive definite matrix. In practice, they are chosen to balance the convergence
speeds of state estimation and parameter estimation. �
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2.3 Some related results

Obviously, the key point for the design of adaptive observer according to Theorem 1 is
how to find the gain matrix K(t). In general this is a difficult task for time varying
systems. The Kalman gain matrix can be used for this purpose under some condition as
stated in the following.

Corollary 1 Let Φ(t, τ) be the transition matrix associated to the matrix A(t). If the
matrix pair (A(t), C(t)) is such that there exit 0 < αo < βo < ∞, 0 < T < ∞ and some
symmetric positive definite matrix R(t) ∈ R

m×m, such that for all t

αoI ≤

∫ t+T

t

ΦT (τ, t+ T )CT (τ)R−1(τ)C(τ)Φ(τ, t + T )dτ ≤ βoI (17)

then the adaptive observer stated in Theorem 1 can be designed by taking the gain matrix

K(t) = P (t)CT (t)R−1(t) (18a)

Ṗ (t) = A(t)P (t) + P (t)AT (t)− P (t)CT (t)R−1(t)C(t)P (t) +Q(t) (18b)

with some symmetric positive definite matrix Q(t) ∈ R
n×n such that

αcI ≤

∫ t+T

t

Φ(t+ T, τ)Q(τ)ΦT (t+ T, τ)dτ ≤ βcI (19)

for some 0 < αc < βc < ∞.

This Corollary follows from the fact that, when system (1) with any known θ is uni-
formly completely observable1 (as defined by (17)) and uniformly completely controllable
regarding the state noise (as defined by (19)), then the Kalman filter is stable (Jazwinski,
1970). This Kalman filter is then an exponential observer of the deterministic system (1)
with known θ. Some variants, the so-called Kalman-like observers, can also be used for
this purpose (Bornard et al., 1988).

The situation is much simpler when the matrices A,C are constant. In this case, it
is well known that the detectability condition is sufficient and necessary for the existence
of a stabilizing K matrix. This leads to the following corollary.

Corollary 2 When the matrix pair (A,C) is constant and satisfies the detectability con-
dition (i.e., the unobservable modes of A are asymptotically stable), then a constant ma-
trix K ∈ R

n×m can be chosen to stabilize A − KC and the adaptive observer stated in
Theorem 1 can be designed with such a gain matrix.

The constant gain matrix K can be designed either by pole-placement or through the
stationary Riccati equation as in the Kalman filter for LTI systems.

So far in this paper, the unknown parameter θ has been assumed constant. Before
closing this section, let us state a result about the tracking ability of the proposed adaptive
observer when the unknown parameter is time varying.

1In this paper, we follow the definition of uniform complete observability of (Jazwinski, 1970).
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Theorem 2 If in system (1) the unknown parameter is time varying and that θ̇(t) is
bounded, then, under Assumptions 1 and 2, the adaptive observer (10) gives a state esti-
mate x̂(t) and a parameter estimate θ̂(t) of system (1) with bounded errors.

Proof of Theorem 2. The proof of this theorem is performed by simply adapting the
proof of Theorem 1. As θ̇ 6= 0, equation (13) becomes

˙̃x = (A−KC)x̃+Ψθ̃ +Υ
˙̃
θ +Υθ̇

Consequently, equation (14) becomes

η̇ = (A−KC)η +Υθ̇ (20)

Since the autonomous system (14) is exponentially stable and Υ is bounded, η governed
by (20) is also bounded.

Now for θ̃, equation (15) becomes

˙̃
θ = −ΓΥTCTΣC(η +Υθ̃)− θ̇

Its homogeneous part is still given by equation (16) and is exponentially stable. Therefore
θ̃ driven by the bounded η and θ̇ is also bounded. Finally, x̃ = η+Υθ̃ is also bounded. �

3 Robustness and convergence in the mean in the presence

of noises

In this section we show some properties of the proposed adaptive observer when the
considered system is disturbed by noises. For this purpose, consider the noise corrupted
system

ẋ(t) = A(t)x(t) +B(t)u(t) + Ψ(t)θ(t) +w(t) (21a)

θ̇(t) = q(t) (21b)

y(t) = C(t)x(t) + v(t) (21c)

where w(t) ∈ R
n, q(t) ∈ R

p and v(t) ∈ R
m are respectively state, parameter and observa-

tion noises.

Theorem 3 If in addition to Assumptions 1 and 2, the noises w(t), v(t) and q(t) in
system (21) are assumed bounded, then the state and parameter estimation errors of the
adaptive observer (10) applied to system (21), namely x̃(t) = x̂(t) − x(t) and θ̃(t) =
θ̂(t)− θ(t), are also bounded. Moreover, if the noises w(t), v(t) and q(t) have zero means
for all t and are independent of A(t), C(t),K(t),Σ(t),Ψ(t), then when t → ∞, Ex̃(t) and
Eθ̃(t) converge to zero exponentially fast.

Proof of Theorem 3. Similarly as in the proof of Theorem 1, define

η(t) = x̃−Υθ̃
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the error system writes

η̇ = (A−KC)η − w +Kv +Υq (22a)

˙̃
θ = −ΓΥTCTΣC(η +Υθ̃) + ΓΥTCTΣv − q (22b)

Recall that the time varying matrices K,Υ, C,Σ are all uniformly bounded. As the
homogeneous part of (22a) is exponentially stable, η is bounded when the noises w, v, q
are bounded, according to Lemma 2. In the proof of Theorem 1 we have shown that the
homogeneous part of (22b) as shown in (16) is exponentially stable, therefore θ̃ is also
bounded according to Lemma 2.

Under some regularity conditions, we have E(η̇) = d(Eη)/dt, E( ˙̃θ) = d(Eθ̃)/dt. Then
using the assumptions that Ew = 0, Ev = 0, Eq = 0 and w, v, q are independent of
A,C,K,Σ,Ψ, therefore also independent of Υ, we obtain

d(Eη)

dt
= (A−KC)Eη

d(Eθ̃)

dt
= −ΓΥTCTΣC(Eη +ΥEθ̃)

It turns out that the behavior of Eη and Eθ̃ are exactly as that of η and θ̃ in the
deterministic case as shown in (14) and (15). It then follows that Eη → 0, Eθ̃ → 0, and
therefore Ex̃ → 0, all with exponential convergence. �

Theorem 3 states that, when the system is corrupted by centered noises, Eθ̃(t) → 0,
but it does not mean θ̃(t) → 0. This result suggests that averaging θ̂(t) after the transient
of the adaptive observer would lead to a better estimate of constant θ.

4 A general formulation of some existing methods

In this section we present a unified overview of some existing methods for adaptive ob-
server design and discuss their relation with the adaptive observer proposed in this paper,
all through a general dynamic transformation framework. It is assumed in this section
that the unknown parameter θ is constant and the considered system is noise free.

Remark 5 The description of these existing methods given below does not exactly follow
their original references, due to our attempt to a unified formulation. �

4.1 General linear dynamic transformation

Once again, let us consider system (1). Most methods for adaptive observer design require
a dynamic transformation (sometimes also referred to as filtered transformation) to put
the considered system into some special form, for the purpose of simplifying the presence
of the unknown parameters θ in the transformed system. These transformations, though
apparently different from their original presentation, can all be formulated in the following
general framework:

Ξ̇(t) = FΞ(t) +GΨ(t) (23a)

Ω(t) = HΞ(t) (23b)

z(t) = x(t)− Ω(t)θ (23c)
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where F,G,H are matrices of appropriate sizes defining the dynamic transformation, Ξ
and Ω are the state and the output of the transformation, z is the transformed state of
the considered system. The sizes of the matrices F,G,H and of Ξ(t),Ω(t) will be specified
in the description of each method. Assume that a transformation with output injection
has changed the matrix A(t) of system (1) into Ao(t) satisfying some requirement. Then,
the system is further transformed through (23) into

ż(t) = Ao(t)z(t) +B(t)u(t) + [Ao(t)HΞ(t) + Ψ(t)−HFΞ(t)−HGΨ(t)]θ

In the transformed system, the part Ao(t)z(t)+B(t)u(t) remains unchanged, whereas the
part involving θ varies depending on the choice of the transformation defined by F,G,H.
Appropriate choices of F,G,H can simplify the presence of θ in the transformed system,
as shown below with various examples.

In the following we show how the transformations proposed by different authors can
be reformulated in this general framework with particular choices of the matrices F,G,H.

4.2 Method A

Let us first look at the method presented in (Marino and Tomei, 1995b). Only single out-
put systems with constant matrices A,C are considered. It is assumed that the pair (A,C)
is observable and that some coordinate change with output injection has transformed the
considered system into the following form

ẋ(t) = Aox(t) +Bu(t) + Ψ(t)θ + ay(t) (24a)

y(t) = cox(t) (24b)

with

Ao =











0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · 0











co =
[

1 0 · · · 0
]

a =











a1
a2
...
an











Note that ay = ax1 could be integrated into the term Aox so that a becomes the first
column of Ao. According to Remark 1 in the introduction, the term ay is treated as ϕ(y)
and will be dropped in the following.

The dynamic transformation required by this method corresponds to

F =











−γ2 1 · · · 0
...

...
. . .

...
−γn−1 0 · · · 1
−γn 0 · · · 0











(n−1)×(n−1)

G =













−γ2 1 · · · · · · 0
...

...
. . .

...

−γn−1 0 · · ·
. . . 0

−γn 0 · · · · · · 1













(n−1)×n
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H =

















0 · · · · · · 0
1 · · · · · · 0
...

. . .
...

0 · · ·
. . . 0

0 · · · · · · 1

















n×(n−1)

where γ2, . . . , γn are some chosen values, the sizes of the matrices F,G,H have been
indicated. Accordingly, the sizes of Ξ(t) and Ω(t) are respectively (n− 1)× p and n× p.

After some lengthy computation, system (24) is transformed through (23) into

ż(t) = Aoz(t) +Bu(t) + γξT (t)θ

y(t) = coz(t)

where

γ =











1
γ2
...
γn











ξT (t) = Ξ1(t) + Ψ1(t)

with Ξ1 the first row of Ξ and Ψ1 the first row of Ψ. Notice the particular feature of this
form with a constant vector γ. It means that the scalar excitation ξT (t)θ proportionally
affects all the state equations. An adaptive observer is then designed in the form of

˙̂z(t) = Aoẑ(t) +Bu(t) + γξT (t)θ̂(t) + k[y(t)− coẑ(t)]

˙̂
θ(t) = Γξ(t)[y(t)− coẑ(t)]

with some gain vector k and a positive definite matrix Γ. In order to ensure the conver-
gence of the adaptive observer, the gain vector k must be chosen such that the transfer
function co(sI −Ao + kco)

−1γ is strictly positive real. See also (Anderson et al., 1986) for
convergence issues related to the strictly positive real condition. Because the convergence
analysis is based on the strictly positive realness of a transfer function, this method is
limited to the case with constant A,C matrices. See (Marino and Tomei, 1995b) for more
details.

4.3 Method B

Now let us review the method proposed by (Bastin and Gevers, 1988). Only single output
systems with constant matrices A,C are considered. It is assumed that the pair (A,C)
is observable and that some coordinate change with output injection has transformed the
considered system into the following form

ẋ(t) = Aox(t) +Bu(t) + Ψ(t)θ + ay(t) (25a)

y(t) = cox(t) (25b)
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with

Ao =

[

0 a12
0 A22

]

co =
[

1 0 · · · 0
]

a =











a1
a2
...
an











where a12 is a 1 × (n − 1) vector and A22 is an asymptotically stable (n − 1) × (n − 1)
matrix. As for the previous method, the term ay = ax1 will be dropped in the following.

The dynamic transformation required by this method corresponds to

F = A22 G =













0 1 · · · · · · 0
...

...
. . .

...

0 0 · · ·
. . . 0

0 0 · · · · · · 1













(n−1)×n

H =

















0 · · · · · · 0
1 · · · · · · 0
...

. . .
...

0 · · ·
. . . 0

0 · · · · · · 1

















n×(n−1)

where F is (n− 1)× (n− 1), the sizes of G,H have been indicated. Accordingly, the sizes
of Ξ(t) and Ω(t) are respectively (n− 1)× p and n× p.

After some computation, system (25) is transformed through (23) into

ż(t) = Aoz(t) +Bu(t) + γξT (t)θ (26a)

y(t) = coz(t) (26b)

where

γ =











1
0
...
0











ξT (t) = a12Ξ(t) + Ψ1(t)

with Ψ1 the first row of of Ψ.
Note that, due to the particular value of the vector γ, only the first transformed state

equation is affected by the scalar excitation ξT (t)θ.
Similarly to the previous case, the adaptive observer is designed in the form of

˙̂z(t) = Aoẑ(t) +Bu(t) + γξT (t)θ̂(t) + k[y(t)− coẑ(t)]

˙̂
θ(t) = Γξ(t)[y(t)− coẑ(t)]

As shown in (Bastin and Gevers, 1988), in order to ensure the convergence of the adaptive
observer, the transfer function co(sI −Ao+ kco)

−1γ is also required to be strictly positive
real. Due to the particular form of Ao, co, γ, this requirement is satisfied by choosing a
gain vector k = [k1, 0 . . . , 0]

T with k1 > 0. Because the convergence analysis is based on
the strictly positive realness of a transfer function, this method is limited to the case with
constant A,C matrices. See (Bastin and Gevers, 1988) for more details.
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4.4 Method C

In (Besançon, 2000), a canonical form for a class of nonlinear systems is proposed for the
purpose of adaptive observer design. As an example, the design of adaptive observer for
linear time varying (or state-affine) systems in the form of (1) (or of (2)) is considered.

In order to introduce the method of (Besançon, 2000) as applied to system (1), let us
first re-examine the canonical form proposed by (Bastin and Gevers, 1988). If we denote

z(t) =

[

z1(t)
z(t)

]

B =

[

b1
B

]

where z1 and b1 are respectively the first row of z and B, then system (26) can be written
as

ż1(t) = a12z(t) + b1u(t) + ξT (t)θ (27a)

ż(t) = A22z(t) +Bu(t) (27b)

y(t) = z1(t) (27c)

A remarkable property of the state equation is that z depends only on u. As A22 has
been designed to be asymptotically stable, z can be estimated from u only. Note that z1
is directly measured by y. Intuitively, in equation (27a) everything is “known” except θ,
it is thus possible to estimate θ.

The canonical adaptive observer form of (Besançon, 2000) follows the same idea,
but formulated in a more general framework. When it is applied to system (1), the
transformation can also be reformulated in the general framework of (23).

Assume that a coordinate change with output injection has put system (1) into the
form

ẋ(t) = Ao(t)x(t) +B(t)u(t) + Ψ(t)θ (28a)

y(t) = Cox(t) (28b)

with

Ao(t) =

[

A11(t) A12(t)
A21(t) A22(t)

]

Co =
[

Im×m 0m×m̄

]

where m̄ = n − m, A11(t) is a m × m matrix, A22(t) is a m̄ × m̄ asymptotically stable
matrix2, Im×m is the m×m identity matrix, 0m×m̄ is the m× m̄ zero matrix.

Note that for time varying systems, it is not easy to find coordinate changes so that
A22(t) is asymptotically stable. Such a coordinate change is proposed in (Besançon, 2000).
It involves the inversion of part of the time varying gain matrix of a Kalman like observer.
A consequence of this coordinate change is that the implementation of the whole adaptive
observer requires the inversion of some time varying matrix.

2In this paper, by abuse of terminology, we say that a time varying matrix A(t) is (asymptotically or
exponentially) stable when the the autonomous system ẋ(t) = A(t)x(t) is (asymptotically or exponentially)
stable. Similarly, we talk about the dynamics of A(t) in stead of the dynamics of the associated autonomous
system.
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In order to obtain the adaptive observer form of (Besançon, 2000), let

F (t) = A22(t) G =
[

0m̄×m Im̄×m̄

]

H =

[

0m×m̄

Im̄×m̄

]

where the sizes of F,G and H are respectively m̄ × m̄, m̄ × n and n × m̄. Accordingly,
the sizes of Ξ(t) and Ω(t) are respectively m̄× p and n× p.

Now transform system (28) through (23) into

ż(t) = Ao(t)z(t) +B(t)u(t) +

[

Im×m

0m̄×m

]

[A12(t)Ξ(t) + Ψ1(t)]θ

y(t) = Coz(t)

where Ψ1 is the first m rows of Ψ.
If we accordingly divide z and B into the first m and the last m̄ rows,

z(t) =

[

z1(t)
z2(t)

]

B(t) =

[

B1(t)
B2(t)

]

then the transformed system writes

ż1(t) = A11(t)z1(t) +A12(t)z2(t) +B1(t)u(t) + [A12(t)Ξ(t) + Ψ1(t)]θ (29a)

ż2(t) = A21(t)z1(t) +A22(t)z2(t) +B2(t)u(t) (29b)

y(t) = z1(t) (29c)

The adaptive observer proposed by (Besançon, 2000) has the form

˙̂z1(t) = A11(t)ẑ1(t) +A12(t)ẑ2(t) +B1(t)u(t) + [A12(t)Ξ(t) + Ψ1(t)]θ̂(t) +K[y(t)− ẑ1(t)]

˙̂z2(t) = A21(t)y(t) +A22(t)ẑ2(t) +B2(t)u(t)

˙̂
θ(t) = Γ[A12(t)Ξ(t) + Ψ1(t)]

T [y(t)− ẑ1(t)]

It is clear from (29b) and (29c) that z2(t) can be estimated from u(t) and y(t) only, as
A22(t) is asymptotically stable. Intuitively, from the estimated ẑ2(t) and the other known
signals, it is possible to estimate θ from (29a). Accordingly, the proof of the convergence
of the adaptive observer presented in (Besançon, 2000) is based on a Lyapounov function
of the following form

V (z̃, θ̃) = εV1(z̃1) + V2(z̃2) + εV3(θ̃)

where V1, V2, V3 are three positive definite functions, ε > 0, z̃1 = ẑ1 − z1, z̃2 = ẑ2 − z2,
θ̃ = θ̂ − θ. The negative definiteness of the derivative of V (z̃, θ̃) is established for some
sufficiently small ε. The requirement on this sufficiently small ε intuitively shows that
the convergence of z̃2 precedes those of z̃1 and θ̃. Only asymptotic convergence is proved
in (Besançon, 2000), not exponential convergence.

Up to our knowledge, this is the only known result on adaptive observer design cov-
ering time varying and MIMO systems, prior to the one proposed in this paper. It has
the advantage of generality. However, it has the drawback of some kind of convergence
singularity related to the presence of ε in the Lyapounov function. Moreover, it requires
the inversion of some time varying matrix, and only asymptotic convergence is proved.
Clearly, our proposed adaptive observer improves these aspects.
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4.5 The proposed adaptive observer

Now let us examine our proposed adaptive observer in the framework of the general
dynamic transformation. First perform an appropriate output injection to modify the
dynamics of A(t) into Ao(t) = A(t)−K(t)C(t).

Remark that, in contrast to all the above reviewed methods, no coordinate change is
required here, as no particular form of Ao(t) is required in the proposed method. This
fact is especially important for time varying systems for which time varying coordinate
change is computationally expensive.

Our adaptive observer corresponds to the transformation with

F (t) = A(t)−K(t)C(t) G = In×n H = In×n

where the sizes of F,G and H are all n × n. Accordingly, both Ξ(t) and Ω(t) have the
size n× p.

Then it is easy to check that system (1) is transformed through (23) into

ż(t) = [A(t)−K(t)C(t)]z(t) +B(t)u(t) +K(t)y(t)

Remind that, for all the above reviewed methods, the purpose of the dynamic trans-
formation is to simplify the presence of θ in the transformed system. Indeed for the
adaptive observer proposed in this paper, this transformation realizes the extreme simpli-
fication: θ is not present at all in the transformed state equation! This choice should be
the most natural one. The other choices all conserve a presence of θ in the transformed
state equation, probably by fearing losing the ability to estimate θ. However, as shown in
this paper, our choice does allow the estimation of θ, with a simple, general and efficient
algorithm.

5 Numerical examples

In this section we present two simulation examples: the proposed adaptive observer is
applied to a single link robot arm and to a controlled satellite. The simulations are
performed in Simulink with the ODE45 solver.

5.1 A single link robot arm

This example is borrowed from (Marino and Tomei, 1995a). It is a single link robot arm
rotating in a vertical plane as illustrated in Figure 1. The equation of motion is

Iq̈ +
1

2
mgl sin q = u

where q is the rotation angle, u the input torque, I the moment of inertia, g the gravity
constant, m the mass and l the length of the arm.

Let x1 = q, x2 = q̇, y = q, θ1 = mgl/(2I), θ2 = 1/I, then the state space model is

ẋ1 = x2

ẋ2 = −θ1 sin y + θ2u

y = x1
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q

1
2 l

u

mg

Figure 1: Single link robot arm

which fits into the form of (1) despite the apparent nonlinearity sin y. The proposed
adaptive observer is used to estimate the states x1, x2 and the parameters θ1, θ2.

The same simulation parameters as in (Marino and Tomei, 1995a) are used: m =
1, l = 1, I = 0.5. The input signal is u(t) = 5(sin 2t + cos 20t). The initial conditions are
x(0) = [1, 1]T , x̂(0) = [0, 0]T , θ̂(0) = [5, 1]T . The only difference from (Marino and Tomei,
1995a) is that in our simulation the output y is corrupted by a Gaussian noise whose
standard deviation is 0.2.

The parameters of the adaptive observer are K = [1, 1]T ,Σ = 10,Γ = diag([2.1, 2]).
In Figures 2, 3, 4 and 5 are respectively plotted the input-output signals, the simulated

state variables, the state estimation errors and the parameter estimates. It can be noticed
that after about 3 time units, the convergences of both state and parameter estimation
are practically established. Due to the noises added to the output y(t), the estimation
errors randomly oscillate around zero instead of tending to zero.

When our simulation result is compared to that of (Marino and Tomei, 1995a), it
should be noted that our simulated output signal is noise corrupted, whereas it is noise
free in (Marino and Tomei, 1995a).

5.2 A controlled satellite

This example comes from (Brockett, 1970). Assume that the nominal orbit of the consid-
ered satellite is circular with the radius normalized to 1. The equations of motion of the
satellite is linearized around the nominal orbit. Let ω be the nominal angular velocity of
the satellite around the earth, then the linearized model writes (see (Brockett, 1970) for
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Figure 2: Single link robot arm: simulated input u(t) (top) and output y(t) (bottom).
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Figure 3: Single link robot arm: simulated states x1(t) (top) and x2(t) (bottom).
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Figure 4: Single link robot arm: state estimation errors x̃1(t) (top) and x̃2(t) (bottom).
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Figure 5: Single link robot arm: parameter estimates θ̂1(t) (upper) and θ̂2(t) (lower). The
true parameter values θ1 = 9.8 and θ2 = 2 are shown by the dashed lines.
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Figure 6: Controlled satellite: the signal ω(t).

the details)









ẋ1(t)
ẋ2(t)
ẋ3(t)
ẋ4(t)









=









0 1 0 0
3ω2 0 0 2ω
0 0 0 1
0 −2ω 0 0

















x1(t)
x2(t)
x3(t)
x4(t)









+









0 0
θ1 0
0 0
0 θ2









[

u1(t)
u2(t)

]

[

y1(t)
y2(t)

]

=

[

1 0 0 0
0 0 1 0

]









x1(t)
x2(t)
x3(t)
x4(t)









where the states x1 = r − 1 (r is the orbit radius, 1 is the normalized nominal orbit
radius), x2 = ṙ, x3 = ϕ − ωt (ϕ is the rotation angle), x4 = ϕ̇ − ω, u1 and u2 are the
radial and tangential thrusts with the coefficients θ1 and θ2, the outputs y1 and y2 are
related to distance and angle observations.

In order to simulate a time varying linear system, the value of ω varies linearly from
3.49 × 10−4 to 3.14 × 10−4 over 100 seconds and is disturbed by a Gaussian noise whose
standard deviation is 3.49×10−6. Such a signal is shown in Figure 6. The true parameter
θ1 switches between 1 and 0.75, whereas θ2 between 1.5 and 1.25. The two inputs are
square impulses and shown in Figure 7. Each of the two outputs is corrupted by a
Gaussian noise whose standard deviation is 0.01.

The initial values are x(0) = [1, 0, 0, ω(0)]T , x̂(0) = [0.9, 0, 0, 0.9ω(0)]T , θ̂(0) = [0.5, 0.5]T .
The adaptive observer parameters are Σ = diag([1, 1]), Γ = 5.0 × 102diag([2, 2.4]).

K(t) is computed as the Kalman gain (18) with Q = 2.0 × 10−3diag([1, 1]), R = 1.0 ×
10−4diag([1, 1]).

In Figures 7, 8, 9 and 10 are respectively plotted the input-output signals, the simu-
lated state variables, the state estimation errors and the parameter estimates. It can be
observed that, for each parameter change, the convergence of the parameter estimation
errors are re-established after a transient less than 10 seconds. Due to the noises added to
the output y(t), the estimation errors randomly oscillate around zero instead of tending
to zero.
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Figure 7: Controlled satellite: simulated input u1(t), u2(t) (the two upper plots) and
output y1(t), y2(t) (the two lower plots).
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Figure 8: Controlled satellite: simulated states x1(t), x2(t), x3(t), x4(t).
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Figure 9: Controlled satellite: state estimation errors x̃1(t), x̃2(t), x̃3(t), x̃4(t).
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Figure 10: Controlled satellite: parameter estimates θ̂1(t) (lower) and θ̂2(t) (upper). The
true parameter values are shown by the dashed lines.
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6 Conclusion

In this paper we have proposed a new approach to global exponential adaptive observer
design for MIMO linear time varying systems. In addition to its generality, it is con-
ceptually simple and computationally efficient. The robustness of the proposed adaptive
observer and its convergence in the mean in the presence of noises have been established.
We have also presented a unified formulation for some known adaptive observers based on
dynamic transformations. Through this general framework, the functioning of these adap-
tive observers and their relation with the one proposed in this paper become clear. Two
Numerical examples have been presented to illustrate the performance of the proposed
adaptive observer.

As the proposed adaptive observer is mainly based on a deterministic approach, when
it is applied a noise corrupted system, the parameter estimation error does not tend
to zero, but oscillates around zero. This problem can be remedied by averaging the
parameter estimates after the transient, as suggested by the convergence in the mean
of the adaptive observer. Another solution would be to extend the results into a fully
stochastic framework.

Some related research topics are: the study of adaptive observers in a fully stochastic
framework, extensions to nonlinear systems, applications to adaptive control and to fault
detection and isolation.

A Proof of Lemma 1

This lemma has been proved for the case with a scalar Γ in (Anderson et al., 1986). Our
proof for the case with a symmetric positive definite matrix Γ is adapted from that of
(Anderson et al., 1986).

Define the Lyapounov function candidate

V (t) =
1

2
zT (t)Γ−1z(t)

then

V̇ (t) = −zT (t)φT (t)φ(t)z(t) ≤ 0

The autonomous system (12) is thus stable. It requires more efforts to prove its exponen-
tial stability.

Let Φ(τ, t) be the transition matrix of system (12), then for all τ and t,

z(τ) = Φ(τ, t)z(t)
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V (t+ T )− V (t) =

∫ t+T

t

V̇ (τ)dτ

= −

∫ t+T

t

zT (τ)φT (τ)φ(τ)z(τ)dτ

= −

∫ t+T

t

zT (t+ T )ΦT (τ, t+ T )φT (τ)φ(τ)Φ(τ, t + T )z(t+ T )dτ

= −zT (t+ T )

[
∫ t+T

t

ΦT (τ, t+ T )φT (τ)φ(τ)Φ(τ, t + T )dτ

]

z(t+ T )

According to Lemma 3 stated below and the condition (11), there exists a constant α2 > 0
such that

α2I ≤

∫ t+T

t

ΦT (τ, t+ T )φT (τ)φ(τ)Φ(τ, t + T )dτ

therefore

V (t+ T )− V (t) ≤ −α2λz
T (t+ T )Γ−1z(t+ T )

where λ > 0 is the smallest eigenvalue of Γ. It follows from the definition of V (t) that

V (t+ T ) ≤
1

1 + 2α2λ
V (t)

For all τ ≥ T , denote by
[

τ
T

]

the integer part of τ
T
. Then

V (t+ τ) ≤ V
(

t+
[ τ

T

]

T
)

≤

(

1

1 + 2α2λ

)[ τ
T
]
V (t)

≤

(

1

1 + 2α2λ

)
τ

T
−1

V (t)

Thus V (t) is exponentially decreasing, that implies that z(t) converges to zero exponen-
tially fast. �

Lemma 3 Let φ(t) ∈ R
m×p be bounded and piecewise continuous. If there exist positive

constants 0 < T < ∞, 0 < α1 < β1 < ∞, such that ∀t

α1I ≤

∫ t+T

t

φT (τ)φ(τ)dτ ≤ β1I (30)

then there exist positive constants 0 < α2 < β2 < ∞ such that

α2I ≤

∫ t+T

t

ΦT (τ, t+ T )φT (τ)φ(τ)Φ(τ, t + T )dτ ≤ β2I (31)

where Φ(τ, t) is the transition matrix of the system

ẋ(t) = −ΓφT (t)φ(t)x(t)
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Proof of Lemma 3. The proof sketch presented here follows (Anderson et al., 1986).
Condition (30) is in fact the uniform complete observability condition of the system

ẋ(t) = 0

y(t) = φ(t)x(t)

as the transition matrix of the null system is simply the identity matrix. Adding the
output feedback −ΓφT (t)y(t) = −ΓφT (t)φ(t)x(t) into the state equation conserves the
uniform complete observability of the system, that is to say, the system

ẋ(t) = −ΓφT (t)φ(t)x(t)

y(t) = φ(t)x(t)

is also uniformly completely observable. It then follows from the definition of uniform
complete observability that there exist constants 0 < α2 < β2 < ∞ such the inequali-
ties (31) are satisfied. �

B Proof of Lemma 2

The first part of the lemma, that is, z(t) is bounded and converges to zero if u(t) is
bounded and tends to zero, has been proved in (Brockett, 1970). Now we prove that
if u(t) vanishes exponentially, then z(t) vanishes also exponentially. Let Φ(τ, t) be the
transition matrix of the autonomous system, then

z(t) = Φ(t, t0)z(t0) +

∫ t

t0

Φ(t, τ)u(τ)dτ

‖z(t)‖ ≤ ‖Φ(t, t0)z(t0)‖+

∫ t

t0

‖Φ(t, τ)‖‖u(τ)‖dτ

By assumption u(t) vanishes exponentially, therefore ‖u(t)‖ ≤ C1e
−λ1(t−t0) for some con-

stants C1 > 0 and λ1 > 0. Moreover, the exponential stability of the autonomous system
implies that ‖Φ(t, τ)‖ ≤ C2e

−λ2(t−τ) for some constants C2 > 0 and λ2 > 0. Therefore,

‖z(t)‖ ≤ C2e
−λ2(t−t0)‖z(t0)‖+

∫ t

t0

C2e
−λ2(t−τ)C1e

−λ1(τ−t0)dτ

≤ C2e
−λ2(t−t0)‖z(t0)‖+ C1C2e

−λ2(t−t0)

∫ t

t0

e(λ2−λ1)(τ−t0)dτ

If λ1 6= λ2, then

‖z(t)‖ ≤ C2e
−λ2(t−t0)‖z(t0)‖+

C1C2

λ2 − λ1

(

e−λ1(t−t0) − e−λ2(t−t0)
)

If λ1 = λ2, then

‖z(t)‖ ≤ C2e
−λ2(t−t0)‖z(t0)‖+ C1C2e

−λ2(t−t0)(t− t0)

In both cases, ‖z(t)‖ tends to zero exponentially fast. �
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Lüders, G. and Narendra, K. S. (1973). An adaptive observer and identifier for a linear
system. IEEE Trans. on Automatic Control, 18:496–499.

Marino, R. and Santosuosso, G. L. (1999). Robust adaptive observers for nonlinear sys-
tems with bounded disturbances. In 38th IEEE Conference on Decision and Control
(CDC’99), Phoenix, Arizona.

Marino, R. and Tomei, P. (1995a). Adaptive observers with arbitrary exponential rate of
convergence for nonlinear systems. IEEE Trans. on Automatic Control, 40(7):1300–
1304.

Marino, R. and Tomei, P. (1995b). Nonlinear control design. Information and system
sciences. Prentice Hall, London, New York.

Zhang, Q. (2000). A new residual generation and evaluation method for detection and
isolation of faults in nonlinear systems. International Journal of Adaptive Control
and Signal Processing, 14:759–773.



Adaptive Observer for MIMO Linear Time Varying Systems 29

Zhang, Q. and Delyon, B. (2001). A new approach to adaptive observer design for MIMO
systems. In ACC’2001, pages 1545–1550, Arlington.




