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Abstract: DSM-PM2 is a platform for designing, implementing and experimenting multithreaded DSM consistency
protocols. It provides a generic toolbox which facilitates protocol design and allows for easy experimentation with
alternative protocols for a given consistency model. DSM-PM2 is portable across a wide range of clusters. We illustrate
its power with figures obtained for different protocols implementing sequential consistency, release consistency and
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DSM-PM2 : Une platforme portable pour I'implémentation des
protocoles de cohérence multithread.

Résumé : DSM-PM?2 est une platforme pour la conception, I’implémentation et I’expérimentation de protocoles
de cohérence multithread pour des environnements a mémoire distribuée virtuellement partagée. DSM-PM2 fournit
une boite a outils générique qui facilite la conception de protocoles et en permet facilement I’'implémentation. 11 est
disponible sur une large variété de clusters, comprenant différents types de réseaux d’interconnexion. Nous illustrons
ses performances pour différents protocoles de cohérence qui implémentent la cohérence séquentielle, la coherence
relachée et la cohérence Java sur trois platformes: BIP/Myrinet, TCP/Myrinet et SISCI/SCI.

Citation: Cerapporta été publiée dans les actes du 6th International Workshop on High-Level Parallel Program-
ming Models and Supportive Environments (HIPS "01) [4]. Merci de mentionner cette référence dans les citations.

Mots-clé : DSM, mémoire virtuellement partagée, multithreading, protocoles de cohérence, DSM-PM2, PM2.
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1 Introduction

In their traditional flavor, Distributed Shared Memory (DSM) libraries [16, 19, 20, 11] allow a number of separate
processes to share a common address space using a consistency protocol according to a semantics specified by some
given consistency model: sequential consistency, release consistency, etc. The processes may usually be physically
distributed among a number of computing nodes interconnected through some communication library. The design of
the DSM library is often highly dependent on the selected consistency model and on the communication library. Also,
only a few of them are able to exploit the power of modern thread libraries to provide multithreaded protocols, or at
least to provide thread-safe versions of the consistency protocols.

Most approaches to DSM programming assume that the DSM library and the underlying architecture are fixed, and
that it is up to the programmer to fit his program with them. We think that such a static vision fails to appreciate the
possibilities of this area of programming. We believe that a better approach is to provide the application programmer
with an implementation platform where both the application and the multithreaded DSM consistency protocol can
possibly be co-designed and tuned for performance. This aspect is crucial if the platform is used as target for a
compiler: the implementation of the consistency model through a specific protocol can then directly benefit from
the specific properties of the code, enforced by the compiler in the code generation process. The platform should
moreover be portable, so that the programmers do not have to commit to some existing communication library or
operating system, or at least be able to postpone this decision as late as possible.

DSM-PM2 is a prototype implementation platform for multithreaded DSM programming which attempts to meet
these requirements. Its general structure and programming interface are presented in Section 2. Section 3 discusses
in more detail how to select and define protocols. A given consistency model can be implemented via multiple al-
ternative protocols. We give an overview of the implementation of several protocols for various consistency models,
including sequential consistency, release consistency and Java consistency (which is a variant of release consistency).
In particular, two alternative protocols addressing the sequential consistency model are described, a first one based
on page migration, and the second one using thread migration, as enabled by the underlying multithreading library.
Finally, we illustrate the portability and efficiency of DSM-PM2 by reporting performance measurements on top of dif-
ferent cluster architectures using various communication interfaces and interconnection networks: BIP [21]/Myrinet,
TCP/Myrinet, TCP/FastEthernet, SISCI/SCI [10].

Related work

The concept of Distributed Shared Memory was proposed more than a decade ago [16]. Important efforts have been
subsequently made to improve the performance of software DSM systems and many such systems were proposed to
illustrate new ideas. Progresses related to the relaxation of consistency protocols were illustrated with Munin [7] (for
release consistency), TreadMarks [1] (to study the impact of laziness in coherence propagation, through lazy release
consistency), Midway [5] (for entry consistency), and Brazos [22] (for scope consistency). Recent software DSM
systems, such as Millipede [12], CVM [14] and Brazos integrate the use of multithreading.

Our work is more closely related to that of DSM-Threads [17], a system which extends POSIX multithreading
to distributed environments by providing a multithreaded DSM. Our approach is different essentially by the generic
support and the ability to support new, user-defined consistency protocols. Millipede [12] also integrates threads
with Distributed Shared Memory. It has been designed for a specific execution environment (Windows NT cluster
with Myrinet) and focuses on sequential consistency only. CVM [14] is another software DSM system which pro-
vides multithreading (essentially to hide the network latency) and supports multiple consistency models and protocols.
However, CVM’s communication layer targets the UDP protocol only, whereas DSM-PM2 captures the benefits of
PM2’s portability on a large variety of communication interfaces: it is currently available on modern Myrinet and SCI
high-performance clusters run with Linux. The primary goal of DSM-PM2 is to provide a portable platform for easy
protocol experimentation. Its customizability makes it also valuable as a target for compilers as the Java Hyperion
compiler discussed in Section 3.3.
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2 DSM-PM2: an overview

2.1 The PM2 runtime system

PM2 (Parallel Multithreaded Machine) [18] is a multithreaded environment for distributed architectures. It provides
a POSIX-like interface to create, manipulate and synchronize lightweight threads in user space, in a distributed envi-
ronment. Its basic mechanism for inter-node interaction is the Remote Procedure Call (RPC). Using RPCs, the PM2
threads can invoke the remote execution of user-defined services. Such invocations can either be handled by a pre-
existing thread, or they can involve the creation of a new thread. While threads running on the same node can freely
share data, PM2 threads running on distant nodes may only interact through RPC. This mechanism can be used either
to send/retrieve information to/from the remote node, or to have some remote action executed. The minimal latency
of a RPC is 6 us over SISCI/SCI and 8 us over BIP/Myrinet on our local Linux clusters.

PM2 includes two main components. For multithreading, it uses Marcel, an efficient, user-level, POSIX-like thread
package. To ensure network portability, PM2 uses an efficient communication library called Madeleine [6], which was
ported across a wide range of communication interfaces, including high-performance ones such as BIP [21], SISCI,
VIA [8], as well as more traditional ones such as TCP, and MPI.

An interesting feature of PM2 is its thread migration mechanism that allows threads to be transparently and pre-
emptively moved from one node to another during their execution. Such a functionality is typically useful to implement
generic policies for dynamic load balancing, independently of the applications: the load of each processing node can
be evaluated according to some measure, and balanced using preemptive migration. The key feature enabling pre-
emptiveness is the iso-address approach to dynamic allocation featured by PM2. The i somal | oc allocation routine
guarantees that the range of virtual addresses allocated by a thread on a node will be left free on any other node. Thus,
threads can be safely migrated across nodes: their stacks and their dynamically allocated data are just copied on the
destination node at the same virtual address as on the original node. This guarantees the validity of all pointers without
any further restriction [3]. Migrating a thread with a minimal stack and no attached data, takes 62 us over SISCI/SCI
and 75 us over BIP/Myrinet on our local Linux clusters.

2.2 DSM-PM2: towards a portable implementation platform

DSM-PM2 provides the illusion of a common address space shared by all PM2 threads irrespective of their location and
thus implements the concept of Distributed Shared Memory on top of the distributed architecture of PM2. But DSM-
PM2 is not simply a DSM layer for PM2: its goal is to provide a portable implementation platform for multithreaded
DSM consistency protocols. Given that all DSM communication primitives have been implemented using PM2’s RPC
mechanism based on Madeleine, DSM-PM2 inherits PM2’s wide network portability. However, the most important
feature of DSM-PM2 is its customizability: actually, the main design goal was to provide support for implementing,
tuning and comparing several consistency models, and alternative protocols for a given consistency model.

As a starting remark, we can notice that all DSM systems share a number of common features. Every DSM
system, aimed for instance at illustrating a new version of some protocol, has to implement again a number of core
functionalities. Itis therefore interesting to ask: What are the features that need to be present in any DSM system? And
then: What are the features that are specific to a particular DSM system? By answering these questions, we become
able to build a system where the core mechanisms shared by the existing DSM systems are provided as a generic,
common layer, on top of which specific protocols can be easily built. In our study, we limit ourselves to page-based
DSM systems.

Access detection. Most DSM systems use page faults to detect accesses to shared data, in order to carry out actions
necessary to guarantee consistency. The generic core should provide routines to detect page faults, to extract
information related to each fault (address, fault type, etc.) and to associate protocol-specific consistency actions
to a page-fault event.

Page manager. Page-based DSM systems use a page table which stores information about the shared pages. Each
memory page is handled individually. Some information fields are common to virtually all protocols: local
access rights, current owner, etc. Other fields may be specific to some protocol. The generic core should provide
the page table structure and a basic set of functions to manipulate page entries. Also, the page table structure
should be designed so that new information fields could be added, as needed by the protocols of interest.
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| Protocol function | Description

read _fault _ Called on a read page fault

handl er

wite fault Called on a write page fault

handl er

read_server Called on receiving a request for read access
wite server Called on receiving a request for write access
i nval i date_ Called on receiving a request for invalidation
server

recei ve_page_ Called on receiving a page

server

| ock_acquire Called after having acquired a lock

| ock_rel ease Called before releasing a lock

Table 1: DSM-PM2 protocol actions.

DSM communication. We can notice that the known DSM protocols use a limited set of communication routines,
like sending a page request, sending a page, sending diffs (for some protocols implementing weak consistency
models, like release consistency). Such a set of routines should also be part of the generic core.

Synchronization and consistency. Weaker consistency models, like release, entry, or scope consistency require
that consistency actions be taken at synchronization points. In order to support these models, the generic core
should provide synchronization objects (locks, barriers, etc.) and enable consistency actions to be associated to
synchronization events.

Thread-safety. Modern environments for parallel programming use multithreading. All the data structures and
management routines provided by the generic core should be thread-safe: multiple concurrent threads should
be able to safely call these routines.

A closer study of page-based consistency protocols enables to list up a small number of events which should trigger
consistency actions: page faults, receipt of a page request, receipt of the requested page, receipt of an invalidation
request. Additionally, for weak consistency models, lock acquire, lock release and barrier calls are events to be
associated with consistency actions. In the current version of DSM-PM2, there are 8 actions. The detailed list is given
in Table 1.

Once the generic core has been delineated, we can consider building consistency protocols on top of it. Designing
a protocol in DSM-PM2 consists in providing a set of 8 routines, one for each action identified above. These routines
are designed using on the API of the generic components. They are automatically called by DSM-PM2, and nothing
more has to be done by the programmer. According to our personal experience, the code for the routines is quite
manageable: a few hundreds of lines for the whole set of routines of a typical protocol. A key feature of DSM-
PM2 is that all the mechanisms provided by the generic core are thread-safe. The task of the protocol designer is
thus considerably alleviated as most (if not all!) subtle synchronization problems are already addressed by the core
routines.

As a consequence of our distinction between generic core mechanisms and protocol-specific actions, DSM-PM2
is structured in layers (Figure 1). At the lowest level, DSM-PM2 includes two main components which make up the
the main part of the generic core: the DSM page manager and the DSM communication module. Both are based on
the API of PM2: no direct access to the thread low-level structures and to the underlying communication library are
made.

The DSM page manager is essentially dedicated to the low-level management of memory pages. It implements
a distributed table containing page ownership information and maintains the appropriate access rights on each node.
This table has been designed to be generic enough so that it could be exploited to implement protocols which need
a fixed page manager, as well as protocols based on a dynamic page manager (see [16] for a classification of page
managers). Of course, each protocol uses the fields in the page entries of the table as required by its corresponding
page management strategy (which is decided at the higher, protocol library level). Consequently, a field may have
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Figure 1: Overview of the DSM-PM2 software architecture.

different semantics in different protocols and may be even left unused by some protocols. Also, new fields could be
easily added if needed in the future.

The DSM communication module is responsible for providing elementary communication mechanisms, such as
delivering requests for page copies, sending pages, invalidating pages or sending diffs. This module is implemented
using PM2’s RPC mechanism, which turns out to be well-suited for this kind of task. For instance, requesting a copy of
a remote page for read access can essentially be seen as invoking a remote service. On the other hand, since the RPCs
are implemented on top of the Madeleine communication library, the DSM-PM2 communication module is portable
across all communication interfaces supported by Madeleine at no extra cost.

The routines which compose a protocol are defined using a toolbox called the DSM protocol library layer. It
provides routines to perform elementary actions such as bringing a copy of a remote page to a thread, migrating a
thread to some remote data, invalidating all copies of a page, etc. All the available routines are thread-safe. This library
is built on top of the two base components of the generic core: the DSM page manager and the DSM communication
module.

Finally, at the highest level, a DSM protocol policy layer is responsible for building consistency protocols out of a
subset of the available library routines. An arbitrary number of protocols can be defined at this level, which may be
selected by the application through a specific library call. Some classical protocols are already built-in, as summarized
in Table 2, but the user can also add new protocols, as described in Section 2.3 by defining each of the component
routines of each protocol and by registering it using specific library calls.

2.3 Using protocols

In DSM-PM2, a specific protocol is a set of actions designed to guarantee consistency according to a consistency
model. In our current implementation, a protocol is specified through 8 routines (listed in Table 1) that are automat-
ically called by the generic DSM support as needed. Each protocol is labeled by a unique identifier. This identifier
can for instance be used to set it up as the default protocol or to associate it to dynamically allocated shared objects.
DSM-PM2 protocols can be specified and used in three different ways.

Using built-in protocols. The easiest way consists in selecting one of the available built-in protocols. In its current
stage of development, DSM-PM2 provides 6 such protocols, whose main characteristics are summarized in
Table 2 and detailed in Section 3. On Figure 2, the | i _hudak protocol is declared as the default protocol for
the static shared area.

Building new protocols. The user can also a define a new protocol by providing each of its component routines
and by registering it using a specific library call. The newly created protocol can then be used exactly in the
same way as built-in protocols.
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| Protocol | Consistency | Basic features

i _hudak Sequential MRSW protocol. Page replication on read access, page
migration on write access. Dynamic distributed manager.

mgrate_ Sequential Uses thread migration on both read and write faults.

t hr ead Fixed distributed manager.

erc_sw Release MRSW protocol implementing eager release consis-
tency. Dynamic distributed manager.

hbr c_mv Release MRMW protocol implementing home-based lazy release
consistency. Fixed distributed manager. Uses twins and
on-release diffing.

java_ic Java Home-based MRMW protocol, based on explicit inline
checks (i c)for locality. Fixed distributed manager. Uses
on-the-fly diff recording.

j ava_pf Java Home-based MRMW protocol, based on on page
faults(pf ). Fixed distributed manager. Uses on-the-fly
diff recording.

Table 2; Consistency protocols currently available in the DSM-PM2 library.

#i ncl ude "pn2. h"

BEG N_DSM DATA

int x = 34;
[* ... %
END_DSM DATA

void main (void)

{

/* Use the built-in 'li_hudak’

protocol */

pm2_dsm set _default_protocol (1i_hudak);

pm2_init();
X++;
[* 0%

Figure 2: Using DSM-PM2 with a built-in protocol.
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int new_proto;
new_prot = dsm create_protocol
(read_fault_handler, wite_fault_handl er,
read_server, wite_server,
i nval i dat e_server, receive_page_server,
acqui re_handl er, rel ease_handler);

pm2_dsm set _defaul t _protocol (proto);

Building protocols using library routines A mixed approach consists in using existing library routines, as pro-
vided in the DSM protocol library layer, rather than new, user-defined routines, but combine then in some ad-hoc
way. One may thus consider hybrid approaches such as page replication on read fault (like in the | i _hudak
protocol) and thread migration on write fault (like in the mi gr at e_t hr ead protocol). One may even embed
a dynamic mechanism selection within the protocol, switching for instance from page migration to thread mi-
gration depending on ad-hoc criteria. However, the user is responsible for using these features in a consistent
way to produce a valid protocol.

Observe that no pre-processing of the code file is used. Consequently, it is possible to define a number of protocols
in a program and to dynamically select one of them according to the arguments provided by the user without any
recompilation:

int protol, proto2;
protol = dsmcreate_protocol (...);
proto2 = dsmcreate_protocol (...);

if (...) pn2_dsmset_default_protocol (protol);
el se pn2_dsm set _defaul t _protocol (proto2);

Again, the built-in protocols are just pre-defined protocols, so they can freely be included in such a selection.

On Figure 2, a protocol is associated to a static memory area. DSM-PM2 also provides dynamic allocation for
shared memory. Each such dynamically-allocated shared area can be managed with a specific protocol, which can
be specified through its creation attribute as illustrated. (Otherwise, the default protocol set by pn2_dsm set _
defaul t _protocol isused.) Consequently, different DSM protocols may be associated to different DSM memory
areas within the same application.

#define N 128
int *ptr;
dsmattr_t attr;

dsmattr_set_protocol (&ttr, |i_hudak);
ptr = (int*)dsm mal | oc(N*si zeof (int), &ttr);

In the current version of the system, DSM-PM2 does not provide any specific support to dynamically switch the
management of a memory area from one protocol to another one within the same run. However, this can be achieved
if needed through a careful synchronization at the program level (e.g. through barriers). Essentially, one has to keep
the corresponding memory area from being accessed by the application threads during the protocol switch, since this
operation involves modifications in the distributed page table on all nodes.

DSM-PM2 provides a multithreaded DSM interface: static and dynamic data can be shared by all the threads in
the system. Since the programming interface is intended both for direct use and as a target for compilers, no pre-
processing is assumed in the general case and accesses to shared data are detected using page faults. Nevertheless,
when DSM-PM2 is used as a compiler target, accesses to shared data may be carried out through specific runtime
primitives like get and put (and not through direct assignment). The implementation of these primitives may then
explicitly check for data locality and handle consistency accordingly. DSM-PM2 thus provides a way to bypass the
page fault detection and to directly activate the protocol actions.

3 Built-in protocols available with DSM-PM2

Currently, DSM-PM2 provides 6 built-in protocols, whose main characteristics are summarized in Table 2. All these
protocols share two important common features. 1) Their implementations are multithreaded: it uses multiple “hidden”
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Figure 3: Sequential consistency using thread migration: on page fault, the thread migrates to the node where the data
is located.

threads to maintain the internal data structures and to enhance reactivity to external events such as message arrival. 2)
They are thread-safe: an arbitrary number of user-level threads can concurrently access pages on any node and threads
on the same node safely share the same page copy. These distinctive features required that the traditional consistency
protocols (usually written for single-threaded systems) which we used as a starting point be adapted to a multi-threaded
context to handle thread-level concurrency. As opposed to the traditional protocols where all page faults on a node
are processed sequentially, concurrent requests may be processed in parallel in a multithreaded context, should they
concern the same page or different pages.

3.1 Sequential consistency

We provide two protocols for sequential consistency. The | i _hudak protocol relies on a variant of the dynamic
distributed manager MRSW (multiple reader, single writer) algorithm described by Li and Hudak [16], adapted by
Mueller [17]. It uses page replication on read fault and page migration on write fault. Note that in a multithreaded
context, the single writer refers to a node, not to a thread, since all the threads on the ‘writer’ node share the same
copy. They may thus write it concurrently.

Alternatively, DSM-PM2 provides a new protocol for sequential consistency based on thread migration
(mi grat e_t hread), illustrated in Figure 3. When a thread accesses a page and does not have the appropriate
access rights, it executes the page fault handler which simply migrates the thread to the node owning the page (as
specified by the local page table). On reaching the destination node, the thread exits the handler and repeats the ac-
cess, which is now successfully carried out and the thread continues its execution. Note the simplicity of this protocol,
which essentially relies on a single function: the thread migration primitive provided by PM2. The counterpart is that
the pages are not replicated in this protocol (i.e., for each page, there is a unique node where the page can be accessed
both for read and write), so that all threads accessing a non local page will migrate to the corresponding owning node.
Though the migration cost is generally very low, the efficiency of this protocol is highly influenced by the distribution
of the shared data, which has a direct impact on the load balancing (since the threads migrate to the data they access).
This point is discussed in Section 4.

The protocol described above crucially depends on an iso-address approach to data allocation [3]: not only static,
but also dynamically allocated DSM pages are mapped at the same virtual address on all nodes, using the i sormal | oc
allocation routine of PM2. On exiting the fault handler after migration, the thread automatically repeats the access at
the same address, which does correspond to the same piece of data.

3.2 Release consistency

DSM-PM2 also provides two alternative implementations for release consistency. The er c_swprotocol is a MRSW
protocol for eager release consistency. It uses page replication on read fault and page migration on write fault, based on
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the same dynamic distributed manager scheme as | i _hudak. Page ownership migrates along with the write access
rights. Pages in the copyset get invalidated on lock release.

Alternatively, the hbr c_mw protocol is a home-based protocol allowing multiple writers (MRMW protocol) by
using the ‘classical’ twinning technique described in [15]. Essentially, each page has a home node, where all threads
have write access. On page fault, a copy of the page is brought from the home node and a twin copy gets created. On
release, page diffs are computed and sent to the home node, which subsequently invalidates third-party writer nodes.
On receiving such an invalidation, these latter nodes need to compute and send their own diffs (if any) to the home
node.

3.3 Java consistency

DSM-PM2 provides two protocols which directly implement consistency as specified by the Java Memory Model [13]
(we refer to this consistency using the term “Java consistency”). Thanks to these protocols, DSM-PM2 is currently
used by the Hyperion Java compiling system [2] and consequently supports the execution of compiled threaded Java
programs on clusters. Our DSM-PM2 protocols were co-designed with Hyperion’s memory module and this approach
enabled us to make aggressive optimizations using information from the upper layers. For instance, a number of
synchronizations could thereby be optimized out.

The Java Memory Model allows threads to keep locally cached copies of objects. Consistency is provided by
requiring that a thread’s object cache be flushed upon entry to a monitor and that local modifications made to cached
objects be transmitted to the central memory when a thread exits a monitor. Gontmakher and Schuster [9] have shown
that the JMM provides Release Consistency for synchronized access to non-volatile variables and stricter forms of
consistency for the other cases. That is, Java Consistency is equivalent to Release Consistency in most cases.

The concept of main memory is implemented with DSM-PM2 via a home-based approach. The home node is in
charge of managing the reference copy. Objects (initially stored on their home nodes) are replicated if accessed on
other nodes. Note that at most one copy of an object may exist on a node and this copy is shared by all the threads
running on that node. Thus, we avoid wasting memory by associating caches to nodes rather than to threads.

Since Hyperion uses specific access primitives to shared data (get and put ), we can use explicit checks to detect
if an object is present (i.e., has a copy) on the local node, thus by-passing the page-fault mechanism. If the object is
present, it is directly accessed, else the page containing the object is brought to the local cache. This scheme is used
by the j ava_i c protocol (where i ¢ stands for inline check). Alternatively the j ava_pf protocol uses page faults
to detect accesses to non-local objects (hence the pf suffix). Through the put access primitives, the modifications
can be recorded at the moment when they are carried out, with object-field granularity. All local modifications are
sent to the home node of the page by the main memory update primitive, called by the Hyperion run-time on exiting a
monitor.

4 Performance evaluation

We present the raw performance of our basic protocol primitives on four different platforms. The measurements were
first carried out on a cluster of 450 MHz PII nodes running Linux 2.2.13 interconnected by a Myrinet network using
the BIP and TCP protocols and by a Fast Ethernet network under TCP. Then, the same measurements were realized
on a cluster of PIl1 450 MHz nodes interconnected by a SCI network.

Table 3 reports the time (in us) taken by each step involved when a read fault occurs on a node, assuming that
the corresponding protocol is page-transfer based (which is the case for all built-in protocols, except for ni grat e_
t hr ead). First, the faulting instruction leads to a signal (page fault), which is caught by a handler that inspects the
page table to locate the page owner and then requests the page to this owner (request page). The request is processed
on the owner node and the required page is sent to the requester (page transfer). The time reported here corresponds
to a common 4 kB page. Finally, the protocol overhead includes the request processing time on the owner node and
the page installation on the requesting node.

As one can observe, the protocol overhead of DSM-PMZ2 is only up to 15% of the total access time, as most of the
time is spent with communication. The protocol overhead essentially consists in updating page table information and
setting the appropriate access rights.

In Table 4 we report the cost (in us) for processing a read fault assuming a thread-migration based implementation
of the consistency protocol. The protocol overhead is here insignificant (less than 1 us), since it merely consists of
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Operation BIP/Myrinet | TCP/Myrinet | TCP/Fast Ethernet | SISCI/SCI
Page fault 11 11 11 11
Request page 23 220 220 38
Page transfer 138 343 736 119
Protocol overhead 26 26 26 26

| Total (us) | 198 | 600 | 993 | 194 ]

Table 3: Processing a read-fault under page-migration policy: Performance analysis.

Operation BIP/Myrinet | TCP/Myrinet | TCP/Fast Ethernet | SISCI/SCI
Page fault 11 11 11 11
Thread migration 75 280 373 62
Protocol overhead 1 1 1 1

| Total (us) | 87 | 292 | 385 | 74 |

Table 4: Processing a read-fault under thread-migration policy: Performance analysis.
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Figure 4: Solving TSP for 14 cities with random inter-city distances: Comparison of 4 DSM protocols.

a call to the underlying runtime to migrate the thread to the owner node. In PM2, migrating a thread means moving
the thread stack and the thread descriptor to the destination node, possibly together with some private dynamically
allocated data (which is not the case in this example).

We can observe that this migration-based implementation outperforms the previous one, because thread migration
is very efficient. Note however, that this migration time is closely related to the stack size of the thread. In our test
program, the thread’s stack was very small (about 1 kB), which is typically the case in many applications, but not
in all applications. Thus, choosing between the implementation based on page transfer and the one based on thread
migration deserves careful attention. Moreover, it may depend on other criteria such as the number and the location
of the threads accessing the same page, and may be closely related to the load balance, as illustrated below. This is a
research topic we plan to investigate in the future.

To illustrate DSM-PM2’s ability to serve as an experimental platform for comparing consistency protocols, we
have run a program solving the Traveling Salesman Problem for 14 randomly placed cities, using one application
thread per node. Figure 4 presents run times for our 4 protocols implementing sequential and release consistency,
on the BIP/Myrinet platform. Given that the only shared variable intensively accessed in this program is the current
shortest path and that the accesses to this variable are always lock protected, the benefits of release consistency over
sequential consistency are not illustrated here. But we can still remark that all protocols based on page migration
perform better than the protocol using thread migration. This is essentially due to the fact that all computing threads
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Figure 5: Comparing the two protocols for Java consistency: page faults vs. in-line checks.

migrate to the node holding the shared variable, which thus gets overloaded. We could expect a better behavior for
this protocol with applications where shared data are evenly distributed across nodes and uniformly accessed.

To compare our two protocols for Java consistency, we have run a multithreaded Java program implementing a
branch-and-bound solution to the minimal-cost map-coloring problem, compiled with Hyperion [2]. The program
was run on a four-node cluster of 450 MHz Pentium Il processors running Linux 2.2.13, interconnected by a SCI
network using the SISCI API and solves the problem of coloring the twenty-nine eastern-most states in the USA using
four colors with different costs. Figure 5 clearly shows that the protocol using access detection based on page faults
(j ava_pf ) outperforms the protocol based on in-line checks for locality (j ava_i c). This is due to the intensive use
of objects in the program: remember that every get and put operation involves a check for locality inj ava_i c,
whereas this is not the case for accesses to local objects when using j ava_pf . The overhead of fault handling appears
to be significantly less important than the overhead due to checks, also thanks to a good distribution of the objects:
local objects are intensively used, remote accesses (generating faults for j ava_pf ) are not very frequent.

Of course, we are aware that the performance evaluation reported above can only be considered as preliminary. A
more complete analysis is necessary to study the behavior of the DSM-PM2 protocols with respect to different classes
of applications illustrating various sharing patterns, access patterns, synchronization methods, etc. This is part of our
current work.

Finally, we can mention that very precise post-mortem monitoring tools are available in the PM2 platform, pro-
viding the user with valuable information on the time spent within each elementary function. This feature proves very
helpful for understanding and improving protocol performance.

5 Conclusion

DSM-PM2 is a platform for designing, implementing and experimenting with multithreaded DSM consistency proto-
cols. It provides a generic toolbox which facilitates protocol design and allows for experimentation with alternative
protocols for a given consistency model. DSM-PM2 is portable across a wide range of cluster architectures, using
high-performance interconnection networks such as BIP/Myrinet, SISCI/SCI, VIA, as well as more traditional ones
such as TCP, and MPI. In this paper, we have illustrated its power by presenting different protocols implementing se-
quential consistency, release consistency and Java consistency, on top of different cluster architectures: BIP/Myrinet,
TCP/Myrinet, TCP/FastEthernet, SISCI/SCI.

DSM-PM2 is not just yet another multithreaded DSM library. It is aimed at exploring a new research direction,
namely providing the designers of such protocols with portable platforms to experiment with alternative designs, in
a generic, customizable environment, while providing tools for performance profiling, such as post-mortem analysis.
We are convinced that many interesting ideas in DSM protocols could be more easily experimented using such an
open platform: implementing everything from scratch is simply too hard! Also, such a platform enables competing
protocol designers to compare their protocols within a common environment, using common profiling tools. Switching
from one protocol to another, or switching from one communication library to another, can be done without changing
anything to the application. No re-compiling is even needed if all the necessary routines have been linked beforehand.
Finally, such a platform opens a large access to the area of co-design: indeed, the application and the protocol can then
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be designed and optimized together, instead of simply tuning the application on top of a fixed, existing protocol. This
idea seems of particular interest in the case of compilers targeting DSM libraries, as demonstrated by the Hyperion
Java compiler project reported above.

Currently, DSM-PM2 is operational on Linux 2.2.x and Solaris 6 or later. Extensive testing has been done on top of
SISCI/SCI, TCP/Myrinet and BIP/Myrinet. All the protocols mentioned in Table 2 are available and hybrid protocols
mixing thread migration and page replication can also be built out of library functions. We are currently working on
a more thorough performance evaluation using the SPLASH-2 [23] benchmarks, which will be helpful to guide an
efficient protocol use in applications.
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