N

N

Analyzing Automata with Presburger Arithmetic and
Uninterpreted Function Symbols
Vlad Rusu

» To cite this version:

Vlad Rusu. Analyzing Automata with Presburger Arithmetic and Uninterpreted Function Symbols.
[Research Report] RR-4100, INRIA. 2001. inria-00072531

HAL 1d: inria-00072531
https://inria.hal.science/inria-00072531
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00072531
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--4100--FR+ENG

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Analyzing Automata with Presburger Arithmetic
and Uninterpreted Function Symbols

Vlad Rusu, IRISA/INRIA Rennes

N°4100
Janvier 2001

THEME 1

apport
derecherche

% I N RIA

RENNES

Analyzing Automata with Presburger Arithmetic and
Uninterpreted Function Symbols

Vlad Rusu, IRISA/INRIA Rennes

Théme 1 — Réseaux et systémes
Projet PAMPA

Rapport de recherche n°4100 — Janvier 2001 — 16 pages

Abstract: We study a class of extended automata defined by guarded commands
over Presburger arithmetic with uninterpreted functions. On the theoretical side,
we show that the bounded reachability problem is decidable in this model. On the
practical side, the class is useful for modeling programs with potentially infinite
data structures, and the reachability procedure can be used for symbolic simulation,
testing, and verification.

Key-words: program modeling, simulation, testing, verification.

(Résumé : tsup)

Unité de recherche INRIA Rennes
IRISA, Campus universitaire de Beaulieu, 35042 RENNES Cedex (France)
Téléphone : 02 99 84 71 00 - International : +33 2 99 84 71 00
Télécopie : 0299 84 71 71 - International : +3329984 7171

Analyse d’automates étendus avec arithmetique de
Presburger et fonctions non interprétées

Résumé : Nous étudions une classe d’automates étendus, définis par des com-
mandes gardées exprimées en arithmetique de Presburger avec fonctions non inter-
prétées. Nous montrons que le problme d’accessibilité bornée est décidable dans
ce modeéle. En pratique, ce formalisme permet de modéliser des programmes avec
structures de données de taille potentiellement infinie, et la procédure d’accessibilité
peut étre utilisée pour la symulation symbolique, le test, et la vérification formelle.

Mots-clé : modélisation de programmes, simulation, test, vérification.

Analyzing Extended Automata 3

1 Introduction

Modern research in automated verification can be divided into two categories. In
the first category, which includes languages and tools such as SPIN [12], sMV [3] and
CADP [9], the focus is on using well-established techniques such as state enumeration
or binary decision diagrams, and pushing them to the limits by optimizing the algo-
rithms in every possible way. This has proven fruitful in terms of applications, and
it is a mark of success of these techniques, which for the most part were initiated in
the eighties and early nineties.

The second category of research is concerned with exploring new techniques,
whose impact for practical applications, although in quantitative progress, still has to
be assessed. Two representative examples for this category are Presburger arithmetic
[19] and the theory of uninterpreted functions with equality [1]. Unlike finite-state
methods, these relatively rich theories allow the modeling of real-life systems more
accurately, without the need of abrupt simplifications. These theories are decidable
(although their combination is not) and are efficiently implemented in state-of-the-art
verification tools such as Pvs [18] and Omega [15].

Motivated by these remarks, we investigate in this paper a class of extended
automata that consist of transitions over a finite control structure, with guards and
assignments in a decidable fragment of the theory of Presburger arithmetic with
uninterpreted functions. The formalism is expressive (e.g., one transition can modify
an unbounded number of function values). It can model quite naturally programs
with unbounded data structures such as parametric-sized vectors and arrays.

We show that reachability in a bounded number of steps is decidable in this
model. The result is interesting, in our opinion, because it gives a direct procedure
for symbolic simulation. The procedure computes the weakest constraints on a pro-
gram’s input data for a given finite sequence of transitions to be executed. Thus, we
obtain an automatic solution to the test input problem [16] from software testing:
given a finite path in a program, find whether it is executable, and if this is the case,
obtain input data for executing it. Then, given a coverage criterion [21] defined by
a finite set of finite paths in the program (e.g., executing every instruction at least
once, or checking each condition at least once), it is possible, using our procedure,
to select the paths that are executable and to synthesize input data for executing
them. This results in a complete coverage for the chosen coverage criterion. Finally,
symbolic analysis can also be used as a semi-decision procedure for verification of
safety properties: if a safety property does not hold, the procedure will detect this
in a finite number of steps.

RR n " 4100

4 Viad Rusu

The rest of the paper is organized as follows. In Section 2 we present the theory of
Presburger arithmetic with uninterpreted function symbols. In Section 3 we define a
class of extended automata (called PF-automata) with guards and assignments in a
decidable fragment of this theory. The initial condition may constrain an unbounded
number of function values, and assignments may modify an unbounded number of
such values. In Section 4 we present a decision procedure for the bounded reachability
problem in PF-automata, based on symbolic analysis techniques. The procedure is
implemented using the 1CS decision procedure package [7] from SRI International.
Section 5 presents conclusions, related work, and future work.

2 Background

In this section, we briefly describe the theory of Presburger arithmetic and its ex-
tension with uninterpreted function symbols.

2.1 Presburger Arithmetic

Let Z denote the set of integers, and V be a set of integer variables. A term is a finite,
affine combination on the variables. An inequality is a comparison (<,>,<,>, =)
between terms. A ground Presburger formula is a finite Boolean combination of
inequalities. A Presburger formula is a finite Boolean combination of inequalities,
in which some variables can be quantified. Thus, if z,y, z,u are variables, then
z+2y+1lisaterm, z <yAz+2y+1>0is a ground Presburger formula, and
Vz.x < y+zAJu.z+2y+u > yis a Presburger formula. Satisfiability in Presburger
arithmetic is decidable [19], with time complexity triple exponential in the size of
the formula [17] (but simple exponential in the ground fragment [2]).

2.2 Presburger Arithmetic with Uninterpreted Function Symbols

Let again V be a set of integer variables, and F' be a set of function symbols. For
each function f € F, we only know its arity (a natural number n), and the fact that
it is a function from Z" to Z. A term with function symbols is either a variable, or a
function application to a term, or an affine combination of those. Inequalities (resp.
ground Presburger formulas, resp. Presburger formulas) with function symbols are
defined as in Section 2.1, except that they are built over terms with function symbols.
Quantification over function symbols is not allowed. Thus, if z,y, z,u are variables
and f, g are functions of arity one, z + 2y + f(g(z)) is a term with function symbols,
z<yAz+2y+ f(g9(z)) > 0is a ground Presburger formula with function symbols,

INRIA

Analyzing Extended Automata 5

and Vz.z < y+f(g9(2))AJu.z+2y+ f(z) > g(u) is a Presburger formula with function
symbols. In the sequel, we denote by PF the theory of Presburger arithmetic with
function symbols. Satisfiability in PF is ¥1-complete [13], but decidable in the ground
fragment [22]. As we shall make use of the latter result, it is important to understand
why it holds.

2.2.1 Decidability of the ground and existential fragments.

Shostak [22] made the following simple observation. In a ground formula with unin-
terpreted function symbols, the only relevant property about functions is that they
map equals to equals, and, by instantiating this property to finitely many terms, it is
possible to obtain an equivalent Presburger arithmetic formula. Let ¢ be a formula
of the ground fragment of pPFr. For simplicity, we suppose that in ¢ there is only one
unary function symbol f, which is only applied to two terms, #; and t5. Then, ¢ is
satisfiable if and only if the following Presburger formula is satisfiable:

o plft1)/fr, f(t2)/fod At =12 D fL = f2) (1)

That is, in @, the function applications f(¢;) from ¢ are replaced by new integer
variables f;, and the general property that function f maps equals to equals is in-
stantiated to “equality of the terms ¢; implies equality of the variables f;”. There is
a one-to-one correspondence between the models of ¢ and those of ¢.

Consider now the existential fragment of PF (i.e., only existential quantifiers are
allowed, and under the scope of an even number of negations). Modulo a renaming
of variables, it is possible to move all quantifiers to the outermost level. Then, a
formula dz.p in this fragment has a model if and only if ¢ also has one. Indeed, if
there exists values of the functions and free variables that satisfy ¢, then the same
values satisfy dz.p, and if there exists a model for dz.¢, then this model, augmented
with the “witness” value of z for the existential quantifier, is a model for ¢. Thus, the
existential fragment of PF is decidable. This reasoning can be pushed even further:
a PF formula ¢ is satisfiable if and only if the formula 3f.p, where f is a function,
is satisfiable. Note that the latter formula is not in PF. We will use this result in
Section 4.

2.2.2 Dealing with universal formulas.

The universal fragment of PF consists of formulas in which only universal quantifiers
are allowed, under an even number of negations. This fragment is highly undecid-

RR n -~ 4100

6 Viad Rusu

able!. Yet, universal formulas are useful: for example, specifying a property of all
the elements of a parametric-sized vector requires a universal quantifier. In this sec-
tion, we define a class of universal PF formulas that are satisfiable, and show how
to decide satisfiability for combinations of ground and universal formulas. We use
these results in the next sections.

We say formula ¢ is an assignment to a function f if ¢ is of the form Vi.(e; D
f'(i) = e2), where e; is a ground PF formula over V U {i} U F (for some sets V of
variables and F of functions such that f’ ¢ F), and ez is a term of PF over the same
elements. Such formulas are satisfiable: for any values of the variables (including the
quantified variable i) and functions, if e; holds, then f’(7) can be chosen to be equal
to eq, otherwise, f’(i) may have any value.

We say formula 1 of PF is universally satisfiable if the universal closure of v -

the formula obtained from 1 by universally quantifying every variable of v - is
satisfiable. For example, it is not hard to show that assignments to functions are
universally satisfiable.
A formula of PF is semi-universal if it can be written as ¢ A 1, where ¢ is a ground
formula, and v is a universally satisfiable formula of the universal fragment of PF
with the property that each quantified variable is in the scope of a function symbol.
(Note that this is not a syntactical definition, because the conjunct v is required to
have a semantic property.)

The following lemma says that satisfiability of a semi-universal formula can be
reduced to satisfiability of a ground formula, by instantiating universal quantifiers
to finitely many terms.

Lemma 2.1 Satisfiability in the class of semi-universal formulas is decidable.

Proof. Let ¥ = ¢ A1) be a semi-universal formula. Without restricting the generality,
we can assume that there is only one function symbol f occurring in . Formula) is
then modified according to the following transformations: for every term in v of the
form f(t), where ¢ may be any term except a quantified variable, 1) is transformed into
the equivalent formula Vy.(y =t D 9(t/y)). Since we have started with a formula
where all quantified variables are in the scope of a function symbol, we obtain after

!To see this, note that for any PF formula of the form Vzi,...z,.Jy.p, it is possible to
skolemize y by replacing it with a new function symbol f, which gives the equivalent formula
Vzi,...Zn.0(y/f(z1,...2n)). Then, an arbitrary formula of PF can be translated into an equiva-
lent universal formula by first moving all quantifiers to the outermost level, and then skolemizing the
existentially quantified variables as shown above. In this way, the whole PF theory can be encoded
in its universal fragment. Thus, satisfiability in the universal fragment of PF is X!-complete.

INRIA

Analyzing Extended Automata 7

~

all these transformations a formula ¢ of the form Vzi....Vz,.4(f(21),-.., f(2a)),
where 1) is a ground PF formula, and f(z1),... , f(zn) are all the occurrences of f
in 1. Let f(t1),.-. , f(tm) be all the occurrences of f in ¢, where t1, ... t,, are terms.
Then, ¥ is equivalent to:

oN Nb(f(21),- o Flzm)) AV21, oz &t et b (f(21), - 5 fl20) (2)

21y 2n€{t1,.tm }

That is, formula) is split into two conjuncts: in the first one, the quantified variables
21, ... 2y are instantiated to every possible combination of the terms ¢1,... ,%,,, and
in the second one, the quantified variables z, ... z, are required to be different from
all these terms. Finally, we show that the satisfiability of Formula (2) is equivalent
to the satisfiability of its first two conjuncts, which constitute a ground PF formula,
whose satisfiability is decidable:

o(f(t)s-- Ftm) A N (25, F(20) (3)

21ye2m E{tl,...tm}

Indeed, any model of Formula (2) is also a model for (3). Conversely, suppose (3)
has a model, that is, values for the function f and the free variables appearing in (3).
Any such model constrains the value of f only at the positions defined by the values
of ¢t1,... ,tm. Thus, for every position ¢ different from these values, it is possible
to choose the value of f(i) freely. In particular, we choose these values as defined
by the value of f in some model of the universal closure of 1. (There exists such a
model because we have supposed 1 is universally satisfiable). We consider a model
of Formula (3) with f chosen as above, and show it is also a model of Formula (2).
By construction, the chosen values of f and of the free variables will satisfy the
first two conjuncts of Formula (2). These values also satisfy the third conjunct
Vzi,... 20 & {t1,. ..tm}.z[)(f(zl), ..., f(2zn)): since v is universally satisfiable, this
is also the case for the weaker formula Vz1, ... ,zn & {t1,---tm }-0(f(21)s--- 5 F(2zn)))-
Thus, the chosen value for f, together with any values for the free variables (in
particular, the ones chosen from the model of Formula (3)) will satisfy it. O

3 PF-automata

In this section we define the syntax and semantics of a class of extended automata
with guards and assignments in a fragment of Presburger arithmetic with uninter-
preted function symbols.

RR n~ 4100

8 Viad Rusu

Definition 3.1 (Pr-automaton) A pr-automaton is a tuple (Q,q°,V,F,0,T):
e (Q is a finite set of locations,

q° € Q is the initial location,

V is a finite set of integer variables,

F' is a finite set of unary function symbols,

e O is a semi-universal PF formula, called the initial condition,

Tis a finite set of transitions. Each transition is a tuple {q,7,v,¢,q') where

— g € Q s the origin of the transition,
— 7y is a ground PF formula, called the guard of the transition,

— v is a finite set of variable assignments. An assignment to variable v € V
is an expression of the form v' = r, where r is a term of PF over V and F.
For each variable v € V, there is in v at most one assignment to v,

— ¢ is a finite set of function assignments. An assignment to function f €
F is an expression of the form Vi.(e; D f'(i) = es), where ey, ey are
respectively a ground PF formula and a term of PF over VU {i} UF. For
each function f € F, there is in ¢ at most one assignment to f,

— ¢ is a location called the destination of the transition.

Note that the initial condition © is required to be a semi-universal formula. As
membership in this class is not decidable, other techniques (e.g., theorem proving)
may be needed to establish that a given structure is a PF-automaton. We expect that
PF-automata which model “real” programs will have rather simple initial conditions,
whose satisfiability is not hard to assess.

Figure 1 is an example of PF-automaton, which models the successive insertion
of all the elements of a vector g of size m into the sorted vector f of size n. The
initial location is lp, and the initial condition specifies that the vector f is sorted.
Variable j is used as a counter going over the elements of vector g. On the transition
from [y to 1, the function assignment to f specifies that all the elements of f that
are greater than g(j) are shuffled one position to the right. The function assignment
on the transition from [; to I specifies the insertion of the new element g(j) at the
correct position. Because f is sorted, this position is unique. Then, the size of f
grows by one, and the next element of g is processed.

INRIA

Analyzing Extended Automata 9

j=0An>0Am>0AVi(0<i<n—1D f(7) < fi + 1))

Vk.(1<k <nAf(k—1)>g()D f'(k) = f(k—1))

j<m VILO<I<nA(l>0f(l—1)<g(i)A(l<n> Fl) > g(f)

D () = 9(7)

Figure 1: Example of PF-automaton: Insertion in Sorted Vector

pPF-automata are useful for modeling programs with potentially unbounded data
structures such as files, buffers, and arrays of parametric size. In Definition 3.1, we
have assumed that the only basic type is integer, but most other types (Booleans,
enumerations, records, subranges) can be encoded using integers. The restriction
that there is at most one assignment for each variable and function application is
useful for avoiding semantic complications (i.e., situations where a function gets two
different values simultaneously). It can be dealt with in practice by introducing new
transitions to sequentialize the assignments. Also, the restriction that all functions
are unary is used to simplify semantic definitions.

3.0.3 Semantics of PF-automata.

A valuation is a mapping that assigns, to each free variable appearing in the au-
tomaton, a value in Z, and to each function symbol, a function from Z to Z. We
denote by V the set of all valuations. A state is a pair (g,v) consisting of a location
g € @ and a valuation v € V. Note that, for a PF-automaton with at least one
function symbol, there are uncountably many states. An initial state is a state of the
form (q°,v°) such that v* = ©, that is, the location is initial and the values of the
variables and functions satisfy the initial condition ©. The set of states is denoted
by S, and the set of initial states is denoted by S°. Each transition 7 € T defines a
transition relation o, C 8 X 8, in the following way. Intuitively, s and s’ are in the

RR n~4100

10 Viad Rusu

relation g, if the location of s (resp. of s') is the origin (resp. destination) of 7, and
the variables and functions in s satisfy the guard of 7. Moreover, the variables and
functions get new values according to the assignments of 7

Formally, for a PF formula ¢ and a valuation v € V, let @[v] be the truth value
of ¢ when the free variables and the function symbols of ¢ evaluate according to v.
For a term 7, we denote by r[v] the integer value obtained by evaluating variables
and function symbols according to v. We now define how valuations are modified
by assignments. According to Definition 3.1, these are of two kinds: assignments to
variables and assignments to functions. Let v/ € V be the valuation obtained from
v after an assignment, then, v’ is obtained in the following way. If the assignment
is of the form z' = r, where z is a variable, then v’ is the valuation such that for
all u € FU(V\ {z}), v"(u) = v(u), and v'(z) = r[v]. Otherwise, the assignment
is of the form Vi.(e1 D f'(i) = e2), where e; is a ground formula and e is a term,
both over the variables V' U {7} and functions F. Then, v’ is the valuation such that
for all u € VU (F \ {f}), v'(u) = v(u), and v'(f) is defined as follows: for any
i0 € Z, let e1[v,i /1] (resp. e2[v,i/ip]) denote the value of e; (resp. ez) when the free
variables V evaluate according to v, and 7 equals 9. Then, for any ig € Z such that
e1[v,/i0] holds, v'(f)(i0) = ez[v,i/i0], and v'(f)(i0) = v(f)(i0) otherwise. Finally,
for 7 = (q,7,v,$,q') a transition, we denote by v[v, ¢] the valuation obtained by
successively transforming v according to the assignments of 7. (Note that the order
in which this is done is not important, because there is at most one assignment
per variable or function symbol). Then, the transition relation o, of transition
T ={(q,7,v,¢,q') is the smallest relation defined by the following rule:

5,5 €8, 5= (g,0), 8 = (), o] = true, o/ = vl ¢
o- (s, 3’)

We denote by ¢ = |J,c7 or the transition relation of the PF-automaton. A run is
a sequence of states: p: sg,51...,8p such that s € S, and fori =0...n — 1,
0(si, si4+1) holds. The lengthof run p: sg,s1...,8, 18 n. A state s € S is reachable
in at most m steps if there exists a run of length n (n < m) whose last state is s.
The bounded reachability problem is: given a set of states 2 and an integer m, is
there a state s € Q0 which is reachable in at most m steps. In Section 4 we prove
that this problem is decidable for PF-automata.

INRIA

Analyzing Ertended Automata 11

4 Symbolic Analysis

For a transition 7 and an arbitrary predicate 9 on states, the predicate post, (1)
characterizes the states s’ that can be reached by taking transition 7 from some
state s satisfying ¢ :

post.(9): Ts.o,(s,s8) AI(s).

For a sequence of transitions ¢ : 7q,...,7, and a predicate ¥, the predicate
post (1) is defined as post,(9): post, (post, . (...post, (d))). In the sequel, we
identify sets of states with the formulas that characterize them, and let the set of
states (2 be a ground PF formula. Clearly, €2 is reachable in at most m steps if and
only if there exists a sequence ¢ of contiguous transitions, of length at most m, and
starting in the initial location, such that post,(S°) N Q # 0.

Since there are finitely many sequences of transitions up to a given length, it
is enough to show that, for any finite sequence o of contiguous transitions starting
in the initial location, the formula post,(S°%) A Q is in a class where satisfiability is
decidable. We show by induction on the length of o that post,(S°) is of the form
dzq,...zp3f1,... 1.0, where x1, ...z are variables, f1,... f; are functions, and ¥ is
a semi-universal formula (cf. Section 2.2). Thus, satisfiability of post, (S°) is reduced
to satisfiability of 4, which is decidable (cf. Lemma 2.1).

The base step is obvious: by Definition 3.1 of PF-automata, the initial condition ©
is a semi-universal formula, which is a particular case of the desired form.

For the inductive step, it is enough to show that, for any transition 7 = (g, v, v, ¢,q’)
of the PF-automaton and any formula ¥ of the form ¥ : dzq,...xx3f1,... fi.0
with ¢ a semi-universal formula, the formula post,.(¥) is of the same form. Without
restricting the generality, we assume that the Pr-automaton has only one function
symbol f, and that the function assignments ¢ of transition 7 consists of one element,
of the form Vi.(e; D f'(i) = e3). Let T denote the variables of the PF-automaton,
and v(Z) denote the effect of the variable assignments v on the variables. Then,
post. (V) can be written as the following formula over the next-state variables Z' and
next-state function f’:

post_(¥): 3f.37.(T = v(z) AV AVi.(e; D f'(i) = e2) AVi.(—ey D f'(1) = f(z))z |
4

By moving all the existential quantifiers in ¥ at the outermost level of the Formula
(4), we obtain that post,.(¥) is equivalent to the following formula:

3z, x4, ..., 2k 3f, fi,. - (T =v(z) A AVi(er D f (i) = ex) AVi.(—er D f'(i) = f(z))g |
5

RR n " 4100

12 Viad Rusu

What we still have to show is that the formula obtained from (5) after removing all
existential quantifiers is a semi-universal formula. By induction hypothesis, 9 is a
semi-universal formula. Thus, 9 = @ A1, where ¢ is a ground PF formula, and % is a
universally satisfiable formula of the universal fragment of PF (cf. Section 2.2). Hence,
it is possible to write the formula obtained from (5) after removing all existential
quantifiers, as the conjunction ¢’ A 4)’, where ¢’ : T =v(z) Ap, and ' : P A
Vi.(e1 D f'(i) = e2) AVi.(me1 D f'(i) = f(4)).

Clearly, ¢' is a ground pF formula, and 1’ is a universal pPr formula with the
property that all quantified variables are in the scope of a function symbol (cf.
Section 2.2). To complete the proof, we just have to show that 1’ is universally
satisfiable. By induction hypothesis, 1 is universally satisfiable, thus, in particular,
there exists a value of f such that, for any values of the variables z, 1 is satisfied.
Let the value of f’ be defined as follows: for all values of 4 and of the variables Z, if
e1 holds, then the value of f'(i) equals that of ey, otherwise the value of f/(7) equals
that of f(7). By adding the value of f’ to the model of the universal closure of 1, we
obtain a model for the universal closure of 1'. Hence, 1’ is universally satisfiable. O

Discussion.

The above proof shows that checking reachability in m steps involves checking sat-
isfiability of a semi-universal formula ¥ with m copies of each variable and function
symbol. This, in turn, involves instantiating every universal quantifier from the uni-
versal part of 4 to all the terms in its ground part (cf. Lemma 2.1). Finally, a decision
procedure for ground Presburger arithmetic with uninterpreted function symbols is
used to decide the resulting ground formula. We use the 1CS decision procedure
package from SRI International [7].

Preliminary results with our symbolic analysis prototype are encouraging: for
example, a symbolic simulation of a path of about ten thousand steps in a vector-
sorting algorithm was completed in about twenty hours. This means ten thousand
calls to the decision procedures for checking formulas with thousands of variables
and function applications. As optimizations in both 1CS and our prototype are still
being developed, we expect to be able in the future to perform symbolic simulation
on real-size programs and specifications.

Finally, it is worth noting that a simple extension of PF-automata which consists
in letting the guards be universal PF formulas, is too expressive for symbolic simula-
tion, as reachability even in one step becomes highly undecidable (cf. Section 2.2).

INRIA

Analyzing Extended Automata 13

5 Conclusion, Related Work, and Future Work

In search of new infinite-state models for which some verification problems are
still solvable, we investigate in this paper a class of extended automata, called
PF-automata, with guards and assignments in a decidable fragment of Presburger
arithmetic with uninterpreted function symbols. This formalism allows to model
quite naturally programs with unbounded data structures such as parametric-sized
vectors and arrays. The model is expressive: the initial condition may constrain an
unbounded number of function values, and assignments may modify an unbounded
number of such values. The latter can be seen as meta-transitions, which encode in
one step the execution of an unbounded number of transitions. We present a decision
procedure for the bounded reachability problem in this model. The procedure works
by symbolically simulating the initial states over finite sequences of transitions of
the automaton. It is implemented in caml and uses the 1CS decision procedures from
SRI International [7]. Symbolic simulation has a number of practical applications:

e it is a useful technique for understanding and debugging programs by interac-
tive execution,

e it can be employed for performing accurate structural testing: given a coverage
criterion, which is a finite set of finite paths in the program (as computed by,
e.g., a commercial tool [6]), our procedure computes input data for executing
those paths that are executable and discard those that are not, resulting in a
complete coverage for the chosen criterion,

e finally, symbolic analysis can also be used as a semi-decision procedure for
formal verification of safety properties: if a safety property does not hold, our
reachability procedure detects this, otherwise, it will loop forever.

Related Work.

The literature on the analysis of automata extended with integer variables is vast; see
[4] for new results and as an entry point. Concerning automata with uninterpreted
function symbols, a recent result [8] shows that simulation is decidable for certain
classes of such automata. The only results we are aware of about automata extended
with Presburger arithmetic and function symbols are reported in [15]. Here, the
Omega tool is used to analyze graphs whose edges are annotated by ground formulas
in this logic. A reachable operation computes an over-approximation of the reachable

RR n " 4100

14 Viad Rusu

states. The operation will work for graphs with either cycles or functions, but not
both.

The other main body of related work is structural testing. Most commercial
tools (e.g., [6]) can measure the coverage with respect to a given coverage criterion
for input data provided by the user. Moreover, the paths in the criterion are not
always executable. Research on synthesizing input data using symbolic simulation
was started in the seventies [20, 5] and has received renewed attention recently [11].
However, these techniques are currently limited to programs with scalar data types
(vectors and arrays are not treated). Some techniques for dealing with vectors and
arrays have been proposed [14, 10]. To our knowledge, our model, which allows
an unbounded number of values to be constrained by the initial condition and the
assignments, is among the most expressive for which symbolic simulation techniques
exist.

Future Work.

The main direction of future work consists in optimizing the prototype symbolic
analysis tool and adding new features to it, such as structural path computation for
several coverage criteria, dependency analysis of variables, and slicing. We are also
interested in using symbolic analysis techniques for obtaining coverage measures in
conformance testing.

Acknowledgments.

Thanks to Duncan Clarke, Philippe Darondeau, Thierry Jéron, and John Rushby for
useful comments and suggestions, and to Harald Ruess for help with ICs.

References

[1] W. Ackerman. Solvable Cases of the Decision Problem. North-Holland
Publishing Company, Amsterdam, 1954.

[2] W. Bledsoe. A new method for proving certain Presburger formulas.
In 4th International Joint Conference on Artificial Intelligence, Thilissi
(USSR), pp 15-21.

[3] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill and J. Hwang. Sym-
bolic model checking: 10%° states and beyond. Information and Com-
putation, 98(2):142-170, 1992.

INRIA

Analyzing Extended Automata 15

[4]

[5]

[6]

[7]

18]

[9]

[10]

[11]

[12]

[13]

[14]

RR n " 4100

T. Bultan, R. Gerber, and W. Pugh. Model checking concurrent system-
s with unbounded integer variables: symbolic representations, approxi-
mations, and experimental results. ACM Transactions on Programming
Languages and Systems, 21(4): 747-789, 1999.

L.A. Clarke. A system to generate test data and symbolically execute
programs. IEEE Transactions on Software Engineering, 2(3): 215-22,
1976.

S. Cornett. Code coverage analysis. Available at
www.bullseye.com/coverage.html

D. Cyrluk, P. Lincoln, and N. Shankar. On Shostak’s decision procedure
for combinations of theories. Computer-Aided Deduction, CADE ’96,
LNAT 1104, pp 463-477, 1996.

W. Damm, A. Pnueli and S. Ruah. Herbrand automata for hardware
verification. Conference on Concurrency Theory (CONCUR’98), LNCS
1466, pp 67-83, 1998.

J-C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, and
M. Sighireanu CADP: A protocol validation and verification toolbox.
Computer-Aided Verification, CAV’96, LNCS 1102, pp 437-440, 1996.

A. Goldberg, T.-C. Wang, and D. Zimmerman Applications of feasible
path analysis to program testing. International Symposium on Software

Testing and Analysis, ISSTA’94, pp 80-94, 1994.

E. Gunter and D. Peled. Path exploration tool. Tools and Algorithms
for the Construction and Analysis of Systems, TACAS’99, LNCS 1579,
pp 405-479.

G.J. Holzmann. Design and Validation of Communication Protocols.

Prentice Hall, 1991.

J. Halpern. Presburger arithmetic with uninterpreted function symbols
is ITI1-complete. Journal of Symbolic Logic, 56:637-642, 1991.

R. Jasper, M. Brennan, K. Williamson, and D. Zimmerman. Test data
generation using feasible path analysis. International Symposium on

Software Testing and Analysis ISSTA’94, pp 95-107, 1994.

16

Viad Rusu

[15]

[20]

[21]

[22]

W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpiesman, and
D. Wonnacott. The Omega library interface guide. Available at
www.cs.umd.edu/projects/omega.

G. J. Myers. The Art of Software Testing. John Wiley and Sons, 1979.

D. Oppen. A 92*" upper bound on the complexity of Presburger arith-
metic. Journal of Computer and System Sciences, 16(3):323-332, 1978.

S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal verification
for fault-tolerant architectures: prolegomena to the design of PVS. IEEE
Transactions on Software Engineering, 21(2):107-125, 1995.

M. Presburger. Uber die Vollstéindigkeit eines gewissen Systems der
Arithmetik ganzer Z&hlen in Welchem die Addition als einzige Opera-
tion hervortritt. Sprawozdanie z I Kongresu Matematykow Krajow S-
lowcanskich Warszawa, Poland, 1929, pp 92-101.

C. Ramomoorthy, S. Ho, and W. Chen. On the automated genera-
tion of program test data. IEEE Transactions on Software Engineering,
2(4):293-300, 1976.

S. Rapps and E. Weyuker. Selecting software test data using data flow
information. IEEE Transactions on Software Engineering, 11(4):367—
375, 1985.

R. Shostak. A practical decision procedure for arithmetic with uninter-
preted function symbols. Journal of the ACM, 26(2):351-360, 1979.

INRIA

/<

Unité de recherche INRIA Lorraine, Technopdle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unité de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité de recherche INRIA Rhéne-Alpes, 655, avenue de I’Europe, 38330 MONTBONNOT ST MARTIN
Unité de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
http://www.inria.fr
ISSN 0249-6399

