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Traitement numérique de conditions aux limites défectives
pour les équations de Navier-Stokes

Résumé : On présente une formulation des équations de Navier-Stokes avec des conditions aux
limites portant sur des quantités moyennes. En particulier, on considére le cas ou on impose
le flux de masse sur plusieurs portions de la frontiére du domaine. Cette méthodologie trouve
une application dans la simulation numérique des écoulements sanguins, oil seules des quantités
moyennes sont généralement disponibles en entrée et en sortie du domaine de calcul.

Mots-clés : équations de Navier-Stokes, conditions aux limites sur le flux, conditions aux limites
sur la pression, multiplicateurs de Lagrange
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Introduction

A necessary condition for the existence of the solution of the incompressible Navier-Stokes equa-
tions on a bounded domain 2 is that an appropriate set of boundary conditions is imposed on
O0. In a classical setting, at each point on the boundary one needs a number of conditions equal
to the spatial dimension of the problem. Typically, one can prescribe the components of the ve-
locity (Dirichlet boundary condition) or those of the Cauchy normal stress (Neumann boundary
condition), or an appropriate combination of velocity and normal stress.

In this work, we will consider the rather different situation occurring when one has at disposal only
a limited data set of boundary conditions, a-priori insufficient to “close” the differential problem
at hand. We will refer to this incomplete set as defective boundary conditions. An example
where this situation occurs is the simulation of blood flow in an artery, where measurements are
normally able to provide only averaged velocity or pressure data at the upstream and downstream
sections, and not complete fields as it would be required for the numerical computations. A similar
situation occurs when one wants to simulate the cardiovascular system by multiscale approaches
such those proposed in [5] and [3]. In that case, the boundary data for the Navier-Stokes equations
do not come from real measurement but rather as the output of simplified models of the global
cardiovascular system. These simple models, which are typically based on the solution of either
a system of ordinary differential equations or of one-dimensional differential problems, normally
provide the evolution of mean pressure and velocity inside the various regions of the cardiovascular
system. If we want to use them to feed boundary data to a more detailed local model based on
the solution of the Navier-Stokes equations, we need to have a way to “translate” these mean
quantities in mathematically sound boundary conditions for the Navier-Stokes problem. This
issue has been addressed in the cited references. An other interesting application of the technique
is in the simulation of a free interface problem, when one wants to assure that the numerical
approximation satisfies mass conservation. An example of a problem of this type is presented in
the section dedicated to numerical experiments.

A possible approach is provided by the so called do-nothing boundary conditions proposed in [7].
In this paper we analyse another, somehow more flexible, alternative based on the use of Lagrange
multipliers.

In the first section we address the problem in general terms and we introduce the functional
setting for the analysis. We also give an overview of the do-nothing approach applied to problems
where either an average mass flux or an average normal stress is imposed on a portion of the
computational domain boundary. In Section 2 we introduce the alternative formulation given by a
Lagrange multiplier approach and carry out its analysis. In Section 3 we propose several solution
algorithms that are suitable for its implementation in the context of the solution of the Navier-
Stokes equations by algebraic fractional step techniques. Finally, section 4 presents numerical
results illustrating the effectiveness of the proposed methodology.

1 Problem formulation and defective boundary conditions

Let Q be a bounded domain of R¢, d = 2 or 3, whose boundary 9 is decomposed into the union
of T and several disjoint sections Sp, Si,-..,Sn, n > 1 (see Figure 1).
We are interested in solving the Navier-Stokes equations in 2

ou+u-Vu+Vp—vAu = £, >0
divu = 0, t>0 (1)
u = ug, t=0,

supplemented by homogeneous boundary conditions on T,
11|r =0, (2)

while two different kinds of boundary conditions will be considered on the sections S;, i =0, ... ,n.
Both are well suited for blood flow simulations [12, 3], where Q would represent the portion of an
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Figure 1: The partition of the boundary of the domain €.

S

artery, I' the vessel wall and S; the artificial upstream and downstream sections. Even if for this
specific problem the vessel wall should be considered moving with time because of the flexibility
of the vessel wall structure, here we will address only the case where I is fixed.

The first condition we consider is the so-called prescribed mean pressure problem which requires
that

1

méipdS:Pi, l=0,...,n, (3)

where each P; is a prescribed function of the time ¢, constant on S;.
The second condition we wish to address is the prescribed fluxz problem

/u-nds=Q,~, fori=0,...,n, 4)
Si

where the @;’s are assigned functions of time. Due to the incompressibility of the fluid, a compat-
ibility relation must exist among the fluxes @;, namely Qo must be equal to —>"1 | Q;.

The initial-boundary value problem (1)-(2) with either (3) or (4) is not well-posed from a physical
point of view, since its solution is not unique. Indeed, on every section S;, we are prescribing just
one scalar condition rather than d conditions at every point x € S;, as it should be.

In [7] the do-nothing approach was advocated as a way of solving the two situations just presented.
By this technique, a particular weak formulation is devised which allows to fulfill conditions (3)
(resp. (4)) at some extent, giving rise to a well-posed problem. In fact, this formulation contains
also “implicit” (Neumann-like) boundary conditions which select one particular solution among all
the physical solutions of the original differential problem.

We will here give a brief presentation of this approach. Let us introduce the functional spaces

V= {ve [HY()]%,vir :o} and M = L*Q).

We suppose that f € V' and we introduce the functional ¢; € V', i =0, ...,n which measures the
flux of a vector function through the surface S;. Precisely

<¢>i,v>=/ v-nds, VveY,
Si

where n is the outward unit normal vector on 9. For this reason ¢; is called the fluz functional
on S;.

Then, the “do-nothing” formulation for the pressure drop problem reads : find u € V and p € M
such that, for all ve V and ¢ € M,

(Opu+u-Vu,v) +v(Vu,Vv) — (p,divv) = <f,v> —ZPi < @i, v >, (5)
i=0

(g,divu) 0,

INRIA
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for all t > 0, with u = ug for ¢t = 0.
It follows easily, by using the Green formula, that the solution of (5) satisfies

_ V@un ou,
P on on
where we have set u,, = u-n and u, = u — u,n.
Thus

=P,

s; Si=0’ fori=0,...,n,

1 v Oouy,

meas(S;) ‘/Si pds =P+ meas(S;) /s, On ds- (©)

We conclude that the desired condition (3) is recovered exactly only in those cases where the last
integral in (6) vanishes. This occurs, for instance, when S; is a plane section perpendicular to a
cylindrical pipe. Otherwise, P; will be the mean value of the normal component of the normal
stresses on S;.
For the prescribed flux problem, the “do-nothing” approach is formulated as follows. Let us intro-
duce the space

V¥={veV,<¢;,v>=0,i=0,...,n},

and the vector functions b; € V, i =1,... ,n (called fluz-carriers) that satisfy:
divb; =0, / b; -nds = —1, / b; -nds =4d;;, fori,j=1,...,n.
So S;

The weak formulation of problem (1), (2), (4) proposed in [7] reads:
findu=w+) ., Q;b;, with w € V* and p € M \ R such that for all ve€ V* and g € M

(Opu+u-Vu,v) +v(Vu,Vv) — (p,divv) = 0, 7
(¢, divi) = 0, Q

for all t > 0, with u = ug for ¢t = 0.
The corresponding solution satisfies:

Oun _ ou, .
(p_V%)LSi_PZ 8—1’1|Si_0’ fOI‘Z—O,...,TL, (8)

where the P;’s are a priori unknown constants (in space).

The formulation of the prescribed pressure drop problem may be easily discretised as it can be
regarded as a classical Navier-Stokes problem with Neumann boundary conditions. On the other
hand, the definition of the functional space V* makes the implementation of the prescribed flux
problem less straightforward.

2 A Lagrange multipliers approach for flux boundary condi-
tions
In this section, we propose a slightly different formulation of the prescribed flux problem presented

above. We consider (1) and (2) and we prescribe the flux on all but one section of 9. More
precisely, we aim at satisfying

<¢,~,u>=/ u-nds=Q;, fori=1,...,n, (9)
S.

i

plus the following homogeneous Neumann boundary condition on Sy

b
pr on

5 =0 (10)
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The motivation of such an approach will be clarified in Remark 2.2.

Our goal is to formulate the initial-boundary value problem (1), (2), (9), (10) in a way that its
numerical approximation be as simple as possible to implement. We look for u € V, p € M and
Al,---5An € R such that, for allve V and g e M,

(O +u- Vu,v) + 0(Va, V) + 3 X < 63, v > = (p,div) =<f,v >,

i=1 11
(g,divu) =0, )
<¢i7u>= Qia 1= 17"7”7

for all t > 0, with u = ug for t = 0.
Note that now the test functions v are taken in V', a space which is more straightforward to
discretise than V*.

Proposition 1
Any smooth solution of (11) satisfies the additional boundary conditions

Oun ou, .
— =\ —— g = =1,---n. 12
(p v ) si=X, and STl =0, i=1--n (12)
: . Ou, Oup . .
In particular, this yields that both and p—v—— are indeed constant over S; fori =1,--- n.

n
Furthermore, (u,p) satisfies (1), (2), (9), (10).

Proof.
Conditions (2) and (9) are obviously satisfied. Integrating by parts the first equation of (11) yields
for any veV

<3tu+u-Vu—1/Au+Vp,v>+/ (l/a—u—pn)-vds
So 61’1 (13)

- Ou
+;/Si(u%—pn+)\in)-vds = <f,v>.

Now taking v € D(f2), we recover the momentum equation (1) in the sense of D'(2). Consequently,
from (13), it follows that

/SO(V%—pn)-vds+izzl/&(ug—z—pn+)\,~n)-vds:0.

for all v € V. Using now the splitting of the trace of u on 9 in its normal and tangential
component u|sg = upn + u,, we deduce relations (10) and (12).

¢

Remark 2.1 Among all possible solutions of (1), (2), (9), (10), problem (11) selects the one that
satisfies the additional boundary condition (12).

Remark 2.2 In (11), we could have imposed a flux Q¢ on Sy, instead of the homogeneous Neu-
mann condition (10). The corresponding problem would have been: find u € V, p € M and
Ao, A1, -- -, An € R such that, for all ve V and g € M,

(O +u- Vu,v) + p(Va, V) + 3 X < ¢, v > = (p,divy) =<f,v >,

=0 (14)
(¢, divu) = 0,
<¢i7u>= Qia iZO,..,TL,

INRIA



Numerical treatment of defective boundary conditions for the Navier-Stokes equations 7

for all t > 0, with u = ug for ¢t = 0.

Due to the incompressibility of the fluid, the value of Qo must be equal to — > | Q; (otherwise
the problem has no solution). If (u,, Ao, A1, ..., An) is a solution of (14), then, for any constant
CeR, (0,p+C,h+C, A +C,...,\+C) is also a solution. The solution of (14) is thus defined
up to an additive constant. Now, we set this constant C' equal to —)o, and we denote p + C and
Xi +C by p and \;. Then, (u,p, A1, ..., \,) is the solution of (11) and, according to the “implicit”
boundary condition (12), A9 = 0 yields nothing but the Neumann boundary condition (10). In
other words, problem (11) (with Neumann condition on Sy) and (14) (with flux condition on Sp)
are equivalent as soon as the “free” constant of problem (14) is well chosen.

Remark 2.3 From a theoretical viewpoint, our approach is very close to the do-nothing formu-
lation recalled in the previous section. Comparing (8) and (12), we may note that the Lagrange
multipliers corresponding to the constraints on the flux are in fact equal to the “a priori unknown”
constants of the do-nothing formulation (8). Yet, our approach uses a standard functional space
V which can be more straightforwardly discretised than the space V*.

Now, for the sake of simplicity, we restrict ourselves to the analysis of the stationary Stokes
problem (which embodies however all relevant difficulties of our Lagrange multiplier approach) :
find (u,p, A\1,...,A\n) €V x M x R*, such that, V(v,q) € V x M

V(Vu,VV)%—ZA,-<q§,~,v>—(p,divv) = <f,v>,
=1 (15)
(g, diva) = 0,
<g¢p,u> = @4 i=1,.,n.

The extension of the analysis to the complete time-dependent, nonlinear problem (11) can then
be carried out by usual techniques (see, e.g. [15, 6, 13]).

Proposition 2
Problem (15) is well-posed.

Proof.
In order to prove existence, let us denote by (@1,p) € V x M the solution of
v(Va,Vv) — (p,divv) = <f,v> (16)
(g,diva) = 0,

for all (v,q) € V x M. This is the weak formulation of the Stokes problem with homogeneous
Dirichlet conditions on I' and homogeneous Neumann conditions on 92 \ T".

Moreover, for i = 1,... ,n, let (w;,m;) € V x M be the solution of the problem
I/(VW,', VV) - (Wi,diVV) = —< ¢i7v > (17)
(qa div wl) = 0)

for all (v,q) € V x M.

Both systems (16) and (17) admit a unique solution. Note that the equations satisfied by (i, p)
are the unconstrained counterpart of (15) and that the solution (w;, ;) of (17) depends only on
the geometry and not on the data of the Stokes problem. In some sense, the functions w; are
related to the fluz carriers b; introduced in the do-nothing formulation (7).

We set, then, u =10+, \sw; and p=p+ y . ; Aim. No matter how the A;, i =1,... ,n, are
chosen, (u,p) satisfies the first two equations of (15). If we further require u to satisfy the third
equation of (15), we obtain the following equations

n
<>+ N <¢iwi>=Qi, i=1,...,n,
=1

RR n° 4093
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whose compact form reads
BA=Q-Q (18)

WhereQ:(Qla"'aQn)ERna Q:(<¢17ﬁ>a"'7<¢naﬁ>)€Rna A:(/\la"-a)\n)eRn
and B € R**", B;; =< ¢;,w; >. The matrix B is non singular (as it will be proven in Lemma
2.1), thus, once the {\;} are computed through relation (18), (u,p, \1,...,\,) will provide a
solution of (15).

To prove uniqueness, let (uy,p1, ,\51), R )\%1)) and (ug, pa, ,\§2), R A$L2)) be two solutions of (15).
Then

v(V(w —13), Vv) + 3 (A = A?P) < 6i,v > = (o1 — po, divy) =0,
=1

(q,div (u; —u3)) =0, (19)
< ¢pj,u; —ug >=0, 1=1,.,n.

forallve Vand ge M.
Taking v = u; — up in (19) we obtain v||V(u; — u2)||r2(@) = 0, whence u; = uz a.e. in Q.
Consequently,

n

ST AP < 6i,v > —(p1 —p2,divv) =0,  VveV. (20)
i=1
For all i = 1,... ,n we can construct w; € V which satisfy

divw; =0, W,’|Sj =0,j=1,...,n, j#4i and < ¢i,w; >=1.

Note that < ¢o,w; >=—1foralli=1,... ,n.
Taking in (20) v = w; we obtain

AV AP vi=1,.
Finally, choosing z € V' such that
divz = p; — po, zls, =0Vi=1,...,n,

(such a function exists, see e.g. [6, 9]) and taking v = z in (20), we obtain [|p1 — p2||z2() = 0.
Henceforth p; = py a.e. in Q. $

Lemma 2.1 The matriz B introduced in (18) is non singular.

Proof. Given an arbitrary vector & € R”, for any ¢ = 1,... ,n we can multiply each problem (17)
by «; and sum from i = 1 to n. Owing to the linearity of (17) we have

v(3i, aiVw;, Vv) — (30, agmi, divv) + >0 o < ¢y, v >
(g,div Y27 a;wy)

|
o

(21)

I
o

Now taking in v =) 7 | a;w;, we obtain

o7 (B

2

n n
+ Zai < ¢i,Zajwj >=0,
L2(Q) i=1 j=1

INRIA
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which implies, for all @ € R, o # 0,

a’Ba = —I/HV (Z aiwi) |
i=1

In the last relation we have used the Poincaré inequality

/v2 ng/ Vv, Vv e V.
Q Q

From (22) we infer that B is negative definite and then non-singular. ¢

2 v 2

<
2 — 14+Cp

n
E a;W;
i=1

H(€)

Remark 2.4 Let us point out a difficulty that may be encountered if one wants to impose on
the sections S; a mean value P € R for the pressure (or, for the normal stresses) by following a
route similar to that presented for the mass flux (the case where one wants to impose a pointwise
value for the pressure on the boundary for the Stokes problem has been analysed in [1]). For the
sake of simplicity, we restrict ourselves to the Stokes problem. A possible formulation is: find
(u,p) € V. x M and Ag,...,A, € R such that, V(v,q) € V x M,

v(Vu,Vv) + (Vp,v) = <f,v>,
(Vg,u) _;)\i/iqu = 0, (23)

/pds = P,meas(S;), ¢=0,...,n.
S.

i

This formulation is, in some sense, the dual of the flux formulation as it imposes constraints on the
dual problem (the pressure equation), whereas the flux boundary conditions yields a constraint
on the primal problem (the velocity equations). Therefore, it can be regarded as the natural
counterpart of our formulation for the flux problem. Unfortunately, it may be recognised that
from (23) it follows that u-n|g, = A; on each S;, whereas u- n|g, cannot be a constant different
from 0 (since we assume no-slip boundary conditions on T'). This formulation is therefore not
well-suited for the problem in which we are interested. Nevertheless, it may be adopted in those
cases where a slip boundary condition is imposed on the wall. In this case system (23) will
effectively impose a mean value for p, thus differing from the do-nothing approach (5) which is
instead equivalent to impose the much stronger condition (6).

3 The numerical solution of the Lagrange multipliers prob-
lem

In order to discretise formulation (15), we introduce a Galerkin approximation based on the finite
dimensional spaces V, C V and M), C M, which we assume to satisfy the well-known LBB
condition

Vgn € My 3vp € Vi, vip #0 = (qn,divve) > Baullanllr2|[vall mr- (24)

Let (up,pp, Aih,-- -, Ann) be the solution of the discrete problem. We denote by (u;);=1..an (resp.
(pi)i=1..m) the components of uy (resp. pp) with respect to a basis {v;} of V}, (resp. {g;} of
My). Finally, we introduce the vectors U = (uy,..,uqn) € R, P = (p1,..,pp) € RM and
A= ans- - Anp) € BT

Then the discrete counterpart of (15) gives rise to the following algebraic system of equations

AU +DTP+dTA = F,
DU = 0, (25)
U = Q,

RR n° 4093



10 L. Formaggia, J.-F. Gerbeau, F. Nobile, A. Quarteroni

where A € RIV*IN g the stiffness matrix, D € RM*4N is the matrix associated to the diver-
gence operator and @ is the n x dN matrix whose lines are given by the vectors ¢; = (/. 5 V1-

nds,..., [ van -nds), i=1,... ,n.

Proposition 3
System (25) admits a unique solution.

Proof. The proof of the existence of the discrete solution (up, pp, Ain, ¢ = 1,--- ,n) as well as that
of the uniqueness of u;, and of the A\;; follows the same lines of Proposition 2, by substituting V
and M by their discrete counterpart. The uniqueness of py, is assured by condition (24). ¢

If we discretise in time the Navier-Stokes system (11) by, for instance, a semi-implicit Euler scheme,
and then in space by the finite element method, we will produce an algebraic system analogous to
(25), where the matrix A is now given by

1
A=—-—M+B+K
5 + 5+

&t being the time-step, M and B the mass and advection matrices and K the stiffness matrix.
Here and in the following it is assumed that the matrix A is positive definite, which is always the
case if 6t is chosen appropriately.

3.1 Solution algorithms

Here, we present and analyse four possible algorithms which may be adopted for the solution of
system (25) and which are computationally more efficient than solving simultaneously for U, P
and A.

1. Solution of additional Stokes problems

If one wishes to introduce the proposed approach on a Navier-Stokes solver with as little mod-
ifications as possible to an existing code for Navier-Stokes equations with “classical” boundary
conditions, a possibility is to follow the constructive proof of Proposition 2. As we have seen,
the solution of the constrained problem can be obtained by combining the solutions of n + 1
unconstrained Stokes problems, given by (16) and (17). In particular, for a fixed geometry, the
n solutions w;, 2 = 1,... ,n of problem (17) can be computed only once, so that the additional
computational cost at each time step is just that of the solution of (16). The drawback is that the
memory requirement to store the w; may become prohibitive particularly in a 3D computation
and with a large number of Lagrange multipliers.

2. Schur complement + Iterative Solver

An alternative algorithm is based on using an iterative solution of a Schur complement system.
We rewrite (25) in the form

s T [X]_[G

5 50 =1 &

where & = [®,0] € R**(@N+M) ' X — [17, P|T, G = [F,0]T. The matrix

A DT
=lp %]

has a standard Stokes form and, since the two discrete spaces V}, and M, satisfy the LBB condition
(24), S is non singular (see, e.g. [13, 2]). We can then eliminate the unknown X from (26),
obtaining

35 18TA=357'G - Q, (27)

INRIA
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which can be solved by an appropriate iterative method. Any matrix-vector multiplication will
imply the solution of a Stokes problem with homogeneous Neumann conditions on the sections S;.
If A is symmetric, then R = ®S~1®7 is symmetric and positive definite (see Proposition 4 below).
Consequently, the Conjugate Gradient (CG) algorithm may be used, which will converge to the
exact solution in n iterations, being n the number of Lagrange multipliers (which coincides with
the number of boundary sections S; minus one). For instance, in the case of just one Lagrange
multiplier, one iteration of the CG algorithm suffices to obtain the solution (note that in this case
the linear system (27) reduces to just one scalar equation).

Remark 3.1 The computational cost of the procedure depends on the number of matrix-vector
multiplications required for every iteration of the chosen iterative solver and on the number of
iterations necessary for convergence. For each matrix-vector multiplication we need to solve a
Stokes problem. In the case of the CG algorithm, it is known that it converges to the exact
solution in n steps. In addition, two extra Stokes problems have to be solved to obtain the initial
residual (required to start up the procedure) and the final solution X . Therefore, if CG is adopted
the computational cost would be equal to the solution of n + 2 Stokes problems (at each time
step), which is higher than that of Procedure 1. On the other hand, there is no need to store
intermediate solutions.

Proposition 4 3
The matrix R = ®S~1®” is positive semidefinite; moreover, if A is symmetric then R is symmetric
and positive definite.

Proof. System (26) (which is equivalent to system (25)) admits a unique solution, as shown in
Proposition 3. Then, we have necessarily that ker(®?) = {0}.

The matrix
g% — A DT
“|-D 0

is positive semidefinite (see e.g. [13]), thus S** and R* = ®S* &7 are also positive semidefinite.
On the other hand, S = PS*, where
I 0
r=p 4

R=35"'1¢T = $(Ps*) '¢T = $5* ' P®T = $5* ' $T = R*.

is such that P~! = P. Then,

We conclude that also R is positive semidefinite. Moreover, if A is symmetric, R turns out to be
symmetric, positive semidefinite and non-singular, so it is also positive definite.

In the case where there is just one Lagrange multiplier (which occurs whenever we have just one
input section and one output section), the CG algorithm reads as follows :
given Ag € R,

(1) SX; =G —8T)
(i4) ro=®X; — Q
0 SX, = &7
2 2
(Z’U) A=X + 7:0 ro = Ao + ~T0
ro®Xo 2
(v) SX =G -3Tx

Since in this case the CG method converges in one iteration, A and X are the solutions of (26).
This algorithm requires the solution of 3 Stokes problems at steps (¢), (ii7) and (v).
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Remark 3.2 By a closer inspection, it can be noted that by taking Ao = 0, the CG algorithm
just presented effectively reduces to procedure 1.

3. Reordering + fractional step I

We recall that any Stokes system of the form
b %11l = Lo
D 0]||P 0
can be solved exactly by the following three step algorithm :
(i) AUy =F,
(ii) DA'DTP = DU,
(i) U =Uy — A71DTP.

Let HY and H® denote two suitable approximations of A~!. We can write an approximate
factorization scheme as

(i) AUy =F,
(ii) DHODT P = DU,,
(iii) U = Uy — HPDTP,

In this way we can recover many projection or quasi-compressibility methods for the Navier-Stokes
equations (see [10, 14]). In particular, we will focus on the Yosida projection scheme ([11]) which
consists in adopting H(*) = §tM ! (while no approximation is made in step (iii), i.e. H?) = A~1),
and on the algebraic version of the Chorin-Temam scheme in which we have HV) = H®) = §tM !
[14].

System (25) can be reordered in a Stokes-like form as

A DT [U F
5 %)=l @)
where
;_[A @f (dN+n) x (dN+n) ~ Mx(dN+n)
A=13 o|€R , D=[D 0]eR ,
rr o U dN+n o F dN+n
o= [7] emove F=[f] en

We can then write an approximate factorisation scheme as follows.
(i) AUy = F
Since A is positive definite and ker(®”) = @, A is non singular too and this system admits
a unique solution. In particular, we have ®Uy = Q.

(i) DHYDTP = DU,.
(iii) U = Uy — HODTP

where now H®) and H® are possible approximations of A~!.

INRIA
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We are now in the same setting of factorization schemes for the Stokes problem. We will then

use the term Yosida scheme when A1 is approximated only in step (ii), while a scheme where
H® = A £ A1 will be called a Chorin-Temam scheme.

We now detail a possible way to approximate A~1. Firstly, we note that if we write H(®) in the
following block form

go - |2 o HY
- H(l) H(l) ’
21 22

step (i4) of the algorithm is equivalent to
DHYDTP = DU,

where just the first diagonal block of HV) is actually involved in the computation. Therefore, we
only need to look for and approximation Hl(}) of the corresponding term C'; of the following block
decomposition of A~!

i-l= [Cn 012] ‘

Co1 Ca
The term C4; is equal to
Ci=A"(I-3"V'®A™"), whereV =3A""'3".
A natural approximation of Cy; is then

HY =6tM~" (I = 6t0TV, L @MY, Vippr = 6t0M 107, (29)

appr

and in particular we have H 1(1) = C11+0(8t%). The matrix Vypp, is an nxn matrix. In general, the
number n of Lagrange multipliers is very small so that V;p,, can be easily inverted. Furthermore,
if the lumped form of the mass matrix is used, Vg, is diagonal. In the case of just one Lagrange
multiplier, Vi, reduces to a scalar.

The Yosida scheme becomes then
(i) Al = F,
(ii) DHYDTP = DU, and
(iii) AU = AU, — DTP

We observe that, in this case, we recover exactly the constraints on the fluxes. Indeed, step (i)
implies in particular ®U = ®Uy = Q.
In the Chorin-Temam case, we note that step (i4¢) is equivalent to

U=0U,-HVDTP, (30)
A=Ay — HYDTP. (31)

Since we are only interested in the velocity field, we can neglect equations (31) and we need only
to compute the block Hl(}) as in (29). The algebraic Chorin-Temam scheme becomes then:

(i) AUy = F,
(i) DHYDTP = DU, and

(iii) U = Uy — HVDTP
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We observe that, also in this case, the constraints on the fluxes are recovered exactly. Indeed, by
multiplying step (ii¢) by ® we have
U = U, — PHVDTP
= ®Up — (StOM * — 6tVoppr Vb, ®M 1) DTP = 3V, = Q

appr

4. Reordering + fractional step IT

System (25) can also be reordered in a different manner as

A DT [U
b o] l7=[a 2
where
h= [g] € RMAmxAN B {IZ] cRMtn Q= [g] c RM+n

The three steps algorithm reads then
(i) AUp=F
which is unperturbed with respect to the Stokes system without constraints.
(ii) DHMODTP = DUy — Q
(iii) U =Uy — HDTP.

Again, we consider the approximation H") = §tM~" and either H(®) = A~ (Yosida) or H?) =
dtM~! (algebraic Chorin-Temam).

Remark 3.3 This algorithm can be easily implemented starting from an existing Navier-Stokes
solver which uses factorization methods. It suffices to add to the matrix D the few lines of matrix
®, and apply the chosen factorization method.

Remark 3.4 Step (7) is equivalent to
DHM(DTP +3TA) = DU, (33)
dHY(DTP 4+ 3TA) = dU, — Q. (34)
On the other hand, the third step gives
U="U,— HY(DTP + &77),
from which we can infer
U = dUy — dHD (DTP + &TA) =
dUy — ®HY(DTP + 3TA) + &(HY — HO)DTP + &TA). (35)
By exploiting (34), we finally have
U =Q+ dHY — HD)(DTP + 8TA) (36)

Whenever HY) = H(?) like in the algebraic Chorin-Temam scheme, we recover the constraint on
the fluxes exactly.
On the contrary, in the Yosida scheme, equation (36) becomes

U =Q+d(6tM ' — A H)(DTP +3TA) = Q + O(6t?).
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4 Numerical tests and algorithm assessment

4.1 Womersley flow

In order to assess the proposed methodology, we consider a case where the analytical solution of
the Navier-Stokes equations is known. More precisely, we consider the Womersley solution, which
describes the transient flow in a cylindrical pipe associated to a time-periodic pressure gradient
(see e.g. [8]). As such, it may be considered as a transient counterpart of the Poiseuille solution.
If the pressure gradient is given by
dp .

Vp = dz( Je, = —pasin(wt)e,,
z being the pipe axial coordinate and p the fluid density, the velocity u reduces only to its axial
component, i.e. u = u,e,, and the analytical expression for u, is

e 2D case (flow between two infinite planes):

( (2k+ D) )
Z’sz+1 sin
210

where

4a

A0 107 (l20' sin{wt) + we™tot _ cos(wt)) .

M=

2
Here 0 = %;, r is the transversal coordinate, 2ry the distance between the two planes and
0

1 the dynamic fluid viscosity.

e 3D case (flow in a cylindrical pipe):

u,(r,t) = Re L M et
BENS

where r is the radial coordinate, r¢ the cylinder radius and Jy the Bessel function of first
kind and of order zero.

In both the 2D and 3D test cases, we have imposed homogeneous Neumann boundary conditions
at the inflow, while at the outflow we have prescribed the mass flux associated to the Womersley
solution. In Figure 2 we show the axial velocity field for the 2D case at two different times,
together with the velocity profile at the inflow. The solution obtained agrees very well with the
analytical Womersley solution. Therefore, a single condition on the mass flux at the outflow,
imposed through a Lagrange multiplier, is sufficient to recover the Womersley flow.

The same experiment has been carried out in 3D and the result is shown in Figure 3. Here, the
computed velocity field at three different times is illustrated, together with the corresponding
axial velocity profile on the inflow section. Again, we outline the excellent agreement with the
analytical solution.

Finally, we have carried out the same experiment in 2D using the numerical schemes “reordering
+ fractional step I’ and “reordering + fractional step II” proposed in the previous section, both
for the Yosida and the algebraic Chorin-Temam approximations, and we have evaluated the errors
introduced on the fluxes. As expected, for the first scheme the difference between the flux we wish
to impose and the one actually computed is of the order of the machine round-off error, both for
the Yosida and the Chorin-Temam approximation.

For the latter scheme, instead, this is true only when adopting the Chorin-Temam approximation.
The behaviour of the error on the fluxes for the Yosida approximation is shown in figure 4. The
error is decreasing with the time step size, with a convergence rate that appears to be even higher
than quadratic.
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Figure 2: 2D numerical solution obtained imposing the flux of the Womersley solution at the

outflow section.
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Figure 4: Behaviour of the error on the flux for the scheme “reordering + fractional step II” with
the Yosida approximation; the dotted lines are the reference lines for the error decrease rate.
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Figure 5: Two fluids separated by a free interface

4.2 Mass conservation in free interface simulations

We present here another application where it may be useful to impose the mass flux on a surface.
We consider two immiscible and incompressible fluids, with the same viscosity, confined in a closed
tank Q and separated by a free interface (see Fig. 4.2). We denote by X(¢) the interface at time
t and by ;(¢) the domain occupied by the fluid ¢ at time ¢, for ¢ = 1,2. We adopt an Arbitrary
Lagrangian Eulerian (ALE) formulation [4] and we denote by w the domain velocity which satisfies
w-n=u-non X(t) and w-v = 0 on 99, where n denotes the normal to X(¢) directed from
Q1 (t) to Qa2(t) and v is the outward normal on ). Because of the incompressibility and the
immiscibility of the two fluids, the volume of Q4 (t) (or equivalently Q5(¢)) must be preserved. At
the continuous level, this property is immediately derived by noting that

ta to
meas(( (t2)) — meas(u (1)) = / w-ndo:// u-ndo
t1J 2(t) t1/2(¢)

to
= / / divudz =0, (37)
t1JQ (t)

since divu vanishes almost everywhere in  (¢).

At discrete level, the relation le o divuy dr = 0 is still verified if the pressure is discretised
using discontinuous functions, (as in the Q2/P1 or Q1/P0 finite elements), since we are allowed
to choose for the continuity equations a test function equal to 1 in Q4 (¢) and to 0 in Q2(t) and
consequently (37) is satisfied also after space discretisation.
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If instead the pressure is discretised using continuous functions, as in Taylor-Hood, P1-isoP2 or
Q1/Q1 stabilized finite elements [6, 13], there is no guarantee that (37) still holds at the discrete
level. Numerical tests indeed confirm that those discretisations fail to conserve meas(;). A
possible strategy for the solution of this problem is to impose the condition

/ uy -npdo =0,
z(t)

by a Lagrange multiplier, using the techniques presented in the previous section.

Let us show the results obtained on a 2D test case. In the following, all quantities are given in
the International System (IS) units. The two fluids are initially at rest and they are subjected
to an oscillating body force f = (agsin(2nvt), —g) with a = 0.05, g = 10, v = 0.0625. The
kinematic viscosity of both fluids is taken to be v = 0.005, the density of the upper and the lower
fluid is 0.9 and 1, respectively and at ¢ = 0 meas(2;) = meas(Q22) = 4. The mesh is allowed to
move only along the vertical direction and the typical size of the mesh elements is h = 0.05. At
t = 80, if we use Q1/P0 or Q2/P1 elements meas();) is still equal to 4 (within machine precision),
whereas it drops to approximately 3.4 when we adopt stabilized Q1/Q1 elements (see Figure 6).
We noted that the stabilisation is not responsible of this undesired “numerical mass transfer” since
we have obtained analogous results with the Q2/Q1 continuous elements. Clearly, this lack of
mass conservation decreases as h goes to zero, yet for many practical application a mass loss is
not acceptable and the use of an extremely fine mesh is not feasible or economical.

Figure 6 shows that a perfect mass conservation is obtained also with stabilized Q1/Q1 elements
if we impose a zero mass flux through ¥ by the Lagrange multiplier technique. Finally, Figure 7
shows the elevation of a point on the interface, obtained on the same mesh with the Q1/P0
elements and the stabilized Q1/Q1 elements with flux constraint. The difference is barely visible.
The use of a Lagrange multiplier technique thus allows to adopt continuous pressure elements for
this type of problems.

" Quor ——
QUQL+flux ------

mass

L L L L L L L L
0 10 20 30 40 50 60 70 80 90
time

Figure 6: Mass conservation fails using Q1/Q1 elements, while it holds if we add a flux constraint.

4.3 Multiscale domain decomposition

An application in which is necessary to impose defective boundary conditions to a Navier-Stokes
problem arises in the hemodynamics context when the cardiovascular system is simulated by
a multiscale model. A multiscale technique couples detailed models, based on the solution of
2D or 3D fluid-structure interaction problems, with reduced models based on one-dimensional
approximations or on systems of ordinary differential equations [5]. The simpler models normally
provide the evolution of mean pressure and mean velocity in various regions of the cardiovascular
system. The boundary data for the detailed model, which is based on the solution of the Navier-
Stokes equations coupled with the vessel wall dynamics, must be obtained from these averaged
quantities. This is a typical case of defective boundary conditions.
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Figure 7: The time history of the elevation of a point of the interface. The result obtained with
Q1/P0 elements are almost the same of that given by Q1/Q1 elements with flux constraint

Here we will give an illustrative example which consists in the coupling of a two-dimensional and
a one-dimensional model. Let us consider the domain illustrated in Fig. 8. In 4 we define for

Figure 8: Coupled 2D/1D problem. On the left, the 2D model (), where T';, represents the
arterial wall and 7 the wall displacement with respect to the reference configuration I'%. On the
right, the 1D model (Q2) defined on the interval a < z < b.

t > 0 the fluid-structure model as

(pdyu+ pu-Vu+Vp—pAu=0 in
divu=0 in Oy
0%y 0%y Eh 1 0%y

wh—5 — kGh— — = = f(t, o

¢ Pult g 2t 1=n R2 79220 f(t,2) onTy (38)
ome, =u onT,
_ Ou on 2 o
kf(t,z)—(pn—,ua—n)-eT 1+ (a) on I'Y)

where the unknowns are the fluid velocity u, the fluid pressure p and the wall displacement 7.
Here, p is the fluid density, h the vessel wall thickness, E the Young modulus, G the Timoshenko
factor and p,, the wall density. At ¢ = 0 initial conditions ug, 70, 70 are provided for the velocity,
displacement and displacement rate, respectively. We refer to [3] for a more detailed description
and analysis of this problem. In Qs we consider the following one dimensional problem for the
velocity flux @@ and the vessel section area A
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04 0Q
T e a<z<b t>0 "
9Q , 0 ( Q*\ L Adp Q

6t+6z<a7 +;&+KRZ—O, a<z<b t>0.

supplied with the algebraic relation p = S(A — Ag), Ao being the reference area Ay = 2Rj.
The system is supplemented by initial conditions for A and @ at ¢ = 0. This one dimensional
reduced model is basically derived from (38), integrating the Navier-Stokes equations over each
axial section S(z) and adopting a simplified version of the equation for the wall dynamics. A is
the measure of S(z), the velocity flux is given by Q(z) = fS(z) u,dr and p(z) = (fS(z) pdr)/A(z);
see [5] for more details.

System (38) has been discretised in space using P1-isoP2 finite elements for the fluid and P1
elements for the structure. For time discretisation, we have adopted an ALE formulation to
account for the domain movement with an implicit Euler discretisation for the fluid equations and
a Newmark scheme for the structure. On the other hand, system (39), which is hyperbolic, has
been discretised using a second-order Taylor-Galerkin scheme with a characteristic treatment of
the boundary.

At each time step ", we look for a solution of (38) and (39) which satisfies at I'(a) the coupling
conditions

meas@@) = 4@, [ W@, s [ =@ @)

We have solved iteratively at each time step the two sub-problems in ; and Q2. Given the

approximate solution u”, p™, ™, @™ and A™ of the coupled problem at time ¢t = ", we look for
the solution u™*!, pntl pntl Q7+l and A™+! using the following iterative algorithm :

we set gy = u”, p) = p", and 9y =n" and for £ =0,1,...

1. we solve the 1D model (39) imposing at z = a

1
A a) = A + —/
(k+1) (@) 0 Bmeas(L'1)(a)) Jr(a) e

and at z = b absorbing boundary conditions based on characteristic analysis. We obtain
Q(k+1) and A(yq) in Qo3

2. we solve then the 2D problem imposing on I'(a) for the Navier-Stokes equations the defective
condition

/ Uipy1) €2 = Q(k+1)(a)
I'(a)

and for the structure at z = a
1
Nk+1) (@) = §A(k+1)(a) — Ro.

We obtain ll(k+1), p(k+1): ’f](k+1) in Ql.

We iterate until the coupling conditions are satisfied within a fixed tolerance and we finally set
the solution at time t"*! equal to the converged value. We may eventually add a relaxation step
on the variable A)(a).

We observe that in step 2. of this algorithm we have to solve Navier-Stokes equations with flux

boundary conditions on I'(a). A different algorithm for the same coupled 2D /1D problem, which
allows to impose a mean pressure condition on I'(a), has been proposed and analysed in [3].
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Figure 9: Coupling 2D simulation with the 1D reduced model; pressure distribution every 5ms,
starting from ¢t = 1 ms.

We present here the numerical results relative to the following test case: we have considered a
fluid initially at rest and we have imposed a pressure of 15mmHg (2 - 10* dynes/cm?) at the inlet
(Tin) for 0.005 seconds. For the fluid we have taken p = 0.035 poise and p = 1g/cm?, while for
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the structure we have E = 0.75 - 108 dynes/em?, v = 0.5, p,, = 1.1g/cm® and h = 0.1 cm. Figure
9 shows the fluid pressure and the domain deformation at different times. We may note how the
“pressure wave” crosses the interface between the two models with little spurious reflections.

5 Conclusions

In this work we have considered defective boundary conditions for the Navier-Stokes equations. In
particular, we have addressed the case where one wants to impose the mass flux on a measurable
subset of the domain boundary. We have proposed a formulation based on a Lagrange multiplier
technique and we have shown that it is well posed for the Stokes and the linearized Navier-Stokes
equations. Moreover, we have considered some numerical algorithms to effectively solve the mixed
problem thus obtained. Finally, we have presented two applications in which the technique may
be advantageously used and we have shown some numerical results illustrating its effectiveness.
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