Skip to Main content Skip to Navigation
Reports

The Receptive Distributed $\pi$-Calculus

Roberto M. Amadio 1 Gérard Boudol 1 Cédric Lhoussaine 1
1 MIMOSA - Migration and mobility : semantics and applications
CRISAM - Inria Sophia Antipolis - Méditerranée , Université de Provence - Aix-Marseille 1, MINES ParisTech - École nationale supérieure des mines de Paris
Abstract : In this paper we study an asynchronous distributed $\pi$-calculus, with constructs for localities and migration. We show that a simple static analysis ensures the receptiveness of channel names, which, together with a simple type system, guarantees a local deadlock-freedom property, that we call message deliverability. This property states that any migrating message will find an appropriate receiver at its destination locality. We argue that this distributed, receptive calculus is still expressive enough, by giving a series of examples illustrating the «receptive style» of programming we have. Finally we show that our calculus contains the $\pi_1$-calculus, up to weak asynchronous bisimulation.
Document type :
Reports
Complete list of metadatas

https://hal.inria.fr/inria-00072553
Contributor : Rapport de Recherche Inria <>
Submitted on : Wednesday, May 24, 2006 - 10:15:43 AM
Last modification on : Saturday, October 3, 2020 - 3:18:54 AM
Long-term archiving on: : Sunday, April 4, 2010 - 11:12:53 PM

Identifiers

  • HAL Id : inria-00072553, version 1

Citation

Roberto M. Amadio, Gérard Boudol, Cédric Lhoussaine. The Receptive Distributed $\pi$-Calculus. [Research Report] RR-4080, INRIA. 2000. ⟨inria-00072553⟩

Share

Metrics

Record views

247

Files downloads

579