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Fractions continues, algorithmes de comparaison
et constantes de structure fine

Résumé : Il existe plusieurs algorithmes fondés sur les fractions continues qui permettent
de comparer des fractions et de déterminer le signe de déterminants 2x2. L’analyse précise
de tels algorithmes, trés simples, conduit & une incursion dans une variété surprenante de
domaines. Ainsi guiderons-nous le lecteur & travers un tour qui inclut les systémes dy-
namiques (dynamique symbolique), la théorie des nombres (fractions continues), ’analyse
fonctionnelle (opérateurs de transfert), les fonctions spéciales (valeurs zeta multiples), et en-
fin Panalyse complexe (hypothése de Riemann). Tous ces domaines contribuent ultimement
a une caractérisation précise de la complexité des algorithmes de comparaison et de tri, tant
en moyenne qu’en distribution.

Mots-clé : Fraction continue, algorithmes, tri, constantes
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ABSTRACT. There are known algorithms based on continued fractions for compar-
ing fractions and for determining the sign of 2 X 2 determinants. The analysis
of such extremely simple algorithms leads to an incursion into a surprising
variety of domains. We take the reader through a light tour of dynamical sys-
tems (symbolic dynamics), number theory (continued fractions), special func-
tions (multiple zeta values), functional analysis (transfer operators), numerical
analysis (series acceleration), and complex analysis (the Riemann hypothesis).
These domains all eventually contribute to a detailed characterization of the
complexity of comparison and sorting algorithms, either on average or in prob-
ability.

Motivations

The topic of this paper is the study of one of the simplest possible algorithms
for one of the simplest conceivable tasks—the comparison of two fractions. The
algorithm has been proposed in the celebrated “Hackers’ Memorandum” known
as HAKMEM [4], an amazing bag of tricks for computational mathematics that
was collected at M.I.T. in 1972 by M. Beeler, R.W. Gosper, and R. Schroep-
pel. Amongst many gems relative to continued fraction algorithms and written
by William Gosper, we find:

Item 101A (Gosper): Numerical comparison of continued fractions is slightly
harder than in decimal, but much easier than with rationals — just invert the
decision as to which is larger whenever the first discrepant terms are even-
numbered. Contrast this with the problem of comparing the rationals 113/36
and 355/113.

The algorithm suggested here compares two rational numbers a/b and ¢/d by means
of a continued fraction expansion algorithm applied simultaneously to the two num-
bers, and stopped as soon as a discrepancy of quotients is encountered. For instance,
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we discover in three “short division” steps that

224 1 95 1
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o=

satisfy a < B since the discrepant digits 4,6 occur in the third position and satisfy
4 < 6. In turn-of-the-millennium hacker’s parlance, one might as well describe the
algorithm as two “lazy” parallel executions of the continued fraction algorithm.

For rational numbers, z = a/b and y = ¢/d, the algorithm estimates the quan-
tity sign(a/b — ¢/d). The purest mathematician may well deem this discussion
senseless. Don’t we have

(1) sign (% - 2) = sign(ad — bc),
or cannot we plainly compute with floating point numbers,
(2) sign (% - s> R sign (ﬂoat(%) - ﬂoat(g)) ,

and easily determine the answers? Here is the main point. In the computational
world, numbers are not “known” in the abstract, but rather accessible through
finite or imperfect information only, like integral fraction forms or floating point
approximations. In such a context, both complezrity and accuracy of computations
matter. The great advantage of the HAKMEM algorithm arises precisely from the
fact that it operates within the set precision of data. For instance the straight
evaluation (1) implies handling double precision numbers, that is, as much as 8
single-precision multiplications by naive methods and 6 at least, when Karatsuba’s
technique is used [27]; at any rate, the bit complexity is superlinear (e.g., quadratic,
if standard multiplication is used), while our results imply that the HAKMEM
algorithm has linear bit complezity on average. On another register, if divisions are
performed in floating point, then wrong decisions may occur: for instance, one has

312689 833719

99532 265381
and the sign is not even computed correctly with 10 digit arithmetics, although the
fractions only involve 6-digit integers. To the contrary, the HAKMEM algorithm
always provides the correct answer within the set precision. Such reasons explain
for instance the multiple uses of the algorithm (under the name of ab_vs_cd) in
Knuth’s design of the Metafont system: see [28].

The HAKMEM algorithm has surfaced in a diversity of contexts of which we
now discuss a few. First, there are general-purpose computer arithmetics systems
that are entirely based on continued fractions, a notable case being the one de-
veloped by Vuillemin around 1987 [49]; comparison of numbers in this context is
likely to involve a version of the HAKMEM algorithm. Second, issues of correctness
and robustness are central in the design of computational geometry systems: there,
the comparison problem is identical to the problem of deciding the sign of 2 x 2
determinants (which means deciding the orientation of triangles); in this range of
application, the HAKMEM algorithm has been rediscovered and extended by Av-
naim et al. [1]. Finally, the HAKMEM algorithm is structurally very similar to
an optimal algorithm proposed by Gauss for lattice reduction in dimension 2 that

~3x 107,
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is of special importance in various areas of computational number theory; the two
analyses entertain very close ties as may be seen by examining references [14, 42]
on which the present paper is partly based.

Our primary goal is a characterization, both on average and in probability, of
the behaviour of the simple comparison algorithm whose principles have just been
sketched. We also discuss in the paper an interesting generalization to sorting based
on continued fraction digits. First, it turns out that the algorithms are best placed
within the general framework of symbolic dynamics and expanding maps of the
interval (Section 1). A whole variety of algorithms result, including two versions of
the basic sign algorithm, one dependent on basic (standard) continued fractions, the
other one relying on centred continued fractions. Fundamental intervals that are
familiar from the elementary theory of continued fraction then conduce to slowly
convergent sums, called “moment sums”, that express the average case complexity
of the sign algorithms (Section 2) and of the corresponding (radix) sorting algo-
rithms (Section 3). In the basic continued fraction case, moment sums appear
to be related to multiple zeta values and Euler-Zagier constants, so that they are
surrounded by a strong set of identities and fast convergent sum or integral represen-
tations (Section 4). In contrast, the centred case leads to non-analytic sums arising
from the floor function and irrational multipliers so that specific series acceleration
need to be developed that rely on lattice generating functions (Section 5).

Functional analysis is then brought into play in Section 6. It turns out that
transfer operators of the Ruelle-Mayer type have dominant eigenvalues that pre-
cisely describe the geometric rate of decay in the probability distribution of costs of
the sign-algorithms (Sections 6). As a final surprise (Section 7), the cost of sorting
n numbers exhibits an asymptotic dependency on n whose character is dictated by
the position of the nontrivial zeros of the Riemann zeta function, that is to say, by
the Riemann hypothesis.

One of the themes of this paper is the effective computability of the constants
involved in the analysis. A real number « is said to be polynomial time computable
if an approximation of a to accuracy 10~¢ can be computed in time O(d") for some
integer r. We let P denote the class of such numbers. (See [8] for an introduction to
this aspect of computational mathematics.) Effective numerical procedures usually
go along with proofs of membership in P.

1. Expanding maps, sign algorithms, and continued fractions

Symbolic dynamics concerns itself with the interplay between properties of a
continuous transformation and discrete properties of trajectories of points under
iteration of the transformation. A common framework in symbolic dynamics is the
one of expanding maps of the interval and their associated number representation
systems. The definition involves a triplet (Z,U, M) that satisfies the following
conditions:

(E1) The set M, whose elements are called digits, is a subset of the integers; there
is a partition {I;};e ¢ of the interval Z satisfying additionally the condition
below.

(E2) The function U(z) maps monotonically each I; onto Z and is expanding,
meaning that |U’(z)| > 1 on the closure I; of I;.

See [38] for some of the main properties. An expanding map thus consists of
finitely or denumerably many branches indexed by some set M. We let m(z) € M
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FIGURE 1. The three maps corresponding to binary representa-
tions ({2z}, left), basic continued fractions ({1/z}, middle), and
centred continued fractions ({{1/z}}, right).

represent the branch of U(z) in the domain of which z falls. A coding of a real
number z is then obtained by the sequence
(3) m(z), m(U (), m(U?(z)), m(U?(z)),
where powers denote iteration, U? = U o U, etc. The sequence of digits of x,
m = (mi,...,mg,...) = (m(z),...,mU%(z)),...) is then produced by the
following simple algorithm.
procedure (Z,U, m)-expansion(z : I)
for k£ :=1 to +oco do
my, = m(z); z := U(z);

A special réle is played by the set #; of branches of the inverse function U(~)
of U that are also naturally numbered by the index set M. If z; and the sequence
m = (my,...,myg) is known, the algorithm can be run backwards, and the original
xg is recovered by

2o = hm(zr) where hm(y) = hm, © Bumy © -+ © by, (3).

The set H of all compositions hn, is referred to as the set of branches of the inverse
function or inverse branches for short; the index k in h(y, .. m,) is called the depth
of h and denoted by |h|. Clearly, the stochastic behaviour of a numbering system
is closely related to the dynamics of U(z) on the interval Z; this dynamics is itself
isomorphic to the dynamics of the semigroup of contractions # that is generated
by the depth-one inverse branches H;.

Let |y]| be the integer part function of y and {y} = (y mod 1) the fractional
part. The scheme (3) generalises the usual binary representation of real numbers
(see Fig. 1) that corresponds to fixing the choice

7=1[0,1], U(z)={2z}, m(z)=2z].
As we shall explain in some detail, this constitutes also a very convenient framework
for a discussion of continued fraction algorithms.
Sign algorithms. The basic numeration scheme relative to an abstract triplet
(Z,U,m) gives rise to a semi-decision algorithm that determines if two numbers

are distinct: in order to detect distinctness of z and z’ simply expand “lazily” in
parallel z and z’ until the first discrepant digit is detected. The scheme is then
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procedure (Z,U, m)-sign(z,z’ : I)
for £ :=1 to +o0 do

my :=m(x); my :=m(z); z:=U(z); 2’ =U(z');

if my # mj, then exit.
Since the branches of U are by assumption each monotonic, the knowledge of the
partial codings (m1,... ,mg_1,mg) and (mq,...,mg_1,m},), where k denotes the
position of the first discrepant digit, fully determine the sign of the difference z—z’'.
For instance, binary representations, where every branch is monotone increasing,
have sign(z — ') = sign(mg — m},).

In the sequel, we examine two numeration systems relative to continued frac-

tions: the basic continued fraction system (where characteristic quantities are indi-

cated by a bar sign (7)) and the centred continued fraction system (indicated by
a hat (7)).

Basic continued fraction expansions. The basic continued fraction (BCF')
system fits into the general framework. It is defined by the triplet (Z,U,m)

T=[0,1], U(x) = {1} () = H .

x x

By convention, we take U(0) = 0, m(0) = 0.
To one step of the BCF expansion algorithm, there corresponds the set of
inverse branches of depth 1,

1

m+ z

Hi = {h(z) = m > 1},

and the set of digits is M = {1,2,...}. The inverse branches of arbitrary depth are
then linear fractional transformations (LFT’s for short). To a real number z € Z,
the BCF algorithm thus associates the sequence of iterates zg = z,z1,zs, ... , Tg,
and (with the convention 1/0 = 0)

Zo = hm(xg) where h(y) = T
mit
ma +
mp ¥ Y
The BCF-sign algorithm dependent on basic continued fraction expansions is

exactly the HAKMEM algorithm described in the introduction. Here all branches
are monotone decreasing, so that

sign(z — ') = (—1)*sign(my — m}),
since each stage of the iteration is orientation-reversing.

Centred continued fraction expansions. Centred continued fractions are ob-
tained when one replaces truncation (integer part function) by rounding to the
nearest integer. First introduce the notations

(ol = |+ 5| €1 ==l ) =signts — D,
so that the following identity holds:

y = [yl +e(y){{y}}-
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Then, the centred continued fraction (CCF') system is defined by the triplet
(Z,U,m) given by
~ 1. ~ 1 1.1
I = — = — m = — —
0,5} 0@ = {1, A@) =<1,
with, conventionally, U(0) = 0, M(0) = 0, 1/0 = 0.

The CCF expansion algorithm operates on the interval Z = [0, %] By design,
the allowed indices m must satisfy the condition |m| > 2, and, furthermore, the
value m = —2 does not occur since m(1/z) = —2 could only arise from an z larger
than % In this way, the set of LFT’s of depth 1 for the C'C F—-algorithm is

ﬁl::{h(z):% mZZ}U{h(z): ! m23},

m m—z

and the set of digits is M= {+2,-3,+3,-4,+4,...}.

The relation between zy and xj is described by a linear fractional transfor-
mation of depth k, which is associated to the k-tuple of signed integers m =
(mq,...,mg)

(4) hm(2)

o , g; = sign(m;).

€2

|mq| +
|ma| +

|mk| + ez
The CCF-sign algorithm based on centred continued fractions is such that an
iteration is increasing if the corresponding sign is —1 and decreasing otherwise. In
that case, one has
k
sign(z — ') = o | | (—sign(m;)),
j=1

1

where o € {—1,1} is +1 iff my, > m}, in the nonstandard order over on Z,
0<-1<4+1<-2<4+2<-3<4+3---,
that is also the lexicographic order on N x {—1,+1}.

Note. A variety of practical implementations result from the sign algorithms
based on continued fraction representations. For instance, when applied to rational
numbers, inverses are effected plainly by exchanging components of integer pairs,
and the sign algorithm should be halted as soon as one of the continued fraction
expansions terminates, etc. When applied to real numbers in fixed precision, the
number of iterations can be bounded in advance by a quantity that depends on
the machine precision, or on the size of the mesh according to which numbers are
considered as distinct.

2. Fundamental intervals and the sign algorithms

The overall purpose of this paper is an understanding of the complexity of
the comparison algorithm and its cognates, in the context of continued fraction
representations. The probabilistic model adopted is the uniform model over the set
of legal inputs and the complexity measure of the sign algorithms is the number
L of iterations performed (that is, the value of the index k of the first discrepant
digit). Knuth [28] reports for his version of the basic HAKMEM algorithm that
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“in most cases, a quick decision is reached’ while Avnaim et al. [1] estimate from
simulations that “the average number of iterations is [about] 1.5”.

Following good precepts, we start with an experimental approach. Simulating
10% executions of the BCF and CCF sign algorithms over uniform pairs of real
(0,1) numbers provides empirical estimates on the probability distributions of costs
as well as on the average-case complexity of the algorithms. Here is a tabulation of
what we find.

Basic CF-sign Centred CF-sign

Pr(L=1)  0.710050 0.918003
Pr(L=2)  0.241275 0.075710
Pr(L=3)  0.038339 0.000422
Pr(L =4)  0.008424 0.000035
Pr(L=5)  0.001608 0.000005

E(L) 1.351612 1.088791

It is apparent that the probabilities of the main loop being executed & times
decay roughly geometrically with k& —somewhat like 5% for the basic algorithms
and 137 for the centred algorithm. (The centred algorithm is based on a better ap-
proximation scheme that converges faster; in practice, the advantage may however
be offset by a costlier internal loop.) In accordance with the geometric decay, the
expectations are finite. For 10® simulations, counting on a statistical error of about
10~3, we anticipate the values E(L) = 1.352 & 0.001 and E(f) = 1.089 £ 0.001.
These heuristic observations will receive a sound mathematical basis in the forth-
coming sections: see for instance the table of Figure 6 for a final summary. We
also note that alternative data and complexity models can be studied by suitable
adaptations of the methods presented here; examples include discrete data [14],
nonuniform input distributions [42], and bit-complexity models (work in progress).

Fundamental intervals. Let us first examine the sign algorithm in the context
of a numbering system arising from a general expanding map (Z, U, m). Borrowing
terminology from the standard metric theory of continued fraction, we call any
h(Z), the transform by h of the interval Z, a fundamental interval, and the depth
of h is called the rank of the fundamental interval. Thus, the fundamental interval
contains all real numbers whose expansion starts with the k-tuple (m) indexing h
(h' = hm)-

We adopt here the uniform probability model (Lebesgue measure) on Z. The
probability that a number of Z belongs to the fundamental interval relative to the
branch h is called the fundamental measure associated to h and is denoted by up.
Without loss of generality, we restrict the interval to be of the type Z = [0, o] for
some « > 0. The fundamental measure is then from its definition

un = [h(0) ~ h(a)].

For analysing the 2-dimensional sign algorithm, the square Z x Z is by assump-
tion endowed with the uniform product measure. The probabilistic event [L > k+1]
is formed with all real pairs (z,y) € Z x Z which have expansions that coincide till
depth k. Then the two real numbers = and y belong to the same fundamental
interval h(Z) of rank k, and the pair (z,y) belongs to the square h(Z) x h(Z). Such
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FIGURE 2. Basic continued fractions: the fundamental intervals

represented by their supporting discs (left) and the fundamental
squares (right). The events [L = k] for ranks k = 0..5 are alter-
natively represented by dark and light colours.

a square is called a fundamental square of rank k. The event [L > k + 1] is thus
equal to the disjoint union of all the fundamental squares of rank k,

(5) [L>k+1]= | RI) x h(I).
|h|=k
Since fundamental squares are disjoint the probability that the Sign algorithm

performs at least k+1 iterations is a sum that involves the measures of fundamental
squares u%, and

1
— 2 _ 2
(6) Pr(L>k+1)= Zuh—g > [h(0) — h(a).
|h|=Fk |h|=Fk
The average number of iterations is then obtained by the usual summation of prob-
abilities,

1
(7) B[] = uj= ;ZIh(O)*h(a)IQ-
h h
More generally, we define the moment sums
1
P9 =3 uh = — 37 Ih(0) — ()
h h

which, for integer values of ¢, are central in the the n-sorting algorithm to be
discussed in Section 3.

Continued fraction algorithms. From the expression obtained in (5), the
average-case analysis of any expanding-map version of the sign-algorithm is de-
pendent upon an evaluation or at least a numerical estimation of the simplest of
all moment sums, namely p(®). We now specialize the discussion to the basic and
centred continued fraction algorithms. This depends upon the characterization of
all the LFT’s of H and H provided by elementary number theory and a theorem of
Hurwitz.
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— The set H of all possible LFT’s used by the BC F-algorithm is

_ b
H::{“” | (a,b,¢c,d) € N, |ad—bc|:1,c§d,a§c,b§d}.
cz+d

— The set H of all possible LFT’s used by the CCF-algorithm involves the
golden ratio ¢ = (1 +v/5)/2 (Hurwitz [25]):

-~ az+b ) )
= b,d) e N Z
A= {22 ] poer woen,
—d
a620’|adibc|:15 ﬁ<c<gﬂ |a|S|20|abS;i}

It is observed that the numbers (a,b, c,d) are such that the pairs (a,c) and (b, d)
are built with coprime integers, since the Bézout condition ad —bc = +1 is satisfied.
Thanks to this characterization, the expected cost of the sign algorithms falls as a
ripe fruit.

THEOREM 1. The expected cost of the basic and centred sign algorithms are
expressible as sums over lattice points in N2,

E@)=p?, E(L)=p?,

where, generally, the moment sums of index ¢ satisfy

1 2 1
50 — S —
P 14+ 5+ (20) > Al
(8) ' d<c<2d
2 1
po = 20 Z T (6= (1+v5)/2).
dp<c<dp?

PRrROOF. Consider first the basic case. Each pair (c,d) that satisfies ged(c, d) =
1,d > 2 and 0 < ¢ < d is associated to two LFT’s of H, since a rational number
interior to (0,1) admits at the same time a proper and an improper continued
fraction expansion (the last digits is > 2, resp. = 1). Then, taking into account
boundary cases, namely pairs (0,1) and (1,1), we find

014 L _
pO=1+ 5 +2 de(c+d)w
where the sum is taken over all the pairs (¢, d) satisfying ged(c,d) = 1,d > 2 and
0 < ¢ < d. The general term in the last sum is homogeneous of degree 2¢, so that
the ged condition is eliminated provided one divides the sum by ¢(2¢).
Consider next the centred case. Each pair (¢, d) that satisfies ged(c,d) = 1,d >
1 and —d/¢? < ¢ < d/¢ is associated to a unique LFT of #. Then, we find

1
58 — ot _
P 2 df(2d + c)?’

where the sum is taken over all the pairs (¢, d) satisfying ged(c,d) = 1,d > 1 and
—d/¢? < ¢ < d/$. In this case, the integer f := 2d + c satisfies dp < f < dp>. The
ged condition is again eliminated by means of a factor 1/¢(2¢). O

The moment sums of the basic and the centred algorithm look superficially
similar. The summation condition is in each case determined geometrically as a
sum over lattice cones defined by the two conditions,

d<c<2d and  [d¢] <c< |de?].
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However, the corresponding sums ﬁ(e) and ﬁ“) belong to different classes of math-
ematical constants. The basic ones, ﬁ(e) live in a world of identities, integral repre-
sentations, and special functions. Indeed, as we shall see the mean ﬁ(2) is reducible
to ¢(3) and a polylogarithm. More generally, p(®) is a member of the class of
Euler-Zagier sums, currently a subject of active interest. In contrast, the sums p(®,
starting with Z)ﬂ), have a “nonanalytic character” due to the summation condition
[dp] < ¢ < |d#?], with ¢ being irrational, and there is little hope of reducing
them to some standard closed form. We shall see later that they can at least be
subjected to appropriate series acceleration methods leading to efficient evaluation
to high precision.

3. The sorting algorithm

The sign problem leads naturally to the more general question of testing dis-
tinctness of n real numbers, or, analogously, to the problem of sorting n numbers.
For numbering systems like the ones considered here, it is the idea of radiz sort-
ing [26] that is natural. The principle is to determine the leading digit of each
of the quantities xz1,...,z, to be sorted, group them according to their leading
digits, and then sort recursively the subgroups based on the following leading dig-
its. Alternatively, one may view the algorithm as building successive refinements of
the coarsest partition until the finest partition is obtained. These refinements are
themselves best described as a tree called the digital tree or trie, which is one of the
major data structures of computer science [26, 31]. The analysis developed here
then answers the following question: How many digits in total must be determined
in order to distinguish (and sort) n real numbers? In symbolic dynamical terms,
it describes the way trajectories of n random points under the “shift” U evolve by
sharing some common digits before branching off from each other.

Digital trees. We now formulate the sorting algorithm in its more convenient
graphic tree version. To any finite set X := {x,x3,... ,2,} of n real numbers of
Z, one associates a digital tree, trie(X), defined by the two recursive rules:

(R1) If X = {z} has cardinality equal to 1, then trie(X) consists of a single leaf
node that contains z.

(R2) If X has cardinality at least 2, then trie(X) is an internal node represented
generically by ‘o’ to which are attached r subtrees, where r := card m(X) is
the number of different head digits in X. Let by, b2, - , b, be the different
head symbols that appear in X; trie(X) is defined by

trie(X) = (o, trie(X), trie(Xz2), .. . , trie( X)),

where
X, ={U(z) | m(z) =0b;, xz € X}.
Such a tree structure underlies classical radix sorting methods. The tree can be
built by following the recursive rules (R;), (R2) and a suitable ordering of subtrees

gives rise to an algorithm that sorts any set X either lexicographically or under the
natural order on the real numbers.

Analysis of the sorting algorithm. According to standard terminology, the
level of a node in a digital tree is the number of edges that connect it to the root.
The path length of the tree is the sum of the levels of all leaves. The path length
of trie(X) is thus equal to the total number of digits that need to be examined in
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61 = /1,1,1,1,1, 1,../

y = L,1,2,1,81,../

exp(1) — 2 = /1,2,1,1, 4, 1,.../

log 2 = /1,2,8,1,6,8,.../

{exp(nv/163)} = /1, 1333462407511, 1, 8, 1, 1, .../
21/3_1 = /3a 1; 5) 1; 1);4}"'/

3 = /7,15 1,292 1, 1,.../

Ficure 3. (Top) The fractional parts of 7 real numbers: the
digits in bold represent the minimal prefix set of 16 digits (the
sorting cost, equivalently path length) needed to distinguish the
numbers from each other. (Bottom) A randomly drawn digital
tree of size 100 built from basic continued fractions has path length
1323, height 16, and number of internal nodes equal to 222.

order to distinguish all elements of X and radix-sort X (see Figure 3) so that we
adopt it as our definition of the sorting cost.

First, we discuss the case of a general numbering system. Let P(n) be the
expectation of the path length of trie(X) when X is drawn from Z" with the
uniform probability measure. We claim the equality:

(9) P(n) = Z nup, [1— (1 —up)" 1.

heH
Indeed, let L; be the length of the branch whose leaf contains the designated element
x;. The event [L; > k] means that there exists a fundamental interval of depth k
that contains x; and at least another element z;. Thus, we have

Pr (Li > kj) = Z Up [1 - (1 - uh)’n—l] .
|h|=k
Summing over all possible values of index ¢ and integer k then yields equation (9).
Next, a straight binomial expansion provides an expression for P(n) that re-
duces to a linear combination of the “moment sums”:

n—1
(10) P(n)=n Y (1)t (") e,
()

In other words, P(n) is nothing but an (n — 1)st order difference of the moment
surs.

The discussion specializes immediately to tries built on continued fractions and
hence to the corresponding sorting algorithms BC F-sort and C'C F-sort.

THEOREM 2. The expectations of the number of digit inspections performed by
the sorting algorithms BCF-sort (basic continued fractions) and CCF -sort (centred
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continued fractions) applied to n real numbers are given by

(11)
- i (”‘1) Ge _ i ("—1)A(e+1)_

=1
There, p©) and p\© are the moment sums of Eq. (8).
The theorem predicts
P(2)=2p®, P@B3)=6p? -3p0, P4)=12p?@ —12pB3 14",

The form P(2) = 2p(?) is in accordance with the analysis of the sign algorithm:
in this special case, there are two leaves at the same level, and this level coincides
with the number of iterations of the sign algorithm. Figure 3 (bottom) displays a
random trie of size 100 based on the BCF system and kindly communicated to us
by Julien Clément from his memoir [11].

We shall see in the last section that the asymptotic behaviour of path length
(when n tends to infinity) involves the location of nontrivial zeros of the zeta func-
tion and hence is related to the Riemann hypothesis.

4. Multiple zeta values and the basic sign algorithm

The moment sums associated to the basic continued fraction system are double
sums of simple rational functions and it is of interest to determine to what extent
they relate to other classical constants of analysis. The adequate framework is that
of multiple zeta values (MZV’s), also known as Euler—Zagier sums, that we take
here under the form

12 €1y-0sEp — —6711‘1 .”6$T ; -1 1
(12) ¢ (s1,000580) = Y. & —, g e{-1,+1}.
nyp>osn, LT

The term “values” stresses the fact that instances at positive integer arguments are
considered. The quantity w = s; + - - - + s, is called the weight and r is called the
rank or the multiplicity of the sum. The simplest sums are those of rank 1,

1 S

o) =)= —, = = (27" = 1)(s),
n=1 n=1

that is, the Riemann zeta function and its alternating variant. Especially relevant

to the present discussion are the double zeta values

(FH(s,t) =C(s,1)

I
v
e

Qﬁll
-

n=1q=1 =1
oo n—1 0o (t)
_)n Y
—+ t — ( — _1 n n—1
C (Sa )) HZI; nsqt ngl( ) ns )

with H,(lt) => j<nd —t the generalized harmonic number of order .
The origin of these sums lies in a letter of Goldbach to Euler dated December
24, 1742 (see Berndt’s book [5, Ch. 9] and references therein), with evaluations like

oo

(2= It o).

n2

n=1
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published in 1775 by Euler and further developed by Nielsen a century later [35].
Interest was rekindled recently when Zagier in his address [51] demonstrated con-
nections with many “deep” areas' of pure mathematics, at a time when, indepen-
dently, Borwein and collaborators [3, 6] were discovering many surprising identities
like the spectacular septic sum

> etk I (n) - e + 52,

that we leave as a challenge to the reader. (Hint: see for instance [17] for an
elementary approach.) A partial evaluation is any reduction of a multiple zeta
value to a polynomial form in multiple zeta values of smaller rank; a complete
evaluation means a reduction to a polynomial form in zeta values ((2),{(3),...,
and (7 (1) = —log2. What is known regarding positive and alternating double
zeta values is summarized in Fig. 4.

It is easy to reduce the moment sums to multiple zeta values. Start with

1 1 1 1

(13) Z Ldt Z cldt Z 2t Z ot
d<c<2d c<2d c c<d

The last sum in (13) is a non-alternating zeta value ((¥, £) that is of the “central”

type and that must reduce in accordance with what is summarized in Fig 4. Indeed,

distributing the sums in an expansion of the product ¢(s) x ¢(¢) yields the “shuffle

relations”:

(14)
S = Gl )+ Cls +6) 4 C(tys),  implying C(6,6) = 5 (¢(0 — ¢(20).

The first sum in (13) is none other than the even part of an alternating zeta, namely,

1) Y =t P gy 4 ).
c<2d c<e

Thus, by (13), (14), and (15), we find

(0) _ ot ot—1 -1y S@F 2
(16) p =221 4 (2 1) 2o @0
This is as far as one can go for general values of £, since a reduction of (™7 (£, ¢) is
not there.

The particular case of the mean cost of the BC F-sign algorithm, £ = 2, bene-
fits of specific results due to Sitaramachandrarao [40] and De Doelder [15], them-
selves motivated by identities of Ramanujan [5]. First, Sitaramachandrarao relates
¢+(3,1) and ¢~*(2,2) by

(17) 32¢%(3,1) + 16¢~(2,2) + 5¢(4) = 0.

¢TH(0).

This nontrivial identity is Eq. (5.4) of [40]. The next step involves a special instance
of the polylogarithm function [30] that is classically defined by

z 22 23

Lim(2) = [+ gm T gm0

IMultiple zetas and polylogarithms are nowadays found relevant to a large body of science
including knot invariants, Feynman diagrams, and even the theory of perverse sheaves.
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1
monb’
(NO))AII central double zetas are reducible: {(¢,€) = 1((¢)* — 1((2¢) (Goldbach,
1742).

(N7) All double zetas ¢(p, q) of odd weight w = p+ ¢ reduce to zeta values (Borwein
et al. [6]):

I. Nonalternating zeta values: defined by €; = +1 in (12): {(a,b) = Z

2(p,q) = — ((—nq (”Zq> + 1) Cp+9) + (1 — (=1))¢(P)¢(a)

+2(-1)" Y [(?:f) + (%j:f)

(N3) All double zetas ((p,1) reduce to zeta values (Euler):

C2j—-1)¢(p+qg—-27+1).

() = 2o+ 1)~ S0k + 1) b
k=1

(N3) The Q-vector space of all nonalternating MZV’s of weight w has a dimen-
sion d,, which, according to Zagier’s conjecture, should satisfy do = ds = 1,
dy = dw—2 + dy—3. The upper-bound has been verified till order 9 in [17] and till
order 12 by Hoang-Petitot [24] whose model conjecturally provides all identities.
Consequently, all nonalternating MZV’s (including double zetas) of “exceptional
weights” {2,3,4,5,6,7,9} reduce to zeta values.

=D

man®’

I1. Alternating zeta values: double ZV’s defined by (™" (a,b) = Z

m>n
(A1) All alternating double zetas (™ (p, q) of odd weight w = p + ¢ reduce to zeta
values (Flajolet, Salvy [17, Thm. 7.2]):

207t (p,g) = (1= (=1))¢ (P)C(a) — ¢ (p+a) +2(-1)7 )

(’” T 1) (@R (p+a—20) + (” raEe 1><<2k)<<p+ a-2)|.

(A2) All double zetas (=7 (1, q) reduce to zeta values (Sitaramachandrarao [40]):

q
20 (1,9) = —q¢(g+1) —2¢" (g + 1)+ Y_ ¢ () (g + 1 — k).
k=1

(As) For weight 2, (~*(1,1) = —1(log2)? (Euler; see [20]). For weight 4, a
special reduction is known for (~+(2,2) in terms of zeta values augmented with
Lis(1/2) (Sitaramachandrarao [40], De Doelder [15]). For weight 6, each of
¢7%(2,4),¢%(3,3),("1(4,2),{"(5,1) is expressible in term of any other one and
zeta values. No such direct reductions seem to exist at weight 8 or higher. General
relations are discussed in Borwein et al. [6].

FIGURE 4. A summary of known properties of double zeta values
of type ¢(*T and ¢~ 7.
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A relation between (~7(3,1) and Lis(1/2) is mentioned in [40] (see the formula
preceding Eq. (1.2)). and proved by De Doelder in [15, p. 128]. Starting from the
integral representation

1
C_+(3,1):—1/ logtlog2(1+t) ﬂ,
2 /o ¢
De Doelder deduces
57 7 2 1 1
1 ~*(3,1) = =¢(4) + =¢(3) 1og(2) — — —(log2)* + Lig(=
(18)  CTHE,1) = SpC() + L C(3)log(2) — 3 5 (1082)" + Tia(3),

which eventually relates the constant p(2) to the tetralogarithm.
We can state:

(log2)® +

THEOREM 3. The mean number p® of comparisons in BCF-Sign can be ez-
pressed in terms of double zeta values as

oo d—1

_ 3 360 _ 3 360 o= (—1)¢ 1
@ — 25 Y+ = 2,90 el
P 4+7r4C (2,2) = 4+7r4 d2 202

(19) d=1 dc=11
720 720 o (—1)% =1
— —+ =
=2 mTeD = 2 e D G
d=1 c=1

or with ((3) and the tetralogarithm Lis(3),

(20) p? = f% (24Li4(;) — 72(log 2)? + 21¢(3) log 2 + (log 2)4> +17.

Thus, ﬁ@) lies in the class P of polynomial time computable constants and

p? = 1.35113 15744 91659 00179 38680 05256 46466 84404 78970 85087 = 10~%.

In the case of values ¢ > 3, the quantities 5(¥) that intervene in the analysis
of the sorting algorithm do not seem to reduce to known classical constants or to
other simple sums like polylogarithmic values. The expressions of (16) show that
everything depends on the status of the central zeta values (= (¢,¢). Since results
appear scattered in the literature, we have compiled a summary table of what is
known regarding the class of alternating double zetas of type (=T in Figure 4. It is
seen from this table that p(® is expressible in terms of either one of the quantities
(T1(3,3), TH(2,4), (T (4,2), ¢TF(5,1),

_ 31 2835 _
p® —§+?C(3)2+ (TTE3) =
48195 45360
= 18— 2y (5,1
8 471'6 <(3) + 71-6 C (57 ))
so that 1000 terms of the last series (=7 (5,1) suffice to determine
73 =1.1366264940 £ 107°,  and  P(3) = 4.69690 99648 + 1010,

where the latter quantity is the mean cost of 3—sorting. However, simple polyloga-
rithmic reductions cease to exist (probably) as soon ¢ > 3 and alternative methods
of evaluation must be sought.

7560
6

Numerical calculation of p¥). Regarding the numerical computation of the
quantities ﬁ(e) to high precision, Jon Borwein provides on his pages? efficient im-
plementations that are visibly based on algorithms of low complexity (probably the

2URL: www.cecm.sfu.ca/projects/EZFace/
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Euler-Maclaurin summation formula). More pragmatically, the Pari-Gp system
includes an amazing command, sumalt, that is based on the general-purpose con-
vergence acceleration process of Cohen-Villegas-Zagier [13] and gives very rapidly
estimations of (=T that appear to be in full agreement with the ones provided by
Borwein’s program.

Here is one a priori “reason” for the P-character of multiple zeta values. It is
closely related to investigations of the Chudnovsky brothers [10] and holds for a
much wider class of constants. Following Zeilberger [52], define a function f(z) an-
alytic at the origin to be holonomic if its satisfies a linear differential equation with
coefficients in Q(z). A constant that is the value f(zp) of a holonomic function at an
algebraic point zo where f(z) is regular (i.e., analytic, holomorphic) will be called
a regular holonomic constant. Typical holonomic constants of the regular type are
m, log2 or the polylogarithmic value Lis(1/2). Taylor coefficients of a holonomic
function at any point satisfy linear recurrences with polynomial coefficients so that
they can be determined fast and the function itself can be evaluated at high speed
at any regular point that is an algebraic number (possibly using relays and analytic
continuation). Consequently, all regular holonomic constants are in P.

The simplest type of singularity for a linear ordinary differential equation is a
Fuchsian singularity (also known as singularity of the first kind or “regular” singu-
larity [50]). At such a point, singular expansions that mildly generalize standard
power series expansions exist and are again computable fast by means of recur-
rences. Define a singular holonomic constant as the value of a holonomic function
f(2) at a point zq that is a singular point of the Fuchsian type for a defining equa-
tion. Then, previous arguments extend, and any singular holonomic constant is
also in P; see [10]. A typical singular holonomic constant is ¢(3) = Liz(1).

Any multiple zeta value is the value at +£1 of a generating function that is
holonomic and has radius of convergence 1. For instance, we have

X _n
_ z
(" (a,b) = f(~1) where f(z):= §—1 ﬁng
satisfies the linear differential equation

i () () () () o=

Therefore, any MZV is a holonomic constant. Membership of all MZV’s in P thus
follows from general principles.

5. “Nonanalytic” lattice sums and the centred sign algorithm

In a beautiful paper [9] titled “Strange Series and High Precision Fraud”, Jon
and Peter Borwein present intriguing evaluations of various types of series. One of
the highlights of that paper is the fact that the near-equality

oo | pemV/163/9
g v

(21) =

= 1280640

n=1
is correct to at least half a billion digits, the difference between the two members
of (21) being less that 107500,000,000 " Gymyg like (21) have a “nonanalytical” char-
acter due to the integer part function combined with irrational quantities, here

present in the numerator. The moment sums of the centred continued fraction
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system are of a similar nature, with terms determined by integer-part conditions
appearing in the denominator. We present here ways of estimating them that build
upon methods of [9] and make use of variations around lattice generating function,

like
Ly(2) = Z PALL
m2>1

The Borwein & Borwein constant (21) obtained by differentiation from some Lg(z)
are seen to be dual to the centred moment sums of (8) that result from iterated
integration.

Examination of the basic and centred moment sums of (8) shows that these
quantities are sums over lattice cones, where the lattice cone C(3,~) is defined by

C(8,7) = {(m,n) eN* | mf <n <mn}.

The basic continued fraction case corresponds to a cone C(1,2) (or equivalently
C(%,1)) and the centred case corresponds to a cone C(¢,¢?) (or equivalently
C(¢72,¢71)) . In the latter case, what is involved in the lattice condition inherently
involves the integer part function since, for an irrational #, one has

m < nf if and only if ~ m < |né].

It is a perhaps surprising fact that, despite their nonanalytical character, the centred
moment sums ,6“) can be computed in polynomial time.

THEOREM 4. Let 8 < 1 be an irrational number with sequence of continued
fraction approzimants {pn/qn}> - One has for any integer £ > 1

(22)

ﬁ(e)(g) — Z % _ Z ( (—el)n : Ju( Pn , Qn

a0 Pl =0 Pnt Prt1) (g0 + gn1) P+ Pnt1 Gn + Gnt1

where Js(B,7) is defined for 0< ﬂ,’y <1 and R(s) > 1 as

|log z|*~" |log y|*~"

(23) (ﬁ’ 1 _ -Tﬂy'y 1— .Tl :Byl 'Y)

dx dy.

If 6 is polynomial time computable, then ﬁe)(O) is polynomial time computable for
each integer value of £. In particular, the average number of iterations of the CCF
sign algorithm is in P and it satisﬁes

5 =
¢
The theorem follows from two types of developments: on the one hand, a simple
combinatorial decomposition of lattice cones, on the other hand, a classical formula
for iterated integrals.
First, we state a lemma drawn from the works of Borwein, Borwein, and Mahler,
see [9], of which we propose a direct proof.

) — “2)( po 5) = 10892214740 95380 £ 10~ '°.

LEMMA 1. Let 8 < 1 be an irrational number with convergents {pn/qn}>2,.
The generating function of the lattice cone C(0,0) is given by

kT ar+1 ypk +Pr+1

(24) Z xmyn = Z(_l)k (1 — kayPk)(l — ka+1yPk+1) )

(m,n)€C(0,0) k=0
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PROOF. The sequence of convergents {p, /¢, } is such that the odd subsequence
{P2n+1/q2n+1} is decreasing, and the even sequence {pa, /qgan } is increasing starting
from pg/go = 0. Both have limit . Let A+ B and A— B denote AUB and A\ B.
Then, for any irrational #, the following decomposition holds

Po P1 P1 P2 D2 p3 Pn Pn+1
0,0) = (=, ) — (=, 2) + ((,2)) - _
((0.6)) ((qo q1 2 ((ql a2 ) ((q'z a3 Z an qn+1 PR
between various sets of the form ((3,7)) defined as the intersection of the open
interval (3,7) with strictly positive rational of QT. A decomposition of the same
type for integer open cones follows,
(25)
Po P1 P11 P2 b2 P3 pn Pn+1
C(0,0)=C(—, —)—-C(—, =) +C(=, =) —---= )
©.9) (QO th) (111 CI2) (Q2 Z qn qn+1)

Now, the open interval (pn/qn,Pn+1/qn+1) is the image of interval ]0,00[ by the
linear fractional transformation h defined as h(z) := (P + Pn+1)/ (T + Gnt1)-
Since this LFT is of determinant 41, this proves the equality

cr pn Pn+1 =D [ Dn  Pn+1 :|
qn dn+1 dn  Q4n+1
where D is defined by

b
D[CCL d]:{()‘CH‘Mb,)\c—th) | MpeEN, Ap>1}

The generating function relative to D [ Z Z ] is seen to be

i phatpb yAc+Hd _ - faxz;c 1 ibxidyd,

=1

and this identity combined with the decomposition (25) yields (24). O
Next, a well-known formula for iterated integration relates power series and

Dirichlet series:

It ¢(z,y) = Z«zquwy,

(26) p,q=1
then Z ¢p’q— SISldudv
p°q®
pg=1

(Proof: Expand and integrate termwise!). When applied to (24), the integration
formula (26) yields the two equations (22) and (23), upon the change of variables
r=e ",y =e Y and proper rescaling.

Consider now integer values ¢ for the parameter s. First, we remark that

JZ(/Ba’Y) = ,8(1 7131

with Hy:

1 Ilog Ie 'log(1 —y)[“!
(z 4+ y)?

Furthermore, H, is O(1 ) for { — 00, and the convergents p,, g, are at least equal
to the n-th Fibonacci number F,, so that the general term of the series in (22)
is O (¢~%m). This provides the geometrically convergent representation (22) for

dz dy.
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p¥)(6). Full polynomial-time computability is formally established from there by
observing that the integrands have easily computable series expansions that can be
integrated termwise.

A mock Zeta function. We conclude this section with a mention of a few curious
sums, simpler than p(?), that can be shown to lie in the class P by similar devices.
For 6 an arbitrary positive real > 1, define the “mock zeta function” by

(27) Z Lner’ R(s) > 1.

The basic generating function associated to the mock Zeta function, is closely re-
lated to the generating function of the cone C(0,1/6). Using the relation (24), one
finds easily for 6 > 1,

ZPn+1

o0
imo) _ _#°
Z>1z 1— zp0 Z 1_an 1 — zPnt1’
m> n=0

a relation that is due to Mahler. Then, via the formula for iterated integration in
one variable, the mock zeta function is seen to admit the geometrically convergent
representation

oo

(28) Co(s):C(s)i 1 > (1) Amﬂ(t,pn+1’ppn )2 di,

6] T(s) %= pnpyia 1

where
et/P —1 tet  Ate M
t/p 1—et1—e M’

(29) Q(t,p, A) =

This is the main tool for computing in polynomial time values of the mock zeta
function at the integers. For instance, we obtain “quickly”

1++5
5

=1 —25
Co(2) = Z og[? = 1:29106 03681 14387 48950 47876 £ 107, 4=

6. Transfer operators and sign algorithms

In 1800, Gauss conjectured that repeated applications of the continued fraction
transformation {1/z} to a uniform real number over the interval (0,1) gives rise to
a nonuniform number whose probability density is approximately

— 1 1
(30) V(=) = log2 1+ 2z

Such a property, once supplemented with uniform convergence, says quite a bit
about the stochastic behaviour of continued fraction representations of real num-
bers. For instance, the probability of observing a digit equal to d is in the asymptotic
limit
1/d (d+1)?
P(z) dz = logy ~———~
/1/(d+1) d(d+2)

The situation is now well understood thanks to the works of Kuzmin, Lévy, and

Wirsing, who defined the density transformer associated to the continued fraction
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map

(31) Glfl(z) = Z (mix)Qf(m:-:c)

The characteristic property is that G[f] describes the density of the transform of a
random variable with density f by the continued fraction map U. Gauss’s assertion
is then synonymous to

(32) G'N] =%  as k- +oo,

since 1 is the density function of a uniform variate. The point of view has now
been changed and problems concerning the metric theory of continued fractions are
rephrased as questions regarding the functional-analytic properties of an (infinite
dimensional) operator over some suitable function space. Spectral properties and
eigenfunctions are obviously important objects in this perspective.

In the case of an arbitrary expanding map, with U the shift and H; the set of
inverse branches of depth 1, Ruelle introduced the transfer operator that depends
on a (real or complex) parameter s,

(33) Gslfl(z) = Y W' (@)I° f o h(a),

heH;

and gives back the density transformer when s = 1. The interest of the extension is
the increased descriptive power afforded by the extra parameter s. Here, we shall
make use of the case s = 2 (the sign algorithm) and the case of a complex s (the
sorting algorithm in Section 7).

For a general (analytic) expanding map, we assume from now on two conditions
that supplement the axioms (E;) and (Es) of Section 1:

(E3) There exists a complex domain V that contains Z where each inverse branch
h € H; is analytic and satisfies |h/(z)| > § > 1.

(E4) The derivatives are summable in the sense that >, 4 [h'(2)]" < oo for
some fixed n < 1 and all z in V.

Quite clearly, the transfer operator operates on space Ay (V) formed with all func-
tions f that are holomorphic in V and continuous on the closed domain V. En-
dowed with the sup-norm, A, (V) is a Banach space. The operator G; is bounded
for R(s) > n and is also compact. (The argument uses the “selection principle”
granted by Vitali’s theorem and properties of normal families of functions; see
[23, Ch. 15].) It follows by one of the most basic theorems of functional analy-
sis [37] that the transfer operator has a discrete spectrum: the collection of its
eigenvalues {\;(s)}$2; has no accumulation point, except 0. (More is known since
Grothendieck’s theory of nuclear spaces applies at full strength and the eigenvalues
converge fast to zero in such a way that ) |\;(s)|® is summable for all ¢ > 0.) In
addition, for a positive real value s = o, the operator is in a strong sense positive;
general Perron-Fronbenius properties [29] then imply that the dominant eigenvalue
A1(o) (the one of largest modulus) is unique and simple, so that

() > Pa(@)] = Ps(@)] = -+ = [Mi(0)] - 0.
As a pleasant outcome of these properties, one can essentially treat the operator
G, as though it were simply a finite nonnegative matrix.

The properties specific to the transfer operator G, of the continued fraction map
have been worked out by Dieter Mayer and by Babenko in a series of papers [2, 32,
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33, 34]. In particular, these authors discovered the existence of a hidden Hilbert
space structure resulting in the additional property that the A;(c) are real for real
o. Building on their results, Hensley [21] was able to establish that the Euclidean
ged algorithm has an asymptotically Gaussian behaviour. In a different direction,
the authors have demonstrated in [14, 19, 43, 45, 47] that the transfer operators
can be put to use in order to analyse a variety of continued fraction algorithms.

The secant operators. For a general dynamical system, the transfer operator
does not describe the moment sums ", uf, but a modified form due to Vallée [44]
does. The secant operator G is defined for complex numbers s satisfying (s) > n

as
h(z) — h(y)
-y

8

G;[Fl(z,y) = ) F(h(z), h(y))-
|h|=1
By the chain rule for secants, the iterate of order k is expressible in terms of all

inverse branches of depth &

Gi[Fl(z,y) = )

|h|=k

8

M)~ bW ph(a), h(y)).

-y

In particular, this identity specialized at x = 0 and y = « provides an alternative
expression for the probability distribution of the cost of the sign algorithm given in
(6):

Pr(L >k +1) = GE[1](0, ).
The secant operator extends Ruelle’s transfer operator of (33) in the sense that
“the diagonal of the secant is the tangent”:

Gs[F|(z,z) = Go[fl(z) ~ where  f(z) = F(z, ).

Here, asymptotic properties are needed, and they involve dominant spectral
properties of the operator G that are closely related to the corresponding ones for
Gs. The operator G, acts on the space By, (V) formed with all functions f that
are holomorphic in the product V x V and continuous on the closed domain V x V.
Endowed with the sup-norm, B, (V) is a Banach space and the operator Gy is
bounded, and therefore compact (again by classical properties of bounded sequences
of analytic functions). Its spectrum is thus discrete, with only an accumulation
point at 0.

The spectrum of the secant operator G; is completely determined in [44]. In
particular, when s = o is real, the dominant eigenvalue pg(0) of G is the same
as the dominant eigenvalue A (o) of G while the subdominant eigenvalue pg(0)
satisfies |p2(0)| < p1(0).

Such dominant spectral properties provide an asymptotic form for the iterates
of Ruelle-Mayer operators where the k-th iterate of a positive function will have a
regime dictated by A;(0)* with an error term of the order of ua(c)*. Specializing
the discussion to moment sums, we thus find for the sign algorithm and an arbitrary
analytic expanding map

Pr(L>k+1)= > uj =G [1](0,a) = CAi(2)* + O(p2(2)").
|h|=k
Thus, for an arbitrary analytic expanding map, the sign algorithm exhibits an

exponential decay of probabilities and the rate of decay is the dominant eigenvalue
of the standard transfer operator Gs.
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In the particular case of the basic continued fraction algorithm, we find, by
methods discussed later in this section, a value A\;(2) ~ 0.19945 with at least 25
decimal places, and 7i5(2) ~ —0.07573; see (34) below. (The constant A;(2) is de-
scribed under the name of “Vallée’s constant” in Finch’s repertoire /(\)f mathematical
constants [16].) In the case of the centred algorithm, we estimate A;(2) =~ 0.07738;
see (35). These values explain quite well the empirical observations on the geometric
decay of probabilities presented at the beginning of Section 3.

THEOREM 5. The probability that the BCF-Sign Algorithm performs at least
k + 1 iterations satisfies

Pr(L > k+1) =CXi(2)* + 0, (2)%),

where A\;(2) = 0.19945 and i,(2) ~ 0.07573 are given by (34), C ~ 1.3.
The probability that the CC F-Sign Algorithm performs at least k+ 1 iterations
satisfies

Pr(L > k+1) = CXi(2)" + O(7i(2)),

where A1 (2) ~ 0.07738 is given by (35), |i2(2)| < A1(2), and C > 0.

Numerical estimates of the spectrum. We now describe a piece of exper-
imental mathematics aimed at providing inter alia estimates on dominant and
subdominant eigenvalues of the transfer operator Gs in the particular case of the
continued fraction algorithms. Let II,, o, f(2) be the operation (a “projection”) that
selects the terms till order m — 1 inclusive in the Taylor expansion of the (analytic)
function f(z) at the point a. We introduce the truncated operators

H’m,a © gs © Hm,aa

that is to say, we examine the effect of G5 on initial segments of the Taylor expan-
sion of functions. Such truncated operators are finite-dimensional. In the case of
the continued fraction maps, their eigenvalues appear to convey quite a lot of infor-
mation on the spectrum of the full operator G, while being accessible to numerical
analysis.

The transform of a monomial ™ by a continued fraction transfer operator
involves the Hurwitz zeta function that is classically defined by

> 1

s, w) = R
C( ’ ) Z (m + w)s’

m=0

and is such that its Taylor expansion at a point a is expressible in terms of the

collection of values ((s + j,a). Thus, viewed as acting on series expansions at

x = a, the operator G, is expressed by an infinite matrix M = (M; ;), where M; ;

is the coefficient of (z — a)* in Gs[(z — a)?]. For instance, the BCF operator with

a = 0 corresponds to the infinite matrix (M); ; with

— if2s+i+j—-1 .
M;;=(-1) ( ; )C(23+1+J)a
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and the infinite matrix for s = 2 starts as
¢(4) ¢(5) ¢(6) ¢(7)
—4¢(5) —5¢(6) —6¢(7) —7((8)
10¢(6)  15¢(7)  21¢(8)  28((9)
—20¢(7) —35¢(8) —56¢(9) —84¢(10)

We now restrict attention to the basic continued fraction operator, and, guided
by numerical experiments, adopt the value a = 1/2 that gives faster convergence.
Using computer algebra, we have determined the eigenvalues of the truncated ma-
trices TU™ for many values of m < 100 and numerical accuracy up to 200 digits.
Examination of all the eigenvalues of these truncations reveals that most of them
stabilize to a fixed set of definite values, with the occasional occurrence of some
ghost values that eventually disappear as m increases. It is then natural to conjec-
ture that the stable limit values do yield the complete spectrum of G.

We have developed a campaign of experiments based on the Pari-Gp and Maple
systems (see [14] for an earlier account) in order to determine the spectrum of G;
and G,. It is based on the truncation principle and on the following three additional
points.

— Examination of the first few values of the spectrum led us to conjecture that
Xj(0)/Aj+1(c) tends to —42?. A heuristic reason is that the operator G, is
in a sense (e.g., for large s = o) “dominated” by its first term, which is a
composition operator

1 1

slfl(z) = mf(m),

whose eigenfunctions and spectrum are explicit [39]. The surprise is that the
approximation of the spectrum holds both for small values of ¢ (o = 1,2)
and for large eigenvalue indices. This observation serves as a convergence
accelerator as it enables one to filter out ghost eigenvalues, thereby making
it possible to access smaller eigenvalues much faster.

— The traces of the continued fraction operators are computable in polyno-
mial time, as shown in [14] by means of a multivariate version of Vardi’s
“zeta summation trick” [48]. Filtered eigenvalues can then be confirmed by

Ql

comparing with the trace ’I‘raz and this check is reliable since cancellations
cannot occur for s = o as the spectrum is real, by virtue of the hidden
Hilbert space structure [2, 32].

— For real s = o, the estimate of the dominant eigenvalue A;(c) at least can
be certified thanks to a technique of “test functions” detailed in [14].

In this way, we have obtained highly convincing values for the first 37 eigenval-
ues of the basic operator G, with an accuracy almost certainly better than 10725,
Here is a listing of our first estimates:

A1(2) = +0.19945 88183 43767 26019 18456
(34) Zg (2) = —0.07573951408436060892 78089
A3(2) = +0.02856 64037 69818 52783 00174
Ai(2) = —0.01077 74165 76612 69829 31408.

The same process has also given us values of the spectrum when s = 1, including
an estimate to more than 30 digits of accuracy of Wirsing’s constant Az(1) (that
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dictates the speed on convergence to the stationary regime in (32)),
X2(1) = —0.30366 30028 98732 65859 74481 21901 £ 10~

This has made it possible to correct some spurious values in Knuth’s classic account
of the subject [27]. Another application of detailed spectral estimates is the deter-
mination of Hensley’s constant H = Xll'(l) that expresses the variance of Euclid’s
algorithm, where we obtain:

H =9.08037 31646 - - - .

The spectrum of the centred operator 62 is at the moment less well understood.
By the truncation method, we have found the dominant eigenvalue

(35) 21(2) = +0.07738 53773 83629 09062 03319 + 10~2°,

which can be certified by the already mentioned method of test functions. Some of
the subdominant eigenvalues probably include values near

(36) —0.00375 3075261163 03856, —0.0001051799, +0.00000 51256,

but the spectrum seems to obey a more complicated pattern than in the basic case.

The truncation technique being versatile enough, has also enabled Hensley [22]
and Vallée [46] to determine numerically the Hausdorff dimension of various Cantor
sets for continued fraction expansions.

7. Riemann hypothesis and sorting algorithms

We conclude this paper by examining the cost P(n) of sorting n uniform real
numbers by means of the basic continued fraction algorithm. What is needed is a
characterization of the asymptotic dependency of P(n) on n. The starting point is
the exact expression of P(n) provided by Theorem 2 as a difference of the moment
sums p(®.

We make use here of a well-known fact of complex analysis: Asymptotic proper-
ties of a number sequence are strongly related to singularities of an analytic function
that extrapolates the number sequence. In the case of finite differences, this principle
is vindicated by the method of Nérlund-Rice integrals [18, 36]. Let f,, be a number
sequence and ¢(s) a holomorphic function that extrapolates the sequence f, in the
sense that f, = ¢(n). Then, the equality

_ 1 s n! o " (n \n—k
(37) Fon := 2i7r/L¢( )3(371)(3—2)---(57n)d Z(k>( D" e

k=1

holds, by virtue of the residue theorem, provided L is a simple contour that encircles
the points 1,2,... ,n while avoiding the singularities of ¢(s). What happens next is
dependent upon ¢(s) admitting a meromorphic continuation to the complex plane
and being of moderate growth in right half-planes. Then, a shift of the contour till
R(s) = —T yields

(38) R, = — XS:ReS (‘fb(s) s(s — 1)7!. (s— n)) ’

where the sum is extended to all poles s of #(s) in R(s) > —T'. A simple pole of the
integrand at some nonintegral point s = s¢ will for instance contribute a quantity

o R e 110)
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Poles farther to the right induce “dominant” contributions, multiple poles introduce
logarithmic terms (see [18] for details), and nonreal poles sg = oo + it lead to
periodic fluctuations since

nso — nUO‘HtO — noo ezto logn‘

This situation specializes to the case of the sorting cost as follows. We start
from the integral representation induced by (37),

- 1/2+ic0 '
(40) Plotl) 1 / H(s+1) n
1/2—ic0 s(s—1)---(s—n)

n+1l  2im
assuming that the moment sums of complex index p(s‘H) exist. According to the
principles expressed above, we thus need to determine the nature of the singularities
of the integrand to the left of R(s) = 1/2, and more specifically when R(s) lies in
(=3,3)-
Moment sums of complex index. The expressions stated earlier in (11) for
p¥) with £ an integer clearly lift to complex values of s. In particular, we have for

R(s) >1

ds,

(8) _9—s _ ol—s s—1 C(S)2 s(_+(s,s)

(41) pl¥ =275 —217° 4 (2 1) <(28)+2 t@s)

where (~7T is the alternating double zeta function of Section 4. The singularities
arising from the zeta terms are apparent: there is a simple pole at s = 1 due to
¢(s) and there are poles at the zeros of the term ((2s) present in the denomina-
tor. So everything eventually rests on the nature of (~%*(s,s). For this function,
Euler-Maclaurin summation implies that (=7 (s, s), like its simpler counterpart the
alternating zeta function ¢~ (s), is an entire function. Furthermore, the identity

(12) CH(1,1) = — 5 (log 2)?

is elementary and known since Euler’s time; see [20] and Figure 4.
Thus, p{®) is meromorphic for all s. The expansion of p(® at s = 1 is then
found by a simple calculation:

1
(43) P =Ko— + K +0(s = 1),
with
log 2 log 2 log 2)2 "(2)log2 1
K0:6°§ , EK=121°% +9(°g2) —727“)4Og -
s s T T 2

The first order constant K coincides with the inverse of Lévy’s entropic con-
stant, that is, the entropy of the continued fraction map. The second order constant
turns out to be a variant of Porter’s constant P defined classically by the constant
term in the average number of steps of Euclid’s algorithm: we find by identification
with the values listed in the reference site for constants [16] the equality

1
(44) P =2K —2Ko + .

The other singularities of p(s) in the critical strip 0 < R(s) < 1 are those of the
denominator ((2s). Each of them is at 1/2 times a nontrivial zero of the Riemann
zeta function. If such a zero is at s = o + it and is simple, then, the contribution
has an order given by (39). The details of contour surgery are easily supplied and
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FIGURE 5. A plot (left) of P(n) — (Konlogn + Kin) for n =
2..200 suggests a smooth convergence to a constant. A plot (bot-

tom) of the empirically determined
0.365 2.02 13.5
P(n) — <K0nlogn + K1n —0.21035 + —— + — + —&-
n n n
against logn, for n = 8..200, reveals the first nontrivial zeros of
¢(s). In fact, both graphs represent functions that will eventually

oscillate unboundedly between —oo and +oo.

they are very similar to the ones used in Mellin transform asymptotics. See [18] or
the treatment of sums of Gram, Ramanujan, Hardy-Littlewood, Riesz in analytic
number theory [41, Ch. 14].

We then obtain:

THEOREM 6. The expected cost of sorting m uniform real numbers given by
their basic continued fraction representations satisfies

P(n) = Kgnlogn + Kin + Q(n) + K + o(1),
for constants Ky, K1, Ko € R, where Ky is Lévy’s entropic constant and Ky is a
Porter-like constant:
6log 2 log 2
Ko= 2%, K =188
T

w2

(log2)* . log2¢"(2) 1

2 4 2

The function Q(u) is an oscillating function with mean value 0 that satisfies
Q(n) = O(u'?),
where § is any number such that
§ > sup {R(s) | ((s)=0}.

The overall shape of this result is given in [12] where the derivation was based
on a technique of “Dirichlet depoissonization” and Mellin transforms. We add here
an explicit determination of K; and a perhaps more straightforward approach to
the asymptotic analysis via Norlund-Rice integrals.

Comparing numerically P(n) and the initial terms of its asymptotic expansion
as given by Theorem 6 leads to interesting observations. Using Cohen-Villegas-
Zagier acceleration of summation provided by Pari-Gp as discussed in Section 4,
we have determined the exact values of P(n) for n = 2..220 with at least 16 digits

+9
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of accuracy, which was achieved by determining the {p(e)}%ioz to about 100 digits
of accuracy. First, in the given range, there is apparently a smooth convergence of
P(n)— Konlogn— Kin to a constant (reflecting K») that is near —0.2; see Figure 5
(left). By successive experimental adjustments—the process looks like restoring a
blurred photograph in a crime fictionl—we are led to considering

(45) B(n) = Konlogn + Kin — 0.21035 + 0365 + ¥ + g
n n n

For n in the interval [8..220], the difference P(n) — B(n) then shows four slightly
damped oscillations of minute amplitude that are between —0.002 and +0.002 and
have a period slightly less than 1. However, we know that this difference must
eventually tend to +oo with a regime of O(n'/4) at least! The oscillations that
are displayed in Fig. 5 (right) are reflexes of the nontrivial zeta zeros. In effect,
corresponding to the first two nontrivial zeros at zg = % + 14.13472¢, we have
IT(—20)| = 2.32- 1075, so that the corresponding fluctuation has amplitude of the
order of 10~%n'/* with an oscillating term similar to cos(27 4% ). These facts match
the numerical data quite well. In addition, due to the fast decay of the gamma
function towards +ioco, we estimate that any failure of the Riemann hypothesis
could only be detected on P(n) for values of n well beyond the extraordinary bound
of 101,000,000,000 (gee [12] for a discussion).

Constants and operators. The operator theory of Section 6 nicely completes
the picture as regards the irruption of Lévy’s entropic constant and of a Porter-
like constant in Theorem 6. What happens is that the quantity p(s), which is the
Dirichlet series of fundamental intervals, admits a representation as a quasi-inverse,

(46) P = (1= G)H(0.1) = 1= 8 [ 57 )0)

so that its pole at s = 1 must involve the derivative Xl(l) of the dominant eigenvalue
function s — A(s) at s = 1 as its first order constant, while X’(l) is otherwise known
to equal the entropy of the continued fraction map as appears in Ky. The quantity
K is the second order constant in (43) and, under the operator framework (46), it
must be related to derivatives of A(s) and projectors at s = 1. The situation then
parallels that of Euclid’s algorithm where Porter’s constant is also a second order
constant at s = 1 in the expansion of another expression

(47) (@I~ om0

so that the relation between K and P is perhaps not totally unexpected.
We summarize in Fig. 6 the major constants encountered in the paper.

Open problems. We conclude this paper with a few open problems that we feel
of interest.

(P1) Why does Cohen-Villegas-Zagier acceleration work so well with the mo-
ment sums of the basic continued fraction system? It can apparently even be used to
provide analytic continuation beyond the convergence region of double zeta values.

(P2) Which of the alternating double zetas relate to other constants of analy-
sis? What is the exact nature of relations with incomplete beta integrals, Nielsen-
Ramanujan constants [16], and other polylogarithmic constants of [7]?

(Ps) Prove a version of the conjecture (Section 6) regarding the spectrum of
the BCF operator G,.
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Cost of BCF-sign p® 13511315744 < double zeta (~1(2,2)
Cost of CCF-sign p  1.0892214740 Lattice sum

Prob. decay of BCF-sign A;(2) 0.1994588183 Dominant eigenvalue of G
Prob. decay of CCF-sign X1(2) 0.0773853773 Dominant eigenvalue of Go
Sorting, 1st order (BCF) K, 0.4213829566 <> Lévy’s entropic constant
Sorting, 2nd order (BCF) K; 1.1481508398 <> Porter’s constant

FIGURE 6. The major constants encountered in the analysis of
the sign and sorting algorithms.

(P4) Why is the operator truncation method so effective (and obviously sound)
for the BC'F operator?

(Ps) Investigate theoretically and numerically the spectrum of the CCF oper-
ator Q,.

(Ps) Explain the occurrence of Porter’s constant in the analysis of sorting. In
other words, is there some direct relation between sorting and the GCD algorithm,
as possibly suggested by (46) and (47)?

(Pr) Analyse the limit distribution of characteristic parameters of the continued
fraction fraction sorting algorithm. Candidates are path length, depth of nodes, and
number of nodes; see [12] for what is currently known (e.g., height). In view of what
exists for binary tries (the Jacquet-Régnier theorems [31]), we expect Gaussian laws
for these parameters.
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