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Identifiabilité au sens des Moindres Carrés du
Coefficient de Diffusion dans une équation elliptique
bidimensionnelle au vu d’une observation H!

Résumé : Nous étudions l'identifiabilité au sens des moindres carrés du coefficient de
diffusion dans une équation elliptique en dimension deux. Cette propriété garantit la stabilité
Lipschitz de la solution du probleme des moindres carrés par rapport aux perturbations sur
les données, que ces derniéres soient atteignables ou non. L’analyse montre I'influence de
la direction de 1’écoulement sur le parametre & estimer. L’identifiabilité est obtenue pour
chaque échelle d’une représentation multi échelle du parametre inconnu.

Mots-clé : estimation de parametre, coefficient de diffusion, probleme inverse, identifia-
bilité, moindres carrés
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1 Introduction

This paper is devoted to the analysis of output least squares identifiability of the diffusion

coefficient in
—div (agradu) = f in Q, (1.1)

where 2 is a bounded two-dimensional domain and appropriate boundary conditions are
added to (1.1). To identify a from data z a least squares formulation

1
minimize 3 |Oug — 2|* over C, (1.2)

is used, where O denotes the observation operator, C' stands for the set of admissible pa-
rameters and u, denotes the solution to (1.1) as a function of a. Corresponding to C we
define the set of attainable outputs by D = {Ou, : a € C}. The parameter a € C is
called output least squares identifiable if there exists a neighborhood V of D such that for
every z € V the least squares problem (1.2) has no local minima and a unique solution
in C depending Lipschitz-continuously on z € V. The precise definition of this concept is
contained in Section 7. Note that output leasts squares identifiability is a stronger property
than parameter identifiability which is the injectivity of the mapping a — QOu,, for a € C,
and also than parameter stability, which refers to the continuous dependence of the inverse
of a = Ou,. Output least squares identifiability takes into account the practically relevant
situation where due to errors in the data and in the model, the data z may not be contained
in the attainable set D. As a consequence the problem of unique and continuous projection
of z onto D must be considered. - Let us mention that our results can easily be extended
to equations containing lower order terms.

In order to achieve these strong stability results, we shall limit ourselves to the case of a
distributed H' observation, where Ou, = grad u,. Of course, it can seem unrealistic that
one can observe or measure the gradient of u throughout Q. However, the results of this
paper can be combined with the technique of statespace regularization of [CK2] to handle
the somewhat more realistic case of a distributed L? observation. Output least squares
identifiability with boundary measurement is a completely open problem.

We briefly comment on some related works. In [CK1] output least squares identifiabilty
for the one-dimensional version of (1.1) was considered. In that case one can take advantage
of an explicit representation of the solution. Identifiability and stability of a in (1.1) was
treated in several papers. We mention [R] and [C'G], where the analysis is based on the
method of characteristics for the hyperbolic equation for a, which arises from (1.1) when
f and u are given functions. The analysis in [/K] is based on variational techniques. All
these results refer to the case of distributed parameters. Many research efforts focused on
identifiability in the case of boundary observations. Relevant references can be found in [I],
for example.
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4 Guy Chavent and Karl Kunisch

2 The inverse problem

We consider a domain 0 C IR? such that its boundary 69 is partitioned into I'p, I'y, and Ty,
1=1,---,N. Here I'; represent the boundaries of holes, which will be used to model source
and sink terms, and I'p and T'y are a partition of the outer boundary of Q corresponding
to Dirichlet and Neumann boundary conditions.

We define the Hilbert space

V={ve H(Q):v|r, =0, v
[ollv = [Volee,

r; =v; = const ,i=1,---,N} (2.1)

where in case I'p = ¢ the condition v|r, = 0 is replaced by fQ v = 0. It is supposed that Q
satisfies

Q is bounded and connected; 9Q € C*'; T'y,T'p and

T;,i=1,---,N are pairwise disjoint . (22)
On V we define the linear form L by
L) = [ofo+ [p, 9v+ XL, Qivi, forveV, (2.3)

where f € LP(Q),g € LP(Ty),for some p > 2,Q; e Ri=1,---,N,
with the additional condition that
N
/f +/ 9+) Qi=0if Tp=¢.
Q I'n i=1

Henceforth we denote by C' the set of admissible parameters a. The precise conditions
on C' we be given further below. In particular they will allow to associate to every a € C
the solution v = u, € V defined by

Q) / aVuVv = L(v) forall veV,
Q

which is the variational formulation of the elliptic equation

—div (agrad w) = f in Q
u|FD =0, ag_Z|FN =9 (24)
Ir, ad® = Q;, w= unknown constant on I';,;i =1,---, N.

We shall be concerned with the inversion of the mapping a — grad u, from L2(Q2) to L2 (1)
in the least-squares sense:

(P) minimize 1| grad u, — 2|32 over a € C,

where z € 1.2 (1) is a given observation. Qur objective is to find conditions on C such that

INRIA



The Output Least Squares Identifiability of the Diffusion Coefficient 5

the parameter a is output least squares (OLS-)identifiable on C, i.e. that the nonlinear least
squares problem (P)is quadratically (Q-) wellposed in the sense that:

D ={grad u, € L*(Q):a € C}

possesses a neighborhood V such that for every z € V problem (P) has no local minima
and admits a unique solution a, such that the mapping z — a is Lipschitz continuous from
L2 (Q) to L?(Q). For this purpose we require that the parameters belong to the space

£ ={a € C*(Q):a|r, = unknown constant a; =i =1,---,N}, (2.5)
equipped with the norm || - ||go.1. The set of admissible parameters C' is assumed to satisfy:
Ccla€an<a(r) ae in Qlalcor <apn}, (2.6)

and
C is convex and closed in L?(Q), (2.7)

where 0 < a,,, < aps are given constants. Note that the image in C'(C &) of the mapping 2z —
a is considered in the L?-norm, whereas the set C is endowed with the norm of £. Condition
(2.6) ensures that (Q) has a unique solution for all @ € C'. Moreover, the requirement that
a is Lipschitz continuous, together with the modelling of source and sink terms by holes,
and the regularity hypotheses (2.2), (2.3) for , f, and g imply that {|us|w2r:a € C} is
bounded, (see [T], pg. 180). Since W2P(Q) is continuously embedded into C*(Q) for every
p > 2, then exist ups and vy such that

[ta|Le < upr,|grad ug|Le < vy for all a € C. (2.8)

The hypothesis that the parameters satisfy a|r, = a; = unknown constant is the 2-D
generalization of the hypothesis that a is constant on some neighborhood of each Dirac
source term, which was required in the 1-D case to ensure OLS—-identifiability [CK1]. It
is also physically not too restrictive, as one can assume that the size of I';’s, which model
the well boundaries, are small compared to the size of ). - The convexity and closedness
condition (2.7) are required for the study of OLS—identifiability by the geometric techniques
for nonlinear least squares developed in [C1],[C2].

As a first step towards OLS—identifiability we shall analyse in Section 3 inverse stability
estimates of the form

(S) |(a — b) grad u, L2 < k|b(grad ug, — grad up)|Le,

for k > 0. As this stability estimate ought to hold for perturbations @ — b in any direction
b € £, we attempt to prove (S) only at points a € C' which are identifiable:

Definition 2.1 The parameter a € C is identifiable in £ if, for every b € £ which admits a
solution up € V to (Q) one has

up = u, implies b= a. (2.9)
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6 Guy Chavent and Karl Kunisch

However, we shall see in Section 3 that one cannot find for any £ > 0 an infinite set C
satisfying (2.5), (2.6), (2.7) on which (S) holds uniformly. Therefore we reduce in Section
4 our attention to finite dimensional parameter sets: For this purpose let £,, n € N be a
family of subspaces such that

& = {constant functions} C & C & --- C £ C C¥H(Q)
dim &, < oo for each n

U & =12,

neN

(2.10)

where the closure is taken in L%(Q), and define for all n:
Cn=0N&,. (2.11)

In order to have a chance for (S) to hold uniformly on C,, we require that the data of
the problem, i.e. (0, Tp,Tn, Ty, f,9, @i, @m,anr,Ey), are chosen such that
(H) for all n € N one has
a € C, implies that a is identifiable in &,.

For the definition of identifiability of a € C,, in &, one simply replaces C, £ in Definition 2.1
by Cp,&n. Under condition (H) we shall be able to prove in Section 4 the inverse stability
estimate (S) on C,, for all n € N, for some k = k,,, with lim &, = oo, and to estimate, in

n—oo

Section 5, sensitivity, deflection and curvature of the a — grad u, mapping. These estimates
will be used to prove, in Section 6, that a is OLS—identifiable on C,, for each mn, provided
the diameter of C'in L*(Q), denoted by diam,, is small enough. The last section will be
devoted to the analysis of the advantages and disadvantages of parameterizing the problem
by b =1/a instead of a.

Before proceeding to the next section we make sure that our theory is not empty by
giving an example for sufficient conditions which ensure that (H) holds. We require two
technical lemmas.

Lemma 2.1 The parameter a € C is identifiable in € if and only if
heé& and / h grad u, gradv =0 for oall v €V implies h = 0.
Q

As a consequence we observe that if @ € C is identifiable in £ and h # 0, h € £, then
necessarily h grad uq # 0.

Lemma 2.2 Fora € C and h € £ define u = u, and v = %“ Then v € V and

/thmdu- grad v = %/Q%| gmdu|2+%/gz—zuf

1 h? X w2
+35 T ug+ E = u; Q;.
I'n =1 N

INRIA



The Output Least Squares Identifiability of the Diffusion Coefficient 7

Proof. Since C C £ C C*'(Q2) one has v = & € H'(Q2). Moreover v satisfies the boundary
conditions defining V and hence v € V. It follows that

/hgradu- grad v = /%2|gradu|2+%/%gradu- grad h?
Q Q Q

— 'f:—;‘ grad a - grad u.
Q
Integrating by parts the second term on the right hand side implies

/thradu- grad v = %/thﬂgradu|2—%/ﬂh2(%Au+a%grada- grad u)

+%/ ughy +1 f: ;i Qi g;,
Ty i=1 i
which, utilizing —aAu— grad a- grad u = f gives the desired result. O
Theorem 2.1 Let the data of the problem satisfy
e f=9=0,
e (i,i=1,---,N are not all zero,
e 0<an, <apy
o |I;,i=1,---,N, are sufficiently small,
Then for all n, all a € Cy, are identifiable in &, and (H) holds.

Proof. Let n € N be given. Let a € C,, and u, denote the solution to (2.4). We argue that
grad u(a) cannot vanish on a set I of positive measure. Let v denote a curve in 2 connecting
the inner boundaries I'; to I'p UT'x such that Q\~ is simply connected and meas v = 0.
Then I, = (Q\7y) NI satisfies meas I, > 0. From [AM], Theorem 2.1 and Remark it follows
that either u, is constant on Q\~v and hence on Q or u, has only isolated critical points,
i.e. points z satisfying Vu(z). But u, cannot equal a constant over 2 since this violates
the boundary conditions at the wells I'; at which @); # 0. On the other hand the number of
isolated critical points in I, can be at most countable, and hence meas I, = 0. Consequently
meas {2 : Vuq(z) =0} = 0.

Suppose that I'; surrounds for each s = 1,---, N, a fixed source/sink location z;. If |T';| — 0,
for all ¢ = 1,---, N, the solution u, converges towards the weak solution associated to a

N
right-hand side with Dirac source term ) Q;6(z — z;), which is singular at x;. Hence
i=1

RR n“ 4067



8 Guy Chavent and Karl Kunisch

Ug|r; = Uqg,i — 00 if Q; > 0 and u,|I'; —» —o0 if Q; < 0. Since C), is compact and ¢ — u,,;
is continuous, we conclude that for |T';| sufficiently small the solution u, satisfies

Ui @i >0 for ¢=1,---,N, and all a € C,.
Henceforth it is assumed that |T;|,4 = 1,---, N, is sufficienty small. For each a € Cp,
Lemma 2.2 implies that

huq
a

for each h €&, and v =

/h grad u, - grad v > %/ %2|grad g |2
Q Q
Since |grad uq(z)| > 0 a.e. on Q,

/h grad u, - grad w =0 forall weV
Q

implies, by choosing w = hfl‘“, that A2 = 0 a.e. on Q and hence a is identifiable in &, by
Lemma 2.1.

3 Decomposition of L?*(2)

It will be convenient to denote by (-,-) the scalar products in L2(Q) and L? (). Then for
every a,b € C we obtain from the variational formulation (Q) defining u, and wu; that

((a —b) grad u,, grad v) = (b( grad up — grad u,), grad v), (3.1)

for all v € V. This suggests to associate to V an equivalence relation ~ of vectorfields in
L2(Q) according to

-

~¢ if §-gradv=¢q -gradv forall vev, (3.2)

<y

to denote by

G =L*Q)/~ the quotient space (3.3)
G+ the orthogonal complement. :
and by
P and P+ the orthogonal projection in I.?(2) onto G and G=. (3.4)

The decomposition
L2(Q) =GoGH

INRIA



The Output Least Squares Identifiability of the Diffusion Coefficient 9

is, by construction, adapted to the elliptic problem (Q). We further introduce
W ={y € H(Q):¢|r, =0},

where the condition [, 9 = 0 is added to the definition of W if Ty = ¢. For ¢ € H'(Q)
and 9 € H(Q) x H*(Q) we define

B¢
- Ox2 - Oy OYn
ot ¢ = and rot ¢ = — — —.
r ¥ Ay nat w 85131 63]2
T Bz1

The following representation for G and G can be obtained.

Proposition 3.1

G ={gradyp: peV}
G+ ={roty: e W}

Moreover, for every ¢ € 1?(2) one has
P§= grad ¢, Pr@= rot 1,
where ¢ € V and ¢ € W are given by

(grad ¢, grad v) =(q, gradv) for allv €V,
(rot ¢, rot v) = (g, rotv) for allv e W.

Except for the atypical boundary conditions this decomposition is rather standard. For
convenience an outline of the proof is given in the Appendix. The identifiability condition
can now be reformulated as

Proposition 3.2 A parameter a € C (respectively Cy,) is identifiable in € (resp. £,) if and
only if:
h#0 and h € & (resp. &,) imply P(h grad u,) # 0.

The proposition follows directly from Proposition 3.1 and Lemma 2.1.

4 From which direction can an identifiable parameter
be recovered in a stable way?

Let a € C be a given reference parameter and let b € C be a possibly different parameter.
We investigate in this section conditions on b for which the stability estimate (S) holds.
From (3.1) we have

(a —b) grad u, ~ b( grad up — grad u,), (4.1)

RR n“ 4067



10 Guy Chavent and Karl Kunisch

so that
l(a —b) grad usllc = [|b( grad up — grad u,)lla (4.2)
< |b( grad up — grad wele. )
We decompose (a — b) grad u, on G @ G*:
(a — b) grad u, = grad ¢ + rot 1, (4.3)
where ¢ € V and ¢ € W are given according to Proposition 3.1 by
(grad ¢, grad v) = ((a — b) grad u,, grad v) for all v €V, (4.4)
(rot 9, rot v) = ((a — b) grad u,, rot v) for all v € W. (4.5)
Clearly one has
grad ¢ = P((a — b) grad u,), rot ¢ = P ((a — b) grad u,). (4.6)
Moreover
(@ — b) grad uall¢ = [P((a —b) grad u,)|L:
which together with (4.2) implies
|P((a —b) grad ug|re < |b(gradup — grad wg)|pz. (4.7)
Defining for M > 0 the set
Su(a)={beC: |PL((b—a)grad uy)|p: <
(4.8)
M|P((b—a) grad u,)|L2},
we conclude that
[(b—a) grad uqlr2 < (14 M?)Y2|P((b— a) grad ug)|L2, (4.9)

for all b € Spr(a). Combining (4.7) and (4.9) implies

Proposition 4.1 Let M > 0 and a € C be given. Then for all b € Syr(a) the stability
estimate (S) holds with k = (1 4+ M?)'/2:

[(b—a) grad ug|r> < (1+ M?)'2|b(grad up — grad u,)|Le. (4.10)

Hence the directions b — a, with b € Sar(a) are those from which the parameter a can be
recovered within C' with a stability constant (1 + M?)'/2. We investigate now the shape of
Swm(a). The set Spr(a) is the intersection of C' with a wedge having its vertex at a. Clearly
a € Sy(a). If a is in the E-interior of C, Spy(a) also contains parameters of the form
b= a+ ty(u,) for t small enough, where v is any regular function. In fact, in this case the
gradients of b — a and u, are colinear so that P1((b — a) grad u,) = 0 (see (4.14 below),
and hence (S) holds with M =0 and k = 1.

INRIA



The Output Least Squares Identifiability of the Diffusion Coefficient 11

Proposition 4.2 Let a € C be identifiable in £. Then

U Sm() =c. (4.11)

M>0

Proof. Let b € C with b # a. As a is identifiable it follows from Proposition 3.2 that
P((b—a) grad u,) # 0. Hence b € Syr(a) for M sufficiently large. O
We next interpret the quantities which enter the definition of Sys(a).

Lemma 4.1 For every a € C and h € £ we have

|div (b grad uo)||g-1 < |P(h grad uy)|L2 < |h grad ug|pz, (4.12)

|lrot b grad ua|lw+ = |P(h grad u,)|p

< min{Cy|rot h - grad u,|, |h grad uy|}, (4.13)

where Cyy is the Poincare constant in W.

Proof. From Proposition 3.1 we have
|P(h grad ug)|L> = |grad ¢| > = sup{( grad ¢,¢') : ¢ € L2,|¢|.> = 1}.
But q_7 = grad v + rot w with v € V and w € W, so that
|P(h grad u,)|: = sup {(grady, grad v+ rot w):
v € V,w € W,| grad v|?> + |rot w|* = 1}
= sup {(grady, grad v):v € V,| grad v| =1}

and
|P(h grad u,)|r2 = sup {/ h grad u, - gradv :v € V,| grad v| = 1} .
Q

These estimates imply by the Cauchy—Schwartz the second inequality in (4.12). The first
follows from H}(Q) C V. From Proposition 3.1 we obtain as well that

|PL(h grad u,)|2 = (4.14)

sup {/hgradua-ratw:wEW, |gradw|:1}.
Q

By Green’s formula we find:

/ h grad u, - 1ot w = / rot (h grad ug) w — haua w. (4.15)
Q Q s OT
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12 Guy Chavent and Karl Kunisch

Since u, = 0 on I'p and u, = const on each I';, we have %us — () on I'p and on T;i =

1,---,N,and w = 0 on I'y. Thus all boundary terms vanish. From (4.14), (4.15) and the
fact that rot(h grad u,) = rot h - grad u, we find

|PL(h grad u,)|L: = sup /(r6t h - grad ug)w,
weW, | grad w|=179

which, by Poincarés inequality in W shows that
|PL(h grad u,)|L2 = |rot h- grad u.|w- < Cw|rot h- grad ug|p:.

Combining (4.14) and the last estimate implies (4.13) and the lemma is proved. O
Lemma 4.1 implies that Sar(a) contains all b € C such that h = b — a satisfies

Cwrot h grad ug| < M| div (h grad ug)|g-1-

Hence we see that the perturbations from which a can be stably recovered are, speaking
loosely those whose gradient tends to be mostly oriented along the flow lines of u, at each
point z € Q. In particular, a cannot be recovered stably from perturbations h such that
div(h grad u,) = 0. When u, is harmonic (e.g. if f = 0 and a = const), these unstable
perturbations are such that grad h- grad u, = 0. This corresponds to the intuition that the
observation of the pressure field grad u, gives little information on the diffusion parameter
a orthogonal to flow lines.

We next show that if a can be recovered stably from b it can also be recovered stably,
but with a larger constant, from all ¢ € C in some L2 neighborhood of b:

Theorem 4.1 Let a € C be identifiable in £, b € C, b # a be given, and define:
|PL((b—a) grad u,)|z

<M=
0= M= 5 =a) gradu)s -
Then for every M' > M there exists € > 0 such that
Spr(a) D CN{ce L*(Q):|c—blg2 <€} (4.16)

Proof. The mappings A(h) = P(h grad u,) and A+ (h) = P1(hVu,) are continuous from
L2 () into itself. Hence we get for |c — b|z2 <€

|P+((c — a) grad ug)| < [PH((b— a) grad ug)| + [[A*[le,
|P((c — a) grad u,)| 2 [P((b— a) grad ua)| — [|A]le.

Since a is identifiable we have P((b— a) grad u,) # 0. Hence for M' > M there exists € > 0
such that |PL((c — a) grad u,)| |P((c — a) grad u,|~' < M' as soon as |c — b| < e. This
implies (4.16). Of course ¢ = a cannot belong to this neighborhood of b ! O

INRIA



The Output Least Squares Identifiability of the Diffusion Coefficient 13

At this point the question arises whether it is possible for the stability estimate (S), or
(4.10) to hold uniformly for some k = (14 M?)'/? for all a,b € C. In other terms we search
for C satisfying (2.6), (2.7) and

a,b e C implies b € Sy (a). (4.17)

We give a negative answer in the sense that there is no infinite dimensional C' with
nonempty E-interior satisfying the specified properties.

Suppose that such a C exists, and let a be an element of the £-interior of C. Further let
B denote a ball with center a and radius € contained in C. Then (4.17) would imply that
B C Sp(a) and hence as Sps(a) is the intersection of C' with a wedge, that

|PL(h grad u,)|L: < M|P(h grad u,)|: for all h € &. (4.18)

We show on a simple example that (4.18) cannot be true in general. For this purpose
consider (Q) with Q the unit square in IR?, f = 0, g = 0 on top and bottom, g = —1, on
the left and ¢ = 1 on the right lateral boundary, and no internal sources and sinks. The
solution corresponding to a = 1 is given by u,(z,y) == — %

e We check that @ = 1 is identifiable in £. For every h € £ we have from Lemma 2.2
thatforv:%eV

1 1
/hgradua gradvz—/h2+—/ h2ug.
Q 2 Ja 2Jry
Since u g > 0 on 99 we see that
/ h grad u, grad v =0 for all v € V implies h =0,
Q

and thus by Lemma 2.1 @ is identifiable in £.

o Next we consider parameter perturbations which are orthogonal to the flow lines. This
results in choosing (z,y denote the coordinates in IR?)

h(z,y) = h(y).

We shall require that
1
h € C%(0, 1),/ h=0 and h(0)=h(1) =0. (4.19)
0

Under these conditions we estimate lower and upper bounds to |P(h grad u,)| and |P(h
grad u,)|.

RR n“ 4067



14 Guy Chavent and Karl Kunisch

(i) From Lemma 4.1 we have
|P*(h grad ug)| = || rot h grad uallw+ = IR [lw-,

and by (4.19)
[|A||w+ = sup {/ hg—?;:w € W,| grad w| = 1}. (4.20)
Q

Let H be the primitive of h:
H(y) = /Oy h(r)dr
and note that H(0) = H(1) = 0. We define
w(z,y) = z(1 —2)H(y),
so that w = 0 on 91 = Ty, and hence w € W, with

| grad @ = S(HP? + & h]?).

Choosing w = \gr:;dm in (4.20) gives
V3|h|?
Wl > ——L
6/ 1H|* + 151h/?
Since |[H|* < 1|h|* we obtain
|P+ (R grad u,)| > Z|Al. (4.21)

(ii) From the proof of Lemma 4.1 we get
ov
|P(h grad u,)| =sup { [ h— : v € V,]| grad v| = 1},
Q 6$
and, integrating by parts with respect to x,
1
[P(h grad wa)| = sup { [ 1(w)(o(1,) = o(0,)dy v € V;lgrad o] = 1}
0

Let v = 0Q U {z = 1}, the right lateral boundary of 2, and denote by c the continuity
constant from V' to H'/?(y). Then |grad v| = 1 implies ||v|lg1/2(,) < ¢, so that by
symmetry

1
|P(h grad u,)| < 2sup { | hese e B2, el < } :
0

INRIA



The Output Least Squares Identifiability of the Diffusion Coefficient 15

Associating to h a function H € H'/?(y) satisfying

1
(H,6))is() = / he, forall €€ H'Y(y), (4.22)
0
we have
P(hgrad ua)| <2 sup  ((H,E))gue = 2¢||Hl|ge. (4.23)
el g1z, <e

From (4.21), (4.23) we see that (4.18) would imply that
|h| S 3Mc ||H||H1/2('y)7 (424)

for all h € & satisfying (4.19). But we can choose a sequence of functions h,, satisfying

1
hy, € C%1(0, 1),/ By = 0, hy(0) = hp(1) =0,
0

and
|hn|r2 = const ,|hp|g-1/2(yy = 0 for n — oo.

From (4.22) we see that ||Hyl||g1/2(,) — 0 for n — oo. This contradicts (4.24) and conse-
quently (4.18)as well. O

It is hence impossible to find an infinite dimensional set C' with nonempty interior on
which the stability estimate holds uniformly. This motivates the reduction to finite dimen-
sional parameter sets in the remaining sections.

5 Finite stability estimates

We turn to the finite dimensional setting of Section 2 with & C & C --- C & satisfying
(2.11). We recall the definition C,, = C N &, and suppose throughout this section that (H)
holds. Identifiability of a in &, implies by Proposition 3.2 that for all a,b € C,, with b # a
we have

P((b—a) grad u,) # 0. (5.1)

Hence we can define for each n € N

L — 2
M, = sup |P~-((b—a) grad u,)|L

abeCn |[P((b—a) grad u,)|rz

(5.2)

From Proposition 3.2 we know that (5.1) holds with b — a replaced by any h € &,, h # 0,

and hence PL(h grad uy)|
grad u,)|L2
M, < sup sup . 5.3
a€Crn  hEEn,||h|le=1 |P(h grad u,)|r.2 (5:3)
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16 Guy Chavent and Karl Kunisch

As the fraction in (5.3) is a continuous function of h and a, and the suprema are taken on
compact sets it follows that M, is finite for each n. Since &, consists of constant functions
My =0 by Lemma 4.1. Moreover since &, C Ep41, for all n, we have

0=My<M; <--- <M, - <o0. (5.4)
From the example at the end of the previous section we can generally expect that lim M, =
n—oo

Q.

Proposition 4.1 implies the following stability estimates.
Theorem 5.1 Let (2.5)-(2.7), (2.10), (2.11) and (H) hold. Then for every n € N
[(b—a) grad ug|r> < (1+ Mﬁ)l/2 |b( grad up — grad ug)|Le,
for all a,b € Cy,, where M, is defined in (5.2).

This theorem gives a rigorous justification to the numerical observation [L], [GM], [GKMN]
that the sensitivity of the inversion of the a — u, mapping is a decreasing function of the
scale at which the parameter is estimated. This observation together with the analysis of
the nonlinearity of the mapping a — u,, to be given in the next section, has motivated the
introduction of successfull multiscale approaches to parameter estimation [CL], [L].

We close the section with an estimate of M,, in the case where (H) is satisfied by virtue
of Theorem 2.1.

Theorem 5.2 Let (2.5)-(2.7), (2-10), (2.11) hold, and suppose that the hypotheses of Theo-
rem 2.1 are satisfied. Then

Mp<sup  sup Ma(a,h),
a€Cy, he&n ,h#0

where, fora € Cp, and h € €,, h # 0:

Y2 \grad (2)u,)|

|2 grad ug|

am

Mooty =2 (2)

am

|rot h grad ua|}_ (5.5)

in<1
mln{ Cw |h grad u,|

Proof. Choosing v = %| grad (h;‘“ )l on the right hand side of the equality above (4.14)

we obtain by Theorem 2.1 and Lemma 2.2

h

1| 1/2 grad ual]i2
P(h grad u >_ el =z 0
(P Emnd 812 2 3 lgrad (B

and hence 12
\P(h grad ug)|s > am’ |2 grad u,| |k grad u,|
BIC I = 22 T Jgrad (Fug)
M a
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The Output Least Squares Identifiability of the Diffusion Coefficient 17

Combining this estimate with (4.13) of Lemma 4.1 and (5.3) implies the theorem. O
For a,b € C), the stability constant M, (a,b— a) of (5.5) allows the following interpreta-
tion:

e the first factor is related to the size of C),,

e the second factor tends to infinity when the dimension of &, goes to infinity. It does
not depend on the relative orientations of grad h and grad u,,

e the third factor is bounded by 1 and tends to zero as grad h becomes colinear with
grad ug,.

6 Finite dimensional sensitivity, deflection and curva-
ture estimates

In this section we analyze the geometric quantities associated to the parameter—to—solution
mapping a — u, defined by (Q). For ag,a; € Cp, and t € [0, 1] we set

h=a — ap, (6.1)
a=(1—t)ap+tay. (6.2)

The geometric quantities are related to the curve t € [0,1] — Vu, € L?(Q2) in the range
of the mapping a — Vu,. We denote by 7 the velocity and £ the accelleration, i.e. the
first and second derivatives of u, with respect to t. The equations characterizing n € V and
£ € V are found to be:

/ a grad - grad v = —/ h grad u, grad v, for all v €V, (6.3)
Q Q

/ a grad £ - grad v = —2/ h grad n grad v, for all v € V. (6.4)
Q Q

For given n € N the objective is to find 0 < a,;, < ap, © > 0 and R > 0 such that the
following inequalities hold uniformly for all ag,a; € C,, and ¢t € [0, 1]:

Oém|h|L2 < |grad 77|]L2 < aM|h|L2, (6.5)
lgrad &|L2 < Olgrad 7Lz,

1
lgrad &z < E|grad 17|]i2. (6.7)

These inequalities can be interpreted as follows:
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18 Guy Chavent and Karl Kunisch

e «,, and ays are lower and upper bounds to the first derivative of a — Vu,. They are
refered to as minimal and maximal sensitivity.

e O is an upper bound to the deflection along the curve t — Vu, (i.e. to the angle
between the tangents at two points of the curve).

. % is an upper bound to the curvature along the curve.

Theorem 6.1 Let (2.5)-(2.7), (2-10), (2.11) and (H) hold. Then, for everyn € N, ag,a; €
C, and t € [0,1], (6.5)-(6.7) hold with

_ Ym,n _ ™
Am = anm(1+ M2)1/2’ M= (68)
®=2 w’ (6.9)
am
1 1+ M2 ay
—=2K, — " = 6.10
R Ym,n Ay ( )
where yur is defined in (2.8), and
— inf inf :
Ymn = inf hes,.,l?h\Lzzl |h grad uq|L2 > 0, (6.11)
K, = sup |h| Lo (6.12)

heSn,\hngzl

Proof. Let ¢t + dt € [0,1] and denote by a; and ay4; the corresponding values of a given
by (6.2). Choosing a = a; and b = ay44¢ in Theorem 5.1 and letting d¢ tend to zero implies
that

|h grad u,|r2 < (1+ M2)'Y/? |a grad n|pe. (6.13)

Hence the left inequality of (6.5) is satisfied with o, defined by (6.8), (6.11). The strict
positivity of v, follows from (H) which ensures that the argument of the inf is strictly
positive, and hence the inf itself is strictly positive as it is taken over a compact set. The
right inequality of (6.5) is obtained by choosing v = 7 in (6.3) and using (2.9). Setting v = &
in (6.4) gives

h
\al/z grad &|p2 <2 |E|Loo |grad 7|,

which implies (6.9), and also (6.10) using (6.11)—(6.13). O

Let us discuss the behavior of the constants «a,,, ay, ® and R as n tends to infinity.
We notice first that 7, , can be understood as a lower bound to the local mean value of
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The Output Least Squares Identifiability of the Diffusion Coefficient 19

grad u, at scale n. In general u, will have stationary points where grad u,(z) = 0, in which
case one expects that v, — 0 for n — oco. In special cases, as for instance the example of
Section 4, see also [IK], [R] for further examples, it can happen that |grad ue(x)| > ym >0
for all @ € C and z € Q, in which case vy, n > vm > 0 for all n.

In case (H) is satisfied through the assumptions of Theorem 2.1 an upper bound to M,
can obtained by Theorem 5.2:

1/2
M, <2 <a_M> (1 + M up sup lgrad Z|> . (6.14)

am Tmn a€Cn  heg,, |2 2=1

In case the finite dimensional spaces &, are obtained from a regular family of triangula-
tions of © by elements of size Az, the right hand side of (6.14) is of the order ﬁ for n — oo.
In this situation the continuity constant K, of the L? — L* injection (for h € &,) is also
of the order Aiw as n — o0o. These considerations imply the following

Corollary 6.1 Under the conditions of Theorem 6.1, as the scale parameter n — oo we
have

e the minimal sensitivity o, — 0,

o the mazimal sensitivity apr remains bounded,

the deflection © remains bounded,
e the curvature % — 0.

In case (H) is satisfied through the assumption of Theorem 2.1 and &, is constructed based
on a regular triangulation of Q by elements characterized by meshsize Ax, one has

® Q> CONSEAZ Y

o & < const/(Az® Y p).

7 Output least squares identifiability of a.

We study in this section the structure of the nonlinear least squares problem (P). We have
seen in Section 4 that there is no hope for (P) itself to be quadratically wellposed, or equiva-
lently for a to be OLS — identifiable on C. Therefore we choose finite dimensional subspaces
En, satisfying (2.10)—(2.11) and consider for each n € N the finite dimensional estimation
problems

1
(Pn) minimize 7 lgrad ug — 2|22 over C.
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20 Guy Chavent and Karl Kunisch

The geometric estimates of Section 6 imply that the corresponding output sets D, =
{grad u, € L?(Q):a € C,} are strictly quasiconvex if © < %, [C1],[C2]. Hence the fol-
lowing theorem holds:

Theorem 7.1 Let (2.5)-(2.7), (2.10), (2.11) and (H) hold and suppose that C' satisfies

2 T
= — ) < —. .
() o diamsC < 5 (7.1)
Then (P,) is quadratically wellposed on
i~ 2 e - _ TYm,n
Vo = {7€L?(Q): dist (§,Dn) < R, = S0+ M2 Mﬁ)l/Q} (7.2)

for all m € N, that is
o for every z € V,,, (Py) has a unique solution a,,
o for every z € V,,, the function a — % |grad ug — z|]i2 has no local minima,

e the mapping z — Gn, is Lipschitz continuous i.e. for all z9,21 € V, satisfying |20 —
z1|L2 + max d(zi, Dn) < dn < R,
3=0,

N . dn
am|an,0 - an,1|L2 <L< (]- - R_n) 1|20 - z1|L27
where L is the arclength in L2 () of the curve t € [0,1] — u, € L?(Q), and a is defined
by (6.2) with aj = dn,;,j = 0,1,

e cvery minimizing sequence of (Pp) converges to ay,.

8 Parameterizing by b = 1.
a

As suggested by the 1-D case [CK1] where the mapping b = % — wup is "quasilinear” we
investigate in this section the question of using b = % in place of a as optimization variable.
Additional motivations are given by the facts that b — w; is affine when b is constant and
that @ — £, which is in some sense contained in @ — u,, is not twice differentiable on L2((2).

In order to see whether b — u; is less non-linear and its inverse is less illposed than a —
Uq, One can carry the analysis of the previous sections with the appropriate modifications.
In analogy to (2.6)—(2.7) the parameter set C for b is chosen such that

CC{be&by<bz) in Q, ||blcos < bar}, (8.1)

C is convex and closed in L*(Q2), (8.2)
where 0 < b, < by Asin (2.11) we set
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The Output Least Squares Identifiability of the Diffusion Coefficient 21

Cn=CnE&y, (8.3)
and define identifiability of b € C,, by analogy with Lemma, 2.1:

Definition 8.1 The parameter b € C is identifiable in &, if:
h
heé&, and / 0 grad up - grad v =0 for all v €V implies h =0.
Q
This leads to replace (H) by

i forall beN
(H) b € C,, implies that b is identifiable in &,.

Similar to Section 6 for the a — u, mapping we now investigate the geometrical quantities
related to b — wy. For by, b1 € Cp, and t € [0, 1] we set

h = by — by, (8.4)
b=(1—t)bo +tb,

and search for G, dr, ©, and % satisfying (6.5)—(6.7), where now the velocity 7 € V and
the accelleration £ € V are defined by

1
/ 3 grad 7j - grad v = / b% grad up - grad v forall v eV, (8.6)
Q Q

1 - h h?
/QE grad £- grad v = /Q (b_2 grad 7j — 7 grad ub) - grad v, (8.7)

for all v € V. The following theorem provides the analog to (6.13) for the lower bound on
the linearization of b — wuy.

Theorem 8.1 Let (8.1)-(8.3) and (H) hold. Then for everyn € N, b€ Cy, and h € &,:

h —~ 1 N
|b_2 grad ug|p> < (1+ M?2)H/? |5 grad fj|pz, (8.8)

where Lo
—~ P-(L& grad u
M, = sup sup | (’32 g b)|L2.
bel, 0#hee. |P(gz grad up)|pe

Proof. The proof of (8.8) is similar to that of Proposition 4.1 and Theorem 5.1. Tt is based
on the decomposition of b% grad up on G and G+ with a non - zero component on G due to
(H). O
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Remark 8.1 When (ﬁI) is satisfied by virtue of Theorem 2.1 one has, analogous to Theorem
5.2:

M, < sup sup My(b,h),
be(, 0#h€En

where,

b_M) Y2 | grad (Rup) L2

M, (b,h) =2
(b, h) (bm |% grad up|L2

=, h
min{l,CW |rot 4 - gmdub|}‘ O

| grad wplys

Theorem 8.2 Let (8.1)-(8.3) hold. Then for everyb € C and h € £ the following estimates
hold:

1 _ h
|57z 9radiili: < |37 grad wples, (8.9)
1 5 h h
|M grad E[r2 < 2|E|L°°|b3j grad up|pz, (8.10)
1 . K, ~h . h
|m grad lr2 < . b/ rot 3|L2 |rot 3 grad wup|, (8.11)

where K. depends on 2, b,, and by;.

Proof. Estimate (8.10) follows from (8.6) with v = 4j and the Cauchy—Schwarz inequality.
We turn to (8.11). From (8.6) and (8.7) we notice, using the decomposition L?(Q) = GG+
that

1
P (E grad 7 — b% grad ub> =0,

and

1 ~ h (1 . h
P(E grad{—QE (E gradn—b—zgradub>) =0.

Hence there exist 9, and ¢ in W such that:
% grad 7 — b% grad u; = rot U,
L grad £ — 2 & rot 4, = rot 1.
Using Proposition 3.1 equation (8.7) for £ can be expressed as
1 ~ h -
/Q 3 grad £ - grad v = Q/Q 3 rot ¢, - grad v, forall veV, (8.12)

where 9, is given by

/ brot 1, - rot w = / % grad u, - rot w for all w e V. (8.13)
Q Q
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Choosing v = £ in (8.12) and w = 1, in (8.13) implies

|% grad €| < 2|%|Loo |Vb 16t |12,
and

h
B
which implies (8.9). Using Green’s formula on the right hand sides of (8.12), (8.13) we
obtain

[Vb rot ¢, | < |

grad ub|]L2,

/ % grad £ - grad v = —2/ Un rot % - grad v, forall v eV, (8.14)
Q Q

- - - h
/ b rot ¢y, -rot w = —/ rot 7 grad up w, forall we W, (8.15)
Q Q

The term rot % - grad up on the right hand side of (8.15) is in LQ(Q_). Due to the regularity
hypotheses on Q and b, the solution 1, of (8.15) is in H?(2) C C(f2). Hence there exists a
constant K, depending only on {2, b,, and by such that

~ h
2bp || < Kc|rot 3 grad up|pe. (8.16)
Setting v = £ in (8.14) implies
|i rad €2 < 2|[y|pe |V rot ﬁ|
\/5 g L2 > n| Lo b L2,

which, combined with (8.16) proves (8.11). O

Remark 8.2 The estimates (8.9)—(8.11) are valid in infinite dimensions. Moreover (8.11)
shows that | grad &| 2 tends to zero

when the coefficients tend to be constants

e like |grad 2>

o like |rot b grad us| when the -

the flow lines of uy.

weighted perturbation h tends to be orthogonal to

These observations are a consequence of the fact that b — wy is linear for constant b. O

Combining Theorems 8.1 and 8.2 with finite dimensionality of C, the following sensiti-
vity, deflection and curvature estimates are obtained.

Theorem 8.3 Assume that (8.1)-(8.3) and (H) hold. Then for every n € N with by, b, €
Cp and t € [0,1], estimates (6.5)—(6.7) hold with

~ bm :Ym n ~ bM 12 2%
Qp = ———=—, ay=|{-— -—, (8.17)
b2, (1 + M2)1/2 bm b
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~ di a —
=2 % barbn (1 + M2)1/2, (8.18)
m
where 0 = 6g <6 <--- <1,
1= 1+M2  (by)’
E =2K, ’77” (b—M) Hn, (8.19)
m,n m
where 0 = po < py < -+ <1,
~ . . h
Amm = inf inf |~ grad up|r2 > 0,
beCn  hEEL,|R|pa=1 b
and
~ h
K, = sup sup |E|Lw'

be€Crn  h€En,| %] 2=1

Proof. Recall the definition of vy in (2.8), and compare the definitions of v, n, K, in
(6.11), (6.12). Theorem 8.1 implies (8.17). Hypothesis (H) ensures that P (% grad u) and

hence also % grad up are nonzero if h # 0. Consequently 7y, » is positive. To verify (8.18)
we deduce from (8.10) and (8.11) that

lgrad €|p> < 2byr  min {|%|Loo|b% grad up 2
(8.20)

% |rot %|p2|rot % grad ub|Lz},

which, together with (8.9) implies (8.19), by setting

) by K. |grad %|Lz|r6t % - grad up|
6p =min¢1l, ———— sup h ,
diam,C,, 7 grad up|p»

where the sup is taken over by, by € Cy,, t € [0,1], h = by —bg, and b = (1 —t)bo +t by. Using
the definitions of 4, , and K,, we obtain from (8.20):

lgrad £|pe < 2bpy min{,g’fn h grad wy| | grad wel

K.
bm

lgrad 2| |rot £ . grad ub|},

and by (8.8)

~ 142 (b \2 b Sm.n lgrad 2||rot 2. grad u,| .
lgrad ¢l < 2K, E— (ﬁ) mm{l,ﬁKc ’YK~—" & Ib% gradbu,,gp up } |grad 7|2,
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which implies (8.19) with

— mind1 bv K¢ mn |lgrad 2| |rot 2 - grad uy|?
fin =min { 1, = =™ sup : - :
bm K, |+ grad us|

where the sup is taken over by, by € C'n, and t € [0,1]. O

Let us compare Theorem 6.1 and Theorem 8.3 to assess the relative advantages of the

b= % and the a parametrizations. Though the definitions are slightly different we shall

suppose that the constants Mnﬁm,n, IN(n and My, Ym,n, K, behave similarly as functions of
n. Then we see that:
e The two parametrizations have the same behavior with respect to sensitivity :
@, and o, — 0 at similar rates when n — oo, apr and ajr are both bounded with
respect to n.
e At coarse scales, the b—parametrization is advantageous for deflection and curvature:
g)and%ﬁOfornéo.
This reflects the fact that the problem becomes ”less nonlinear” for the b—parametrization
as the scale gets coarser.
e At fine scales the a—parametrization is advantageous as
O remains bounded whereas © — oo with n — oo,

for fixed value of diam,C;

R —\1/2 )

1/_RN<1+Mn) — oo with n — oo.

The fact that © — oo with n — oo is a big drawback as this will require to deduce the
size of C,, when n — 00, if one wants to ensure the @—well posedness over C,, for the b—

parametrization. Of course, O is only an upper bound to the maximum deflection. We do
not know if the maximum deﬂection over (', actually tends to infinity with the scale n.

Appendix

Proof of Proposition 3.1

Step 1. Following [GR], Chapter 1 we define

H={7e1?(): divi=0,q nTy = o,/ g-n =0},
T;
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where div is understood in the variational sense. As in [GR] one argues that H is a closed
subspace of .2 (Q2), and hence we have the decomposition

(A1) L2(Q)=HoH*.

Step 2. We argue that H- = G. Since G is closed in 1L2(f) it suffices to show that H =
G*. For this purpose choose and fix ¢ € H arbitrarily. Then for every ¢ € V we have

(@ V)=, cp@-/ @-n =0 and hence § € G+. Conversely if § € G+, then (7, Vyp) =0

T;
for all ¢ € V, in particular for all ¢ € D(Q2) and hence div § = 0. Chossing ¢ € V implies

g-nTy=0and [ ¢-n=0,fori=1,---,N. Hence §€ H and H' = G.
I;

Step 3. We show that H = {rat ¥ ¢ € W} For ¢ € W we have div rot 4 in the
variational sense and / rot ¢ -n = / Vi -7 = 0, where 7 denotes the tangent to I';.
Fi ri

Moreover 1ot ¢ -n = Vi) -7 = 0 on 'y and hence rot+ € H. Conversely, if § € H,
then by the arguments in [GR], pg. 36 there exists 1» € H'(Q) such that rot ¢ = ¢. Since
7-n= 10t ¥-n=V-7=0o0nTy it follows that ¢ = const a.e. on I'y and without loss
of generality we may take this constant to be 0. Hence rot ¢ = ¢ with ¢ € W.

Step 4. Let ¢ € L?(Q). Then the elliptic problem

(A.2) (grad ¢, grad v) = (¢, gradv) forall v eV

has a unique solution in V. Consider ¢— grad ¢ € L.?(f2), and note that div (§— grad ¢) = 0.

i

Moreover (§— grad ¢) -n|I'y =0 and / (§— grad ) -n=0,fori=1,---, M. It follows

that ¢ — grad ¢ € H and hence there exists ¢ € W such that rot Y =q¢— grad p in H.
Consequently
( rot 9, rot v) = (§— grad ¢, rot v) for all v € W,

and utilizing div ¢ =0 and boundary conditions for v and ¢

(A.3) (ot 9, rot v) = (g, rot v), for all v € W.
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