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Abstract: We study the minimal initial capital needed to super-replicate an
European contingent claim in the Black-Scholes model in the following ‘real’
context: the hedger of the option will only trade at stopping times (which he
may freely choose as the hedge ratios). In case the number of trading dates is
fixed, we show that this capital corresponds to the buy-and-hold strategy (for
a Call option, or the corresponding strategy for any option with a continuous
payoff). In case the number may depend on the path of the underlying, we show
that if the Black-Scholes delta of the contingent claim is itself a finite-variation
process (which excludes standard options in general), this initial capital is the
Black-Scholes price of the option. In other cases, e.g. standard options, even
for the Call option, the question remains open.

Key-words: Discrete hedging, Black-Scholes model, Option pricing, Super-
hedging strategies, Stochastic integral.
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Sur-stratégies discreétes.

Résumé : On étudie la plus petite richesse initiale nécessaire pour surcouvrir
une option Européenne dans le modéle de Black-Scholes dans le contexte réel
suivant: le market-maker ne peut se couvrir qu’a des instants aléatoires de
son choix. Dans le cas ou le nombre de couverture est fixé, on montre que
ce prix correspond a la stratégie buy-and-hold (pour un Call, ou la stratégie
correspondante pour toute option avec un payoff continue). Dans le cas o
le nombre peut dépendre de la trajectoire du spot et que le delta de I'option
de Black-Scholes de Iactif contingent est un processus a variation finie (ce qui
exclut toutes les options standards en général), on montre que le plus petit
prix est le prix de Black-Scholes de I'option. Dans les autres cas, la question
reste ouverte.

Mots-clé: Couverture discréte, Modéle de Black-Scholes, Evaluation d’options,
Sur-stratégies, Intégrale stochastique.
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1 Introduction

In the Black-Scholes option pricing model, hedging must occur continuously in
time to have perfect replication of the claim. For obvious reasons, this is not
realistic from a practical point of view and the transaction costs which result
from rebalancing can be substantial. Therefore, many searchers have suggested
a trading strategy based on a periodic revision of the portfolio. In this setting,
Leland (in a market with transaction costs) used the Black-Scholes delta with
an adjusted volatility and derived the Black-Scholes price when the level of
transaction costs decreases to zero as the revision interval tends to zero. Let
us cite also among others Zhang [6], Gobet and Temam [2]|, who have studied
the variance of the replication error, and have evaluated the variance when the
time number of rebalancing goes to infinity.

However, it does not appear reasonnable to hedge at deterministic times
without consideration of the moves of the spot price. The problem of selecting
the best hedging times and ratios for a quadratic criterion given a fixed number
of trading times is solved in [3].

In this paper, we restrict ourself to the following subspace of the stochastic
integrals:

(( X/3(0=T, <T1 <Tp<...<T, <...) an increasing )
sequence of stopping times such that 7}, T oo and
(Ar,, Ar, Aqy, ... ,Ar,,...) (A, Fr,-measurable Vi)
the corresponding hedging ratios such that V¢ > 0

Z ATi (ST¢+1/\t - STi/\t) = X; a.s.
=0

-~

\ /

Here, S denotes the underlying value. To simplify the exposition we work
throughout the paper in the context of the one-dimensional Black-Scholes
model with no interest rate, specified moreover for commodity under the risk
neutral probability, that is:

dSt = O'StdBt

with Sy > 0 an almost surely, B a one dimensional standard Brownian motion.
Since we deal with an almost sure criterion it is not a restriction to work under
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4 H. BENAMAR, C. MARTINI, C. PATRY, F. TRABELSI

the risk neutral probability which we shall denote P*, or whatever probability
equivalent to P, for instance the one under which S; = e??* (cf section 3.3).

Now, given a European contingent claim with maturity 7', say Hr (with
Hp > 0a.s. and EF" [Hy] < 00), the least value of the super-hedging strategies
is defined in a natural way by:

I —hﬂ{ z>0/3X € Ey }
oo, Hp —

such that x + X7 > Hr a.s.
We also define U, g, in the same way but with a fixed number n > 1 of hedges.

(2>0/30=T) <N <L <...<T, <Tpy1=T) )
stopping times and (Ar,, Ary, Ay, ..., Ar)
(Ar, Fr-measurable V 0 < i < n)
the corresponding hedging ratios such that

T+ Z”: Ar, (ST¢+1 — STi) > Hr a.s.
i=0

Un,HT = inf <

\ 7

The right question seems to be now: what is the value of Uy g,, or in
other words, is it true that Uy, g, is equal to the Black-Scholes price EF” [Hy]
of the option? The difficulty comes from the almost sure demand on the super
replication: even if it is obvious that the value at time 7' of any continuous
stochastic integral which is in addition a martingale may be approximated to
an arbitrary level of accuracy by the natural finite Riemann sum, this approx-
imation is usually in a weak sense, e.g. L? so that typically the approximating
sequence may oscillate around the asymptotic limit.

In fact, even for a Call option, we did not manage to answer to the above
question. Nevertheless, in this paper, we show the following:

e [f the number of stopping times is fixed in advance, then for standard options
with a continuous payoff, Uy 4s,) = §(So) where g is the least concave
function above g, or in other words U, 4s;) = Ui 4s;) since obviously
Ui g(sr) = 9(So) - This is done in section 2.

o If Hy writes EY" [Hy] + fOT A;dS; where A is a finite-variation process which
is absolutely continuous, then U, g, = EF [Hr|. This result is not

INRIA
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surprising since in such a case the stochastic integral fOT A:dS; may be
defined pathwise as a Lebesgue-Stieltjes integral. This is done in section
3.

2  Super-strategies with n interventions

In this section, we consider European contingent claims defined by a terminal
payoff g(Sr), where g is a nonnegative continuous function. We fix the number
n of trading dates and we consider Uy, 4(s;)-

Notice first:

Lemma 1 Uy ys,) = §(So) where g is the least concave function greater than
qg.

Proof. Indeed one has:

3(So) = inf x>0/ 39 € R such that
giwo) =1 VzeR z40(z—S) > g(2)

Now after the continuity of g and the fact that the law of S; weights every
open set of R’ this is equivalent to

() = inf x>0/ 36 € R such that
giwo) = 2+ 6(St — So) > g(Sr) as.

whence the result. O
Theorem 2 Vn € N*, U, ys) = U g(sr) = 9 (S0).

We need the following lemma which is a direct consequence of the fact that
S is a continuous process which satisfies

P(T.>X\)>0
for any A > 0, where for € > 0, T is defined by T, = inf{u/|S, — So| > €}.

Lemma 3 Ve > 0, P (S, €]Sy — ¢, S0 +€[) > 0 for any bounded stopping time
T .

RR n-° 4066



6 H. BENAMAR, C. MARTINI, C. PATRY, F. TRABELSI

Proof of the theorem. The proof is by induction over n. Suppose that
Un.g(sm) = 9 (S0), let’s show that Upy1,4s,) = G (So) -
Obviously, since m + Uy, 4(s;) is nonincreasing,

9 (S0) 2 Uni1,6(5r)-

Let z an initial capital, (T =0 < Ty < Ty < ... < T,5 = T) stopping times
and (ATO, Ary, Agy,y ooy Ay, +1) the corresponding adapted hedging ratios, such
that

n+1

T+ Z Ar, (ST¢+1 — STi) > g(S7) a.s.
i=0

or yet

n+1
s
Cr, + Y Ag, (Stpy — S1) > g(STlé) a.s.

=1

where CTl =x+ AO (ST1 — S())
Define

S 2
M; = S_; = exp {—%t—i—aBt}

By the strong Markov property, the conditional law of ;TT with respect to Fp,
1
is that of Mp_7,. Then using the recurrence hypothesis we obtain

T 4+ AO (ST1 - So) 2 §(ST1) a.s.

Since g is continuous, we deduce from lemma 3 that for any € > 0 small enough

Yy €Sy —e,So+¢[, z+A(y—So) >7g(y)
whence z > g(Sp) which gives U, 11 > §(Sp). The proof is complete. O
In the case of a European Call option, the price Uy 4(s;) corresponds to the

cost of the ‘buy-and-hold’ strategy of acquiring one share of the stock at t =0
and holding it until ¢t =T

INRIA



Discrete Superstrategies 7

3 Approximation of Stochastic Integral with Fi-
nite Variation Integrand

In this section, we assume that the number n of trading dates may depend
on the path of the underlying. We give an approximation of the stochastic

t
integral [ A,dB, by elementary stochastic integrals of the form
0

o0

Xt = Z AT¢ (BTi+1/\t - BTi/\t)

1=0

when A is a finite variation process, (Tp <T; <...<T; <...) a sequence of
stopping times, B a one-dimensional standard Brownian motion. Then we
extend this approximation to the Black-Scholes model.

3.1 Absolutely continuous integrand with bounded deriva-
tive

Let A be an absolutely continuous process, i.e.
A=A+ [Vidu , Vrel0,1]
0

where V is an adapted process.
We suppose in this section that A is of bounded derivative, i.e.

V| < My < o0 a.s
where My is a positive constant.

Our approximation procedure is divided in 3 parts.

(a) We have the simple integration by parts formula

Tit1 Tit1

/ A,dB, = Ar, (Br,,, — Br,) + / V, (Br,,, — B;) dr

T; T;

RR n " 4066



8 H. BENAMAR, C. MARTINI, C. PATRY, F. TRABELSI

Set
Tity Tit1
D; E / A.dB, — ATq; (BTi+1 - BTi) = / Ve (BT¢+1 - BT) dr
T; T;
then
Tip1
|D;| < My / |Br,,, — B,| dr as.

T;

Let Zai a deterministic convergent serie with positive terms. Consider
i>0
the sequence of stopping times

T():O

TZ-H=inf{u>0,f\Bu—Br|dr=ai},i20

T;

Obviously the random variables 7; 2 (T;41 — T;) are independent, then by
using the zero-one law (cf [4]) we have

p (inz = +oo) € {0,1}

(b) If we construct the sequence (¢;) such that

P (im=+oo) =1 (1)

we will obtain

— My, Z o; + Z Ar, (BTH_l/\t - BTi/\t)
i=0 i=0
¢

< /AudBu < ZATi (BTH_I/\t — BTiAt) + My Z%‘ a.s.
1=0

0 1= 1=0

INRIA
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We then rescale our stopping times like:
5 =0

Ti :inf{u>0,f\Bu—Br|d7":£ai}, e>0
Te
By the scaling property of the Brownian motion
u (d) u—T7
vu>o,/ |B, — B,|dr = / |Bu1: — B,| dr
¢ 0 '
For any a > 0, we have

/ |B,,—Br|dr@ag/a ‘ég—f?s
0 0

where 1}_2 ﬁBa_ is a standard Brownian motion. With a = 5§’
we get

ds

T~ T; 2 &8 (T~ T)

i+1 %
with also
P (Z n = —|—oo> =1 where nf 2 (TF, —TF)
1=0

thus we get an approximation with an arbitrary accuracy.
(c) It remains to choose («;) such that

P (f: n; = +oo> =1
i=0

holds.
For all r € [0,u], we have

B,— sup B, <B,—B,<B,— inf B,

0<v<u 0<v<u

RR n 4066
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and
B, — B,| < Z, = max (2, 2?)
where
Zi2B,— inf B, and Z'2 sup B, — B,

0<v<u 0<v<u
Set

. AL

nf =inf {u > 0,u”Z, = o;}

then n; > 1! a.s.
Let now a positive sequence (3;). We have by scaling

P(nf>B;) = P(Zﬂi<—')

- o(un<3)

= P <21 < 1)
B

and consequently, as soon as Z Bi = +o0

P(Zn;=+oo) > HP(n;“>5z')
= HP(Zl<i§)

i

()

=X

S

Sl

INRIA
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To conclude, we have to find the sequences (o;) and (5;) such that:

(Cl) Z&i < +00
(C&) ji:/% =+

(Cs) %t
B}
(Cy) Sp (Zl > ia) < 400
1 61'2

since by a classical result the conditions (C3) and (Cy) ensure that

We can write

7 = max{ sup (Bs— By), sup (B, —Bs)}

0<s<1 0<s<1

= sup By — By
0<s<L1

= sup |B; — Bi|

0<r<1

= sup |W,|
0<r<1

where (W,.) is a standard Brownian motion.
Using the inequality
C2
P ( sup | W, |> c) <27
0<r<1
we get

2
2

P(Z1 ZC) < 2e”

RR n 4066
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Therefore (Cy) is granted as soon as

o

0 2
(cy) 26_2"’? < 400
i=0

holds.
It is now easy to find two sequences («;) ,(3;) satisfying the conditions
(C1), (Cy), (C3) and (C}). We can choose for example

ot

1
o = and B;=-, Vi>1
i

7
3.2 Absolutely continuous integrand with unbounded deriva-
tive

Suppose now A is a stochastic process with possibly unbounded derivative,
which nevertheless satisfies

sup |V, | < oo as.
0<u<lT

Then we are going to use results of 3.1 thanks to a localization procedure.
Let

V=WV, An)V—n and A" = Ao+ [VPrdu, rel0,t], ne N*
0
(2)
We define the non-decreasing sequence of stopping times

0, = inf{u>0;|V,|>n}At, n>1

+00 +00
/ AydB, =) / AydB, =) / A"dB,
0 n:10n71 n:10n—1

INRIA



Discrete Superstrategies 13

Since A" is a finite variation process with bounded derivative, we can ap-
On
proximate | A%dB, as in the previous part.
enfl
Let ¢ > 0 and (7;""), a sequence of stopping times defined by

" = 0

1?12 = inf {1L:>’0; J/] |l;u —-13T|dr = O%;fé }
75"

2

where Y «; is a convergent serie satisfying (1).
We have

(e ¢] o
€
S Z i + ZA?T;'”/\on)von_l (B(Ti;’{/\an)ven_l - B(Tf’”/\en)ven_l)
i=0 i=0

On
< [ awas,
Hn—l
o0 e (o]
< Z A? £ N ) V1 (B(Tfﬂ/\en)vanq - B(Tf’”/\Gn)Vanl) + nﬁ Z Q; a.8.
1=0 =0

finally we obtain by summing over n
—C ¢ Z o; + Z Aff (Bfigﬂ/\t — Bi's/\t)
=0 i=0

t 00 .
< /AudBu < ZATE (B:Ffﬂ/\t - Bﬁs,\t) + C 52%’ a.s.
0 1=0

1=0

where the TN}E are the above stopping times obtained by picking the (T;" A 0,) VO,

on the interval |0,,_1, 6,,].
t

Therefore we get an approximation of [ A,dB, with an arbitrary accuracy.
0

RR n-° 4066
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3.3 Approximation of stochastic integral with respect to
S

In this part, we replace the Brownian Motion B by the underlying S of the
Black-Scholes model and we give an approximation of the stochastic integral

t
J Ay,dS, by elementary stochastic integrals of the form
0

Xt = ZATl (STi+1/\t - STq;/\t)

1=0

when A is a finite variation process, (7o <77 <...<T; <...) a sequence of
stopping times, S the price of the spot given by

St = eBt

By the argument of localization used in 3.2, it is enough to handle the case
where A is an absolutely continuous process of bounded derivative i.e.

V| < My < o0 a.s

where My, is a positive constant.

(a) We have the simple integration by parts formula

Tig1 Tit1
/ AyudS, = Az, (St — Sr) + / V, (Styy, — Sr) dr
T; T;
Set
Tip1 Tiy1
D; 2 / A,dS, — Ag, (St — S1) = / Vi (Sp,y — Sy) dr
T; T;
then
Tit1
|D;| < My / ‘STM - ST‘ dr a.s.
T;

INRIA
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(b) We define now a non-decreasing sequence of stopping times

T0o = 0
Tas1 = Inf{t >7,/|By| > n+1} At,n >0

We have
t +oo Tn+1
/ AudS, = / A,dS,
0 n=1 Tn

Obviously there exists a constant M,, such that
lePv — ePr| < M,|B, — B,| a.s.Yu,r € [T, Tny1]
(c) Let (T!*); a sequence of stopping times defined by
™ = 0

17, = intfu> 17/ [ By~ Bildr = af)
Tn

We have

_MV Z Mna? + Z ATin (S(Tﬁ'_l/\Tn+1)VTn - S(Tin/\Tn.}_l)VTn)

i=0 i=0
Tntl 0o 0o
S / AudSu S Z ATin (S(Tﬂ_l/\Tn+l)V7’n — S(Tin/\Tn+1)VTn) -+ MV Z Mnoz? a.S.
7 i=0 =0
. . Q; &€ . .
(d) Finally by choosing o = WUz and by summing over n, we obtain
n

—Ce Z a; + Z ATi (S(Ti+1/\t) - S(Ti/\t))
=0 =0
t

< / AudSy < Az, (St — Say) + Ce Y i as.
=0

0 = 1=0

RR n-° 4066



16 H. BENAMAR, C. MARTINI, C. PATRY, F. TRABELSI

where the T; are the above stopping times obtained by picking the (T7' A T11) V 7,

on the interval |7, T11]-
t
Therefore we get an approximation of [ A,dS, with an arbitrary accuracy.
0
As a corollary:

Corollary 4 If Hr writes EF" [Hy| + fOT AydS; where A is a finite-variation
process which is absolutely continuous with an almost surely finite derivative,

then Uoo,HT = ]EP* [HT]

Remark 5 In the case of infinite-variation integrand (e.g. standard options),
the question remains open. The difficulty is that we require almost sure rather
than just approximate hedge. The investor has to be able to super-replicate the
clatm at maturity whatever the path of the underlying. In this direction, let us
state the following question.:

Is there an infinite variation process A such that

Uoo,c_'_fOT A,aB, = € for c€R? (4)

Notice that even in the simplest case (Ai)i>0 = (Bi)is0, we don’t know if 4
holds.

4 Conclusion

We study the minimal initial capital needed to super-replicate some given
European contingent claim when the number of trading dates is fixed. We
show that the price is the value of the concave envelope of the payoff function
at the initial stock price.

We also construct an approximation of the stochastic integral when the
integrand is a finite variation process. If the Black-Scholes delta is a finite
variation process, the least super-replication cost is the Black-Scholes price.

INRIA



Discrete Superstrategies 17

References

[1] Leland, H.E.: Option pricing and replication with transaction costs.
J.Finance. 40, 1283-1301 (1985)

[2] Gobet, E.; Temam, E.: Discrete time hedging errors for options with irreg-
ular payoffs. Preprint Ecole Nationale des Ponts et Chaussées (1999)

[3] Martini, C.; Patry, C.: Variance optimal hedging in the Black-Scholes
model for a given number of transactions. Preprint INRIA, n°3767 (1999)

[4] Renyi, A.: Calcul des Probabilités, Dunod 1966

[5] Revuz, D.; Yor, M.: Continuous martingales and Brownian motion.
Springer-Verlag, Berlin, 1994.

[6] Zhang, R.: Couverture approchée des options européennes. PhD Thesis,
Ecole Nationale des Ponts et Chaussées (1998)

RR n " 4066



/<

Unit"e de recherche INRIA Lorraine, Technopdle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unit"e de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unit e de recherche INRIA Rhéne-Alpes, 655, avenue de I’Europe, 38330 MONTBONNOT ST MARTIN
Unit e de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unit e de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
http://www.inria.fr
ISSN 0249-6399



