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Abstract: We work in the Uncertain Volatility Model setting of Avellaneda,
Levy, Paras [1] and Lyons [10] (cf. also [11]). We first look at European options
in a market with no interest rate and focus on the extreme case where the
volatility has a lower bound but no upper bound. We show that the smallest
riskless selling price of the claim is the Black-Scholes price (at volatility given
by the lower bound) of an option with payoff the smallest concave function
above the initial payoff. We next extend our results to the case with interest
rate.

Key-words: European options, Hamilton-Jacobi-Bellman equation, Stochas-
tic control, Superstrategies.

(Résumé : tsup)

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
Téléphone : 01 39 63 55 11 - International : +33 139 63 55 11
Teélécopie : (33) 01 39 63 53 30 - International : +33 1 39 63 53 30



Volatilité non bornée dans le modéle UVM

Résumé : Dans le cadre du modéle UVM d’Avellaneda, Levy, Paras [1], et
Lyons [10] (cf. also [11]), on étudie le pricing d’options européennes dans le
cas oil la volatilité n’est pas bornée supérieurement. On montre que le plus
petit prix de surcouverture est donné par le prix Black-Scholes (a volatilité la
borne inférieure du modéle UVM) d’une option de payoff ’enveloppe concave
supérieure du payoff initial.

Mots-clé :  Contréle stochastique, Equation d’Hamilton-Jacobi-Bellman,
Options Européennes, Surstratégies.



Unbounded Volatility in the Uncertain Volatility Model 3

1 Introduction

Avellaneda, Levy and Paras in [1] and Lyons in [10] consider the pricing of
derivative securities in the context where the volatility of the underlying is
unknown but assumed to lie in a compact interval I = [g,7|. They show
that the smallest riskless selling price in an arbitrage-free world with constant
interest rate p should be

sup B [ ()] (1)

where P; is the set of the risk-neutral probabilities which depends on the
interval and ¢ (S;) the payoff of the option at hand with maturity ¢ > 0. We
write EF for the expectation under a probability P.

They show that this quantity is also the solution of the Hamilton-Jacobi-
Bellman equation

ou 1, ,0% du
o Z gr__9 9
P (ac ox u) + ai?fg] 24 ® 0x? 0s @)

with terminal condition u (t,z) = ¢ (z), in case ¢ is smooth enough. In the
two papers it is assumed that ¢ > 0 and & < +o0.

In [11], in a zero interest rate market, the second author has settled the case

of continuous payoffs thanks on one hand to a sound definition of the selling
price and on the other hand to the celebrated work of Krylov on controlled
diffusion processes ([9]). In [12], he studied the case ¢ = 0 and showed that
the selling price (1) is actually the price of an American option in the Black-
Scholes model at the upper bound of the volatility.
In this paper, we look at the other extreme case where ¢ = 4o00. Of course,
even if the volatility process may take arbitrarily high values, we require some
integrability condition in order to define the underlying process in a sound way.
By a direct study we show that the value function (1) is the price of a European
option in the Black-Scholes model at the lower bound of the volatility ¢ with a
payoff which is given by the smallest concave function above the initial payoff
function. Then, we show that it is actually the smallest riskless selling price
of the claim.
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4 M. Leblanc, C.Martini

In [2], Cvitanic, Pham and Touzi obtain the same result in the context of a
stochastic volatility model.

Lastly we extend our results and those of [11], [12] to the non-zero interest
rate case.

2 Framework

We assume that the dynamic of the underlying S of the option is of the type:

So = >0 (3)
dS, = pSudu—+ 0,S,dW, ,u >0

which is defined on a given filtered probability space, with W taken as a
standard Brownian motion under some risk-neutral probability. Here p is
the constant interest rate and the volatility process ¢ is supposed to be a
progressive process with values in I = [o,7]. We then have

d(S), = o.S2du

By Ito’s formula we get

u 1 U
S, = ze’* exp {/ o, dW, — —/ agdv} a.s.
0 2 /o

As the volatility process is unknown, and since the filtered probability
space is not fixed, we shall deal with the image law of S on the canonical
space. Therefore, as in [11], we introduce the following setting:

2.1 Modelling and notations
Let us denote Q = C' (R, R}). We define w; the coordinate maps on 2 by

Wy (:Eu)ueR+ — T,

INRIA



Unbounded Volatility in the Uncertain Volatility Model )

The coordinate filtration is defined as F, = 0 (ws, s < u), and F = V, F, =
o (ws,s € RT).

We now consider the laws P on (Q, F, (F,)

(@) (wy),>q is a P-martingale

(b) d{w), << du and % €l P—a.s.

(¢) wo=1P—a.s. ’

Let P; be this set of laws. Each law on (Q,F, (fu)u>0) of a process
(25) >0 With S satisfying the dynamic (3), also satisfies (a), (b) and (c). Con-

uZO) that satisfy:

Terv
versely, with a representation theorem, we see that the dynamic of (ze”*wy,),~,

under a law satisfying (a), (b) and (c) is of type (3). Therefore, P; is exactly
the set of the laws on (Q, F, (fu)u>0) of the processes (zigu)wo with volatility
in I. - N

We define the family of P;—null sets by:

NPr ={A€ F/VP€P;,3B€ F, AC Band P(B) =0}

Let us set (Ft)go e/ (Fe v NPr),_ . If Prog” denote the set of progressive

processes for (.Ft)go, then obviously such processes are progressive for the

filtration (E)go for any P.

We finally fix ¢ as a Borel function defined on R*, valued in R which will
be the payoff function of the option we consider. Of course in the applications
¢ should be nonnegative, but we won’t have to take care in general of the sign
of the payoff function.

Let us set now a classical framework for stochastic control.

2.2 Krylov’s setting of stochastic control

We use some notations of [9].

We assume that (wy, (F})) is a 1-dimensional Brownian motion on the
Wiener space. We define U as the space of (F]) —progressive processes with
values in I = [0, 7).

RR n 4065



6 M. Leblanc, C.Martini

We choose to set the following functions:

o(a,t,z) = ax (4)
b(a,t,z) = px
cla,t,z) = p
floyt,z) = 0
g(x) = ¢(z)

The state processes X”**% controlled by the process o € U is defined by:

dXPOST = o (o, s+ u, XP%")dzy, + b (o, s + u, X25%) du

Xgaaysam —

For T > 0 deterministic and s < 7T we define

T—s

P 5.) = B (s b Xpee) e B e(ensinat g,
0
T-s

+e Jo c(aT,s—I—r,Xf’a’s’m)drg (X%,f;s,m)]

and

v (s,x) = supv® (s, x)

We recall now the important remark 5.2 of [11].

Remark 1 Of course here the situation is homogeneous in time, so that X?***
doesn’t depend on s. In the same way vy, and vy, associated with 2 horizons
T\ and Ty satisfy v, (s,z) = vg, (T — (T1 — 5), 2).

We can set:

Ve (It 1) v (T - t,2)

which is well-defined for ¢ <7T'. Then

Ve (I, t, ©, ,’L‘) = sup E [e_thO (ti,a,O,z)]
aclU

Let us now recall the results of [11], where it is assumed that p = 0.

INRIA



Unbounded Volatility in the Uncertain Volatility Model 7

3 European options with no interest rate

In this section, we suppose p = 0 and also:

(A) ¢ is continuous and z — % is bounded on |0, +o0|.

This assumption will allow us to make use of the results of stochastic control
theory (see Krylov 9] chapter 3).

3.1 Bounded volatility with ¢ > 0

We define the minimum riskless selling price @ (I, t, ¢, z) (or shorter Q (t, z) if
there is no risk of confusion about I or ¢) of a European option at time 0 by:

ceR/IL>0,3A € Prog” /VP € P; :
(i) fy A? (w,u) d (W), < oo P as. )
(#) [; A (w,u) dw, > —L P as.

(i) c+ [} A (w,u) dw, > ¢ (zw;) P as.

Q(I,t,¢,x) = inf

where t is the maturity and ¢ the payoff function.

We shortly justify this definition. (7) is a classic integrability condition
and can be replaced by fot A? (w,u) wldu < oo P a.s., since the volatility is
bounded; (i) avoids doubling strategies (see for example [7]); finally (4i7) is
the super-hedging condition. Those conditions have to be satisfied for every
probability law of P;. Remark that we have dropped the dependence on z

of the stochastic integral. This is possible because fot A (zw,u) d (zw,) P
fot A (zw, u) dw, and by replacing zA (zw,u) by A’ (w, u) (see [11] section 2.2
for details).

We first recall a classic result (see for instance [7]). We denote C?_ (x, ¢, 0, )
the price at time 0 of an American option in the Black-Scholes model with con-
stant interest rate p, volatility o, maturity ¢ and payoff ¢.

Proposition 2 Fiz p > 0. Let S; = wexp (th + (,0 — (’2—2) t) and §t =

e PvS,. If ¢ is continuous, nonnegative,

2
Cgm (.1',(,0,0', t) = SupE |:€_pT(p (-TeXp <O'W7— + </) - %) T>>:|

RR n 4065



8 M. Leblanc, C.Martini

where T runs across all the stopping times of the filtration of the Brownian
motion W with values in [0,1] a.s. .
Moreover there exists a predictable process A*™ such that for every time
u € [0, :
u
C? (x,p,0,1) +/ AS™dS, > e ™ (S,) a.s
0

where the stochastic integral is well-defined and uniformly bounded from
below.

Remark 3 The last statement is a direct consequence of Doob’s decomposi-
tion for supermartingales altogether with the peculiar form of Brownian local
martingales. In [11] the same statement is found, without reference, with a
Borel function Ay : RE % [0,t] = R composed with (v, S,) for the integrand
of the stochastic integral. In fact this particular form does not play any role
in the proof (cf [11]). Since we did not manage to find out a precise reference,
we prefer the above formulation.

If we look at the Black-Scholes model with zero interest rate, volatility
equal to 1, and consider the problem of pricing at time 0 an American option

A with maturity 7 2t, payoff ¢ (Su) and exercise window [0?t,5%t], we get:

Corollary 4 If ¢ is continuous, nonnegative, the price of the option A is given
by

Cam (2,0,0°, 7°t) = sup B [ (wexp (W, = 7))

where T runs across all the stopping times of the filtration of the Brownian
motion W with values in [0°t,5%t] a.s.

Moreover there exists a predictable process d*™ such that for every time
u € [0, :

Cam (T, @, 0,1) —|—/ 5$md§1, >e ™p(Sy) a.s
0

where the stochastic integral is well-defined and uniformly bounded from
below.

Then, with a time change argument, we get:

INRIA



Unbounded Volatility in the Uncertain Volatility Model 9

Proposition 5 (/11] Property (P15)). If ¢ is continuous, nonnegative,
QI t,0,2) < cam (z,,0°t,5°t)

Now we denote

, .. . o(z) .
(A’) the limits $1LI(1)1+ ¢ (z) and z]_l)I_Poo . exist

(A”) ¢ is C? with ¢” with polynomial growth

Assumption (A’) was introduced in [11] and will be justified by theorem 6.

Assumption (A”) comes from the stochastic control theory and a similar
assumption can be found for instance in [9], chapter 4, section 2.

The main result of [11] is:

Theorem 6 Let

Gz{gEC(K",R) /Elwliggrg() Elhm (x)}

-0 1+ 2z

which is a Banach space for the norm ||g|| = sup, "{ii'.
In a zero interest rate market,

(i) If ¢ satisfies (A) and (A”), then

Q (L, t,p,2) = sup ET [ (ww;)] = V° (1,1, ,7)
PcEPr

Moreover,
(t,x) — Q(I,t,p,x) is continuous and WLH? in the sense of Krylov in
10, T[ x R,
Q(I,t, ¢, ) satisfies the HIB equation sup,e(,, ] anQZ; =0
The infimum in (5) is attained with A (w,u) = S~ VO (t — u, zwy,) -
(1) If v 1s in G and satisfies (A7), then V° (I,t,¢,x) € G and
VOt p,x)

0 : : ) IR T QO(‘T)
Jim VALt 9,2) = lim, o (2), Jim =77 = lim ;== (6)

(1ii) If ¢ in G then V° (I,t,,2) € G and

Q (I, t,p,2) = sup E” [p (zw,)] = V° (1,1, ¢,7)
PePy

Moreover (6) is in force with Q in place of V°.

RR n -~ 4065



10 M. Leblanc, C.Martini

3.2 Bounded volatility with ¢ =0

We use the notations of the previous subsection and we take the set J = [0,7]
instead of I in all the previous definitions. The following is shown in [12]|. For
the sake of completeness we shall provide a proof.

Theorem 7 Under assumption (A), if ¢ is nonnegative,

Q (J,t,0,2) = Cam (7, 9,0,5°t) = Cop, (z, 0,7, t)

Proof. We go back to the proof of [12] in our setting.
The inequality Q (J,t,¢,x) < Cam (2,9, 0,5%) is given by proposition 5
which is valid for ¢ = 0.

On the other way, we have Q (J,t,¢,z) > sup Ef [p(zw;)]. On some
PePy
probability space, let us define S; the set of the stopping times with respect

to the filtration generated by a Brownian motion W, with values in [0, ] and
take v in &;. Let V be the set of progressive processes with respect to the
Brownian filtration with values in J. Take v in V. It is clear that the law on
(Q, F, (Fu)yso) of the process (Xx) where

dY, = y.Y,dW,
Yo = =

is in P;. Therefore,

sup E” [ (zw;)] > sup E [¢ (V)]
PePy yeV

In particular, we can take v, = 01(<,) which is also in V' to get

sup (o (1)) > swp o (wesp {ow, = '} )|

yeV veS
Com (z,,0,1)
Cam ($, 2 07 EQt)

INRIA



Unbounded Volatility in the Uncertain Volatility Model 11

3.3 Unbounded volatility

As we suppose here @ = +00, the general setting of section 2 has to be modified.
We have to consider the laws P satisfying (a), (¢) and also :

V) d{w), << du, /% ¢ K g, +oo] P - a.s.

2
widu

We will also need that s — fos 0.dBy be a P—martingale (it was clear in
the previous sections). So we add the following condition:

(d) Vt>0 EF [j;( d<“’>u)2du} < +oo.

w2du
We denote P the set of law satisfying (a), (¢'), (¢) and (d). We also de-
fine the family of P—null sets N”, the filtration (F;)7,, the set Prog?, as
previously. -

The definition of the minimum price @ (K, t,,x) (or shorter @ (¢,z)) is
now:

c€R/IL>0,3A € Prog” /VP e P:
(i) Jy A? (w,u) d (W), < oo P as. ™
(7) f3 A (w,u) dw, > —L P as.

(1) c+ [7 A (w,u)dw, > ¢ (zw;) P as.

Q (K,t,p,x) =inf

Let us now turn to the quest of a closed formula for the value function:

C(t,z) Y sup EY [ (zw,)]
PepP

Next we shall show that this value is the smallest initial value of a superstrategy
for the payoff ¢ (zw;) , i.e. C(t,z) = Q (¢, ).

What is the meaning of (2) in case @ = +00? For p = 0, this equation may

be rewritten: )4 )
1 4, 4 (0 L 5 5 (0u) _ Ou
97 ¥ (8$2) 22" \oz2) T 0s (8)

with initial condition u (0,z) = ¢ (z). If we formally set @ = +o00, we should
have o
u
92 (s,2) <0

RR n 4065



12 M. Leblanc, C.Martini

This leads us to believe that x — C' (¢, z) is concave in z for t > 0, and we

(still formally) get

1 4, ,0%u Ou

2= 7 0r2  0s
We remark that u satisfies the Black-Scholes PDE (where ¢ is the time to
maturity) with volatility . Moreover, we obtain that g“ < 0. Hence we should
have t — C (t, x) decreasing on |0 +oo[ If we fix ¢ in |0, +o0f, it is then rather
natural to introduce the set A of the functions defined on [0, ¢]x]0, +oo[ that
satisfy:

(1) Yz >0, f(0,2)>¢(x)

(i7) fis CH?in ]O t] 10, +o0], C? in [0, ¢]%]0, +-00]
(133) Yu €]0,1], 312 L (u,2) <0

(iv) Vz >0,Vu €]0,t], io%z? gxé (u, ) — &L (u,2) <0
(v) f >0 everywhere

3.3.1 Properties of the value function C

Following the previous discussion, we shall show:
Proposition 8 Under assumption (A), for every x > 0, the map

t — C(t,x) is nonincreasing on |0, 4+00].

Proof. Let P be a law in P. For some Brownian motion B, with o, =
dw),

2du70-u20'

S 1 S
Ws = exp {/ 0,dB, — —/ aﬁdu} P —a.s.
0 2 Jo

Let us fix 0 <r <s. We first want to show

EF [gp (:c exp {/0 oudB, — %/0 aiduD] 9)
= oo [[cnti— ) [(oiar})]

INRIA



Unbounded Volatility in the Uncertain Volatility Model 13

for 8 Brownian motion under P with respect to a new filtration (G;) and some
process « adapted to the new filtration such that «, > o for v € [0,7]. This is
done in two steps.

Since [Jordv = [] 0%, £ dw= [/ (a;w\/gf dw it is natural to define «
by oy = aéw\/% Since s > 1, a,, > o for w € [0, 7].
Now remark that S, = \/éng is a Brownian motion (by scaling). By

fixing wa def B%w, we have P — a.s.

/ O dfy = / osw\/g\/zdﬁwz / 5udN,
0 o rys 0

~ def . . .
where 6,, = 0s,. Moreover w — N,, is a continuous martingale. As (8),, =
T

§<Kf > , we have <]v > = 2w and its inverse (as a function of w) is given
w w

by T (v) = Zv. Then we can use a time change formula (see for example [6],
proposition 3.4.8) to obtain P — a.s.

o (), _ s
/ O'dew = / O'T(v)d (NT(’U)> = / UUdB,,
0 0 0

/avdB,,:/ Qudf, P —a.s.
0 0

and we get equation (9).
Since ay, > g, w € [0, 7], we have:

S 1 S
C(s,z) = ;ggEP [gp (xexp {/0 audBu—§/0 szu})]
< sup EF [ap (mexp {/ avdﬁv—lf af}dv}>:| =C(r,x)
Pep 0 2 Jo

Remark 9 This result is not valid in the case of bounded volatility because
the process o would not be bounded from above by &, therefore the fact that
o = 400 1s crucial here.

Therefore

O

RR n 4065



14 M. Leblanc, C.Martini

Proposition 10 Suppose (A). If ¢ is Lipchitz continuous then for everyt > 0,
x — C (t,z) is Lipschitz continuous on |0, +o0|.

dw),
w2du’

Proof. Let P € P. For some Brownian motion B, with o, =

t 1 [t
Wy = exp {/ 0,dB, — —/ aidu}
0 2 /o

v(t,z, P) Y EP [ (zw)]

We consider the family {x — v (t,, P)} pcp - VP, V2, y > 0 we have

can write P — a.s.

Define then

|’l)(t,33,P)—’U(t,y,P)|

E" [lp (zwe) = ¢ (yewr) ]
K |z —y| E” [w] =K |z —y|

IN A

where K is the Lipschitz constant of ¢ and does not depend on P. Thus, the
family {z — v (¢,z, P)}, is equicontinuous with respect to P.
Let (P?), respectively (PY), be a maximizing sequence in P such that

v(t,z, PY) —» supwv(t,z,P)=C(t )
PeP

respectively

v (t,y, PY) — supw (t,y,P)=C(t,y)
PepP

Then the difference D (z,y,t) = C(t,z) — C (t,y) is bounded from above
by A = limsup|v (t,z, P?) — v (t,y, P¥)] and bounded from below by B =

n—oQ
liminf[v (t,z, PY) — v (t,y, PY)]. Hence
n—r0oQ

D (z,y,7)| < max([A],|B]) < 2K |z — y|

whence the result. O

INRIA



Unbounded Volatility in the Uncertain Volatility Model 15

3.3.2 Stochastic control results

We introduce the sets P,, defined for n large enough by P, et Plgn)- Clearly
P, C Pn+1 CcP.

We use here notations of section 2.2. Let us define v, (t, ) e sup E [ga (X,?’a’o’z)} =
acU,

VY (g, n],t, ¢, x) where U, is the space of (F])-progressive processes with val-
ues in [g,n]. Under assumptions (A) and (A’), by theorem 6,

vn (t,2) = sup B” [p (aw;)]
PePy

Set now Py def UpPr. The next theorem is the key result for this section.
Theorem 11 If ¢ is a measurable function such that

sup E¥ [p (zw;)] < + o
PeP

(in particular under assumption (A)), we have

sup B” [ (zw;)] = sup E” [p (zwy)]
PcP PEPy

Therefore, under assumptions (A) and (A’),
lim 1w, (t,2) = C(t,x) (10)

n—oo

Proof. Clearly, since Py C P, sup E¥ [¢ (zw;)] > sup E¥ [¢ (zw;)] .-
PcpP PcPy
Let us fix P in P, o being the associated volatility process. We define w

and w™ by
t 1 [t
w; = exp {/ 0,dB, — —/ Jidu}
0 2 Jo
t 1 t 9
wy = exp{/ (au/\n)dBu—é/(au/\n) du}
0 0

Notice that the law of (w’) under P belongs to P,.

RR n 4065



16 M. Leblanc, C.Martini

(1) First step. We show that we can find a subsequence (wf(")) which
converges P-almost surely to w;.
2
We first show that fot (0y An)dB, LASZ) fot 0.dB,. We can write

(/Ot (04 A ) dBu—/OtaudBu)

Moreover ((o, An) —0y)° =, 0 A ® P — a.s where ) is the Lebesgue
measure on [0,t]. Also

2

B — R [/Ot((au/\n) —au)2du}

((ou An) —0,)* < 2((04, An)* +02) < 40?2

Hence, by Lebesgue theorem, since V¢ > 0 ET [ fot aﬁdu] < 400 by defini-
2
tion (d) of P, we get E¥ [(fot (0w A1) — oudBu) ] — 0. In the same way

1
! Ou AT % du L—(>Z) " o2du. At this step we have obtained
0 0 u

t 1 t 1 t 1 t
/ (0w Am)dB, — —/ (o4 A)*du L) / OudBy — —/ oldu
0 2 Jo 0 2 Jo

So, we can find a subsequence, g : N — N, such that

t 1 t s t 1 t
/ (ou/\g(n))dBu——/ (00 A g (n)) du P%'/ oudBu——/ o2du
0 2 0 0 2 0

P—a.s. . .
Hence, wf(n) —" w; and since ¢ is measurable,

(2) Second step: We show the result when ¢ is bounded.
By Lebesgue theorem we then have

EF [gp (xwf(")ﬂ — EF [p (zw;)]

INRIA



Unbounded Volatility in the Uncertain Volatility Model 17

Since the law of (wtg(n)> under P is a law in Py, we can find a probability

Qn € Py C Py such that EF [go (uutg(n))] = E9 [ (zw;)] . Hence
lim B2 [ (zwr)] = E” [ (awy)) (11)

Let us take now a maximizing sequence P such that

E™ [0 (zwr)] 14 sup E" [ip (zwr)]

Thanks to (11) we have with transparent notations EX* [p (zw;)] = lirrln E9% [ (zw;)],

thus

C (t,z) = limlim E9 [ (zw;)] < sup EY [p (zw;)]
q n PePy

whence the result.

(3) Third step. We show the result in the general case. If ¢ is not bounded
we define ¢, = ¢ Am for m € N. By the monotonous convergence theorem,

lim 1 E” [ (zwi)] = ET [p (zw)]

m—+0o0

But, thanks to the previous step, EY (¢, (zw;)] = lilll E®7 (o, (zwy)].
n—-+00

We have E9% [p,, (zw;)] < E9' [p (zw;)] and taking a maximizing sequence
P% such that E* [p (zw;)] 14 suppep EX [p (zw;)], we can write

EY [p(zw)] = lim E™ g, (zw,)]

m—+0o0

= lim lim E9%" [pn, (zw)]

m——+00 Nn——+00

< liminfliminf E9%" [ (zw,)]

m n

Hence,

C (t,z) < lim inflim inf lim inf E9*" [ (zw,)] < sup B [p (zw;)]
q m n PePy

The second part of the theorem is clear since under (A) and (A’),

sup E” [¢ (zw;)] < lim 1 v, (t,7) < C (¢, 7)
PEPN n—00
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Let us now recall the result:
Theorem 12 (/9] theorem 3.1.5, lemma 3.3.7). Under assumption (A), (t,z) —
vn (t, ) is continuous on Rf x R .

So, if in addition we suppose (A’), (t,z) — sup ET [¢ (zw;)] is continuous on
PePy,

RS x R and therefore:

Corollary 13 Suppose (A) and (A’). The function (t,x) — C (t,z) is lower

semicontinuous on |0, +00[%]0, +o0].

We can now establish the Bellman principle for v,,. Using theorem 3.1.6 in
[9], we obtain:

Theorem 14 Under assumptions (A) and (A’), v, (t, x) satisfies, for u € [0, t]
Un (t, 33) = sup E” [vn (t — U, xwu)]

PeP,

Proof. With the notations of section 2, the Bellman principle writes (see
theorem 3.1.6 or 3.3.6 in [9]):
For0<s<Tand 0<u<T-—s:

v (s,z) =sup E [v (s + u, Xp*")]
acU

Hence, by definition, we get for every u € [0, t]:
Up, (t, ac) = sup F [vn (t _ u,Xg,a,O,z)]

acU,
which is valid for ¢ < T and also for t > T, thanks to time homogeneity (see
remark 1). Remark now that for every ¢t > 0, x — v, (t, x) satisfies (A) since
¢ does (the continuity comes from theorem 12 and the bound comes from
the bound of ¢ and the fact that E” [w;] = 1). Moreover, thanks to theorem
6, v, (t,z) satisfies (A’). Therefore we can apply (again !) theorem 6 to the
function z — v, (t — u, x) (instead of ¢) to get

sup E [v, (t — u, Xg**)] = sup E” vy, (t — u, zwy)]
a€clU, PePy
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Corollary 15 Suppose (A) and (A’). For every u € |0, t],
C (t,x) < sup EY [C (t - u, 2w,)]
PeP

Proof. We can write v, (t,z) = sup EF [v, (t — u,2w,)] for u € [0,] by
PeP,
theorem 14. Thus

Un (ta "L') < sup E” [C (t - u, mwu)] < sup E" [C (t - u, mwu)]
PePy, PcpP

Taking the limit, we have C (¢,z) < sup E¥ [C (t — u, 2w,)]. O
PeP

Let us turn to the reverse inequality:
Theorem 16 Suppose (A) and (A’). Set P € P and u € [0,t]. We have
E"[C (t —u,2w,)] < C (t,7)

Proof. Set P in P and take the sequence wy ™) of theorem 11 which goes
to wy P — a.s. when n goes to +00. Let us fix N € N large enough. We have
seen that there exists a law Qn € Py(n) such that

B et )] = 5 s
for j =1,2,... and u € [0,t]. Moreover we have (theorem 14)
C (t,x) > vgnyaj (6, 2) > E9N [ugnysj (8 — u, 2wy)]
Hence,

liNni,iogf li}r_l)glf Ug(N)+j (t,z) > liNHi)i£f lijfgilc}f E" [Ug(N)+j (t — U, xwtg(N))]

> EF [hm infC (t—u, xwg(N))]

N—o0

> EP[C(t — u,zw,)]

using (10) from theorem 11 and the lower semicontinuity of C', which completes
the proof. O

Remark 17 We have actually obtained the Bellman principle for C.
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3.3.3 Concavity of z — C(t,x)
From proposition 8 and theorem 16 we get:

Corollary 18 Suppose (A) and (A’). Let 0 > o. We have: Yz >0 VYu €
[0, 7]

+oo _2(3—_21_0) t_
¢ (t, T exp (ay —0o? u)) dy < C(t,x) (12)

o \/271'(15—11,)0 2

This can be rewritten using the semigroup notation:

PLIC )] (z) <C(tz) (13)

where P? f (z) = f_t;o f/_%f (zexp (oy — 0%£)) dy is the Black-Scholes semi-

group with volatility o.

Proof. Thanks to theorem 16, we have
VP eP Vsel0,t] EFI[C(s,mwi_s)] < C(t, 1)

Now choose P in P corresponding to a constant volatility process o (with
o > o). We can write for some Brownian motion B,

t _
Wi_s = €xXp (oBts — 02¥>

Since v — C (v, x) is decreasing and s < ¢

E”[C (t,2w,_s)] < EY [C (s, 2w_s)]

and then
oo oxy _
EP[C (t,2wi_,)] = \/;TT——S)C (t,xexp (oy —o? (¢ 5 S))) dy
< C(tx)
|

This corollary and proposition 13 leads to:
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Theorem 19 Under assumptions (A) and (A’), for every t > 0, the map
x — C (t,z) is concave on |0,+oco[. In particular, it is continuous.

Proof. Let f a lower semi continuous function on R} satisfying (13).
We first prove the proposition for z — f () sufficiently smooth. We have,
according to (13)

P (@)~ f ()
utt t—u

<0

Yet this limit is by definition: Af (z) % %.1‘20'2% (z). Thus for every z > 0,
% (z) < 0 and the result.

If now z — f(z) is not smooth enough, let us fix ¢ > ¢ > 0. The map
x — PZ_f(x)is C™. As f satisfies (13), we get (because P? ,P? = P? _P? )

Ptafu (Pt(isf) (‘T) S Ptafsf (37)

So z — P? _f () is concave (first step).

Let us write S, = exp (aBu — 02%) for some standard Brownian motion
B, the Black-Scholes stock price at volatility ¢ > ¢. Then, by definition,
Py _f(z) = E|[f (Si—c)] .- We can write:

f@) = liminf f (2) > liminf B[f (25, .)

> B [liminf f (z5,0)| > B[f (50)] = f (2)

where we use first (13), next Fatou’s lemma and the fact that f is lower
semicontinuous for the last inequality.
In particular we have shown that

f (@) =liminf B[f (25, )] = lim inf P f ()

Finally, as a limit inf of a sequence of concave functions is a concave function,
f is concave. We complete the proof with corollary 13 and corollary 18. O
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3.3.4 Main Theorem

Theorem 20 Let us fiz (t,x) in |0, +00[x]0,+00] and let P be the probability
law of P such that W)y = 5 P —q.s. for every u in 10,t[. We also denote

w2du
by o the upper concave envelope of ¢, i.e. the smallest concave function above
4

| (i) Under assumption (A),
inf {f (t,2),f € A} = EZ[@ (aw,)] > C (t, )
(i1) Under assumptions (A) and (A’),

C(t,z) > B= [P (awy)]

Remark 21 If ¢ satisfies (A), § does.

Remark 22 If ¢ is nonnegative, EX[$ (zw;)] is the price at time 0 of a Euro-
pean option with payoff ¢ (S;) in the Black-Scholes model at volatility o without
interest rate.

Proof. (i) Let f € A and P € P. Applying It6 formula to the process
u— f(t — u,zw,) between 0 and ¢ — ¢ for € €]0, ], gives

t—e
fle,zwi—e) = f(t,zwy) + / —g—f (t — u, 2w,) du
0

u

t—e 182](‘ 0
+/0‘ 58—y2(t_u’xwu) x°d (w)

t—e af
+ = (t — u, TWy) dw,
JEE )

if we set oy,

fle,zw—) = f(t,x)+ /Ot_’S Bgiy‘é (t —u, 3w,) (02 — 0?) 2*w?| du
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t—e 8f 1 82f 2 2
+/0 [—% (t — u, zw,) + 29, (t = u, zwy,) o” (zw,)” | du

t—e 8f
+ T (t — u, TW,) dw,
JEE )

Because of the definitions (i74) and (iv) within A, both integrals with finite
variation are nonpositive. Hence, P — a.s.

of

xa—y (t — u, Twy) dw,

t—e
0 S f (&mwt—s) S f(t: .’E) +/
0

Suppose for a while (this will be shown later):

Ve €]0,t], EF [/t_gac% (t — u, Tw,) dwu} <0 (14)
0

By Fatou’s lemma we obtain

P [p(ewn)] < EP[f (0,aw)] = B [lim f (¢ 2wi-.)]
< liIEn_}(}lf EP [f (e, 2w,—c)] < f (L, 2)

Hence,
f(t,2) > sup E” [p (zw,)] = C (t,2)
PeP

Now let @ be the upper concave envelope of ¢. As f is concave in z on
10, ], lir% f (e, ) is concave as a limit of concave functions. By continuity, lir%
£ e—

f(e,x) = f(0,z) > ¢ (z), so the minimality of ¢ leads to
f0,2) 2 ¢ (x) 2 ¢ (z)
Hence (by the same reasoning with ¢ in place of @), for any f € A,

f(tz) > BT (@ (aw)] > EY [p (awy)] (15)

Set f* (t,2) “ EP [ (1w,)] which belongs to A. Applying (15) with f*,
we get (see also [3] for instance):

zsvlévp; EP [P (zwy)] = f* (t,7)
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Therefore, for z > 0, f (¢t,x) > f*(¢t,z) > C (¢, ).
Finally, because this proof is valid for any f in A, we obtain (i).

It remains to show (14). Fix s € [0 t[, and define the process
M, = / :c— (t — u, zw,) dw,

M is a P—local martingale. Let 7, = inf {s > 0, [M;| = n} forn > 1. (Msar, )50
is a P—martingale. In particular E¥ [Ma,,] = ET [My] = 0. Now, by Itd’s
formula we have

SN\Tp, af
—f(t,z) < / xa— (t — u, zwy) dwy, = Mgp,, P —a.s.
0 Y

Because of this lower bound, we can apply Fatou’s lemma to obtain

E* [/08 x% (t — u, Tw,) dwu} EY [ M)

= FEF [hmmes/\Tn]
< limE* [Mn,,] =0

and (14) with s =t —e.

(ii) Let P € P. According to theorem 16 we have for every u in [0, t]
C(t,z) > EY[C (t —u, 1wy)]

Then Fatou’s lemma gives C(t, ) > E¥ hmTltnf C(t — u, zwy)| . Therefore, we

need to show that

hmTltnfC(t — U, TWy) > @ (zwy) P — a.s.

And it is sufficient to get limTitnf C(t—wu,x) > @ (x). Because of the concavity
u
9)

of z - C(t—u,z) for u < t (proposition 19) and the definition of @, this

amounts to show

Ve >0 liminfC(t —u,z) > ¢ (x) (16)

uft
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Yet, ¢ (z) = C (0,z) and (16) is obtained thanks to the lower semi-continuity
of C. O

Remark 23 In particular, in case @ is nonnegative, the value function C
belongs to A, with equality in (iv).

3.3.5 Connection with the selling price

Up to now, we have discussed the value function C (¢, ). In this brief subsec-
tion we shall see that this is actually the minimum price of the superstrategies
for a European option in our framework of the Uncertain Volatility Model
where ¢ = +o00.

Theorem 24 Under assumptions (A) and (A’), if ¢ is nonnegative, Q (t,z) =
C (t,z) on ]0,+00[x]0, +00].

Proof. Thanks to the constraints (i7) and (i77) of definition (7):

Q(t,2) 2 sup E" [p (zwy)] = C (t, @)

Conversely, since C (t,z) = Py % () is smooth enough, we get from Itd’s for-
mula:

t

oC ~

C(t,z)+ / B (t — u, 2wy) xdw, = P (xws) > @ (zwy) >0 P —a.s
o 0Y

We obtain (i7) with L = C (¢, z) . (i) comes from the application of 1t6’s rule.

Hence the converse inequality and the result. O

We have finally shown that, in a no interest rate market, under appropriate
assumptions, the price of the minimum strategy of a standard European option
of maturity ¢ and payoff ¢ (S;), when volatility is unknown but assumed to be
bounded from below by a constant g, is the price of a standard European
option in the Black and Scholes model with the same maturity, volatility o
and as a payoff function, the upper concave envelop of . Moreover, the hedge
amount is given by %—(; (t —u,Sy) .
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Remark 25 In [11], a similar hedging strategy in the case where the volatility
is bounded is obtained (theorem 6).

Remark 26 Our result remains valid if o = 0.

4 Extension to non zero interest rate

We denote p the constant interest rate of the market and also:

(A) ¢ is continuous and z — % is bounded on |0, +oc|.

y .. . . () .
(A’) the limits $ILI(I)1+ ¢ (z) and x]_l)I_Poo . exist

4.1 Bounded volatility with ¢ > 0

We use the notations and definitions of section 2 and 3. In particular we use
the same set of law P;.

Let us see how the definition of the price has to be modified. If at time u,
one has the wealth X, and invests the amount A, in the stock price S,, the
amount of the investment in the no risky asset of price R is (, = X";AM“S“.
The self financing condition is satisfied if

dX, = GdR, + A,dS,

The solution of this equation is given by
U Su
Xe=R, | Xo+ Aud(R—) , u € 0,1
0 U

Mixing this with the previous definition, the price of a European option is
defined by:

ceR/IAL>0,3A € Prog"" NP € Pr: P as.
N [EA2 (ppu 2
p . (1) fy A? (eMw, u) whdu < co
Q (I, 1252 x) = inf (’LZ) f() A (epuw’ U,) dw, > —L
(113) ¢+ fOtA (e 'w, u) dw, > e Py (zefw;)
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Remark that w stands here for the discounted underlying.
We have the clear homogeneity property:
Proposition 27 VA >0, Q° (I,t, \p,z) = AQ” (I,t,¢,x). In particular:
Qp (17 ta ©s .73) = e—thp (I: t7 eptgo’ .T)
Proof. If A =0, it is straightforward. If A > 0,
t
/\c+/ AA (e”w, u) zdw, > e (Ap) (ze”w;) P a.s.
0
then AQ” (I,t,,x) > QP (1,1, \p,z). On the other way,
t
c +/ A (e”w, u) zdw, > e " (Ap) (ze”w;) P as
0
leads to

X + 3 xdwu > e Py (:reptwt) P as

,D I’ 7A 3
so, LLLALT) > 0 (1, p,2). O

c /t A (e w,u)
0

Let us now give a useful result which allows to make use of the results of
the previous section.

Proposition 28

QO (Ia ta 2 (ept.) ) 37) = QO (Ia ta 2 xept) = Qp (Ia ta eptgp’ ',17)

Proof. The first equality comes from [11]| (property (P11)) (here we ex-
plicit the dependence in the initial condition) :

t
c +/ A (w,u) zdw, > ¢ (ze”w;) P as.
0
t
= c-l—/O %xeptdwu > ((xe”t) wt) P as.

t
& ¢ +/ A" (w, u) (ze”) dw, > ¢ ((ze”) w) P as.
0
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And we can write
t
c +/ A (w,u) zdwy, > ¢ (ve’'w;) P a.s.
0
t
& c —l—/ A" (e”w, u) zdw, > ¢ ((ze”) wy) P as.
0
hence the second equality. O
Remark 29 Both propositions are valid whatever the set of laws and the in-
terval.
From proposition 5, we get:
Proposition 30 Under assumption (A), if ¢ is nonnegative,
Q° (I, t,0,2) < e cam (e, p, 0°t, ")

Proof. We have Q°(I,t,,7) < Cam (7, 9,0%,5%t) and Q° (I,t,p,1) =
e Q% (1,1, p, zeft). O

Remark 31 Frey in [5] shows a similar result using the optional decomposi-
tion of El Karoui and Quenez ([4]) and Kramkov ([8]).

Our following result extends theorem 6. First, we review some notations of
section 2. The state processes X?*%* controlled by the process o was defined
by:

ng,a,O,w = ng’a’t’“du + aqu’a’O’wdwu
t,x
Xpaaa 9 — T
0

and we had set V? (I,t, ¢, z) def sup E [efpt(p (ti,a,O,m)}
acl

With those notations, we obtain:
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Theorem 32 Under assumptions (A) and (A’),

Q" (I,t,¢,2) = sup E” [e "¢ (ze”'wy)] =V (I, t, ¢, 2)
PcPr

Proof. Using theorem 6, we get, since P; does not depend on the initial
condition z,

Q° (I, t,gp,xept) = sup E¥ [gp (xeptwt)]
PcPy

Moreover, thanks to the propositions 27 and 28, we have

Q' (I,t,p,z) = e Q" (I,t,e"p,x)
e QP (I, t, o, ace”t) thrm 3.3 —pty/0 (I, t, o, ace”t)

= e sup EF [go (:Ee”twt)]
PePr
= sup E” [e_ptgo (a:e”twt)}
PcPy

since P; does not depend on p.
t
Now, we can remark (by Ito’s formula) that X2 @0 4 xPa0e go

VO tpe) = sup [ (X0992)] = sup B [ (XE%0%)]
acU aclU
= eV (I,t,0,x)

The result follows. O

4.2 Bounded volatility with ¢ =0

Recall that J = [0,57]. Q° (J,t,p,x) has the same properties than Q” (I,t, ¢, x).
Hence with theorem 7:

Theorem 33 Under assumption (A), if ¢ is nonnegative,

Q" (J.t,0,2) = e "'Q° (1,1, p, ze") = e7"'CY,, (we’, 0,7, 1)
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Remark 34 A similar result has been shown by Frey in [5] in a framework of
a stochastic volatility model. Moreover, although he works with a larger class
of payoff functions than ours, his payoff has to be a function of the discounted
price process.

4.3 Unbounded volatility

We use here the notations and definitions of section 4. The riskless price at
time 0 of the European option is now defined by:

ceR/IL>0,3A €ProgP /YPEP: P as.
(2) fot A? (e w,u) d (W), < oo
(%) [; A (e”w,u) dw, > —L
(i13) ¢+ fot A (ew, u) dw, > e P p (zellw,)

Q’ (K,t,p,x) = inf

With propositions 27, 28 and remark 29, we get
Theorem 35 Under assumptions (A) and (A’),
Q° (K, t,p,2) = sup B" [e "¢ (ze”'w;)] = EX [e "¢ (ze'wy)]
Pep

the last quantity being the price at time 0 of a Furopean option in the
Black-Scholes model, with interest rate p, volatility o and payoff ¢ (S)-

Proof. First, since P does not depend neither on p nor on the initial
condition z, as previously we have

Qp (K, ta 1) "L') = eithp (Ka ta eptgpa IL‘) = 67th0 (Ka t) ¥ (ept.) ) 33)

= esupE” [go (xe”twt)] =sup E¥ [e_ptcp (:ce”twt)]
PeP PeP

Secondly, if we define ¢ (.) = ¢ (e”.), thanks to theorem 20 (1 satisfies (A)
and (A7),

sup B [ip (zewr)] = sup B” [9 (aw)] = B [ ()]
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Lastly, it remains to show that on ]0,+oo[, ¥ (.) = @ (e”.). The function
@ (e.) is concave. So, since P (ef’.) > ¢ (e’.), by the minimality of the
concave envelope, we get

p(e) > g (ert) =D ()

On the other way, ¢ (z) = 9 (ze~**). Because of the concavity of ¢ (e=".), we
get, for every z in ]0, +oof

b (ze ) > 3 (x)

Let us fix y = ze **. We have @(y) > @ (ye”) for every y in |0, +oc[, which
gives the converse inequality and completes the proof. O

Remark 36 The results of this section can be extended to a deterministic
interest rate function.

5 Conclusion

In this paper we study the Uncertain Volatility Model (UVM), introduced
in [1] and of [10], for payoffs assumed to be only continuous. Let us first
summarize our results. Suppose the interest rate p is nonnegative. If ¢ is the
(nonnegative) payoff function of an option, let us set:

(A) ¢ is continuous and z +— M is bounded on |0, +o0].

(A’) the limits wli>r(r)1+g0 (z) and w]_l}gloo % exist

- If the volatility process takes values in [, | where o > 0 and 7 < +o0,
under assumptions (A) and (A’), the UVM-selling price of a European option is
the UVM-selling price of the European option with no interest rate, discounted
by e~*t, with underlying initial value ze”* instead of z.

- If ¢ = 0, under assumption (A) ((A’) is not requested), the same result is
true. Moreover, the price is also the Black-Scholes American price at volatility
o and no interest rate (with the same transformation).
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32 M. Leblanc, C.Martini

-If ¢ = +o0 (¢ > 0) under assumptions (A) and (A’), the UVM-selling
price of a European option is the price of a Black-Scholes European option
with volatility ¢ and as a payoff, the smallest concave function above the
initial payoff.

In future works, we plan to study the case of American options and also
barrier options.
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