N
N

N

HAL

open science

Loop Level Parallelism and Owner-Compute Rule on
Mome, a Relaxed Consistency DSM

Yvon Jégou

» To cite this version:

Yvon Jégou. Loop Level Parallelism and Owner-Compute Rule on Mome, a Relaxed Consistency
DSM. [Research Report] RR-4058, INRIA. 2000. inria-00072578

HAL Id: inria-00072578
https://inria.hal.science/inria-00072578
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00072578
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--4058--FR+ENG

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Loop Level Parallelism and Owner-Compute
Rule on Mome, a Relaxed Consistency DSM

Yvon JEGOU

N°4058
Décembre 2000

THEME 1

apport
derecherche

%I INRIA

RENNES

Loop Level Parallelism and Owner-Compute Rule on
Mome, a Relaxed Consistency DSM

Yvon JEGOU

Théme 1 — Réseaux et systemes
Projet Paris

Rapport de recherche n°4058 — Décembre 2000 — 20 pages

Abstract: In this paper, we consider the application of the owner-compute rule
for the parallelization of HPF-style numerical programs and the use of Mome, a
software DSM, as a base for the run-time system. Mome is a page-based relaxed
consistency DSM which allows the parallel processors to make consistency requests
on individual pages, for instance after synchronization operations. We show that,
from the same informations used for explicit message passing run-time systems, it
is possible to control the behavior of our DSM and to obtain good performance.

Key-words: DSM, relaxed consistency, HPF, owner-compute rule, data prefetch.

(Résumé : tsvp)

Unité de recherche INRIA Rennes
IRISA, Campus universitaire de Beaulieu, 35042 RENNES Cedex (France)
Téléphone : 02 99 84 71 00 - International : +33 29984 71 00
Télécopie : 0299 84 71 71 - International : +3329984 71 71

Exploitation du parallélisme de boucle et de la régle
des écritures locales sur Mome, une mémoire virtuelle
partagee a consistance relachée

Résumé : Dans ce document, nous considérons I’application de la regle des
écritures locales pour I’exécution paralléle de codes numériques de type HPF et
I’utilisation de Mome, une mémoire virtuelle partagée (DSM), comme support pour
I’exécutif du langage de programmation. Mome est une DSM a consistance relachée
qui laisse aux processeurs la charge d’émettre des requétes de consistance sur les
pages, par exemple, apres les opérations de synchronisation. Nous montrons qu’en
exploitant les mémes informations que celles utilisées par des exécutifs a échange
explicite de messages, il est possible de controler la consistance de la mémoire de
notre DSM et d’obtenir de bonnes performances.

Mots-clé : mémoire virtuelle partagée, consistance relachée, HPF, régle des écrit-
ures locales, préchargement

Loop Level Parallelismand Owner-Compute Rule on Mome 3

1 Introduction

The classical compilation scheme for High Performance Fortran (HPF, [7]) is based
on the application of the owner-compute rule which, after distributing the owner-
ship of array elements to the processors, distributes the charge of executing each
instruction to the processor owning the variable modified by this instruction. Be-
fore a processor can execute some instruction, or group of instructions, it must have
an up-to-date copy of all the variables which are owned by other processors and are
needed for the execution. These update phases involve explicit processor commu-
nication in message-based run-time systems. The major weakness of this compila-
tion model appears when the static data access analysis of the compiler produces
poor results or fails. In this case, large amounts of the distributed arrays become
potentially accessible during parallel loop execution, generate expensive communi-
cations during the update phases and can result in complex memory management at
run-time.

It is possible to map the HPF distributed arrays on some form of shared memory.
As long as the views of this shared space are consistent from all processors, the up-
date phases can be removed and using simple synchronization barriers is sufficient
to respect the data dependencies. On a demand-paging distributed shared memory,
only the pages containing data accessed during a parallel loop execution need to
be brought in a processor. The behavior of such a system is not directly dependent
on the data access analysis of the compilers. However many authors have reported
poor performances on distributed shared memories for various reasons:

e false sharing: independent data share the same page,

e latency: interprocessor communication latency dominates page-fault resolu-
tion,

e sequential consistency: expensive communication protocol through page in-
validation before allowing modifications to shared pages,

e weak locality in DSM organization: mismatch between the processors in
charge of managing a page and the processors accessing the page.

The independence of the iterations of a parallelized loop guarantees that the
data modified during one iteration need not be propagated for the execution of the
other iterations of the same loop. It is possible to relax the constraint of maintaining
a strict sequential consistency during parallel loop execution. But, in this case, the

RR n°4058

4 Yvon JEGOU

DSM must offer some means to manage the consistency of the shared pages in order
to respect the data dependencies of the parallel programs.

Projects such as TreadMarks [1] or Munin [4] have shown that the use of a
relaxed consistency software DSM along with some consistency control on syn-
chronizations can avoid explicit and complex updates of the local memories. Using
the rel ease consistency model with a lazy invalidate protocol implemented in Tread-
Marks, the views of the pages from the processors become automatically consistent
each time the processors synchronize. As long as the parallel codes are race-free, re-
lease consistency guarantees the same results as sequential consistency. With entry
consistency [2], shared objects are associated with synchronization variables. This
consistency management is more selective but requires some data access analysis in
order to associate objects and synchronization variables.

Mome (Modify-merge) is a software relaxed consistency, multiple writers dis-
tributed shared memory. Mome mainly targets the execution of programs from the
High Performance Computing domain which exhibit loop-level parallelism. Using
Mome, a processor must make an explicit consistency request on a shared memory
sections each time its view of this section must integrate the modifications from
other processors. For the compiler point of view, the strategy for Mome is close
to the strategy for an explicit message passing run-time system: the compiler must
evaluate which sections of the memory must be up-to-date before the execution of
a parallel loop.

The next section of this paper outlines the use of the owner-compute rule for
the distribution of the parallel computations on the processors of a distributed ar-
chitecture. Section 3 presents the Mome DSM and its consistency model. Some
preliminary execution results are presented in section 4.

2 Ownership Distribution and Owner-Compute Rule

The owner-compute rule consists of associating one processor, the owning proces-
sor, of the parallel architecture to each element of the distributed arrays and to
restrict the ability to update (modify) this element to this sole processor. As long
as this rule is applied, the owned elements are always up-to-date on a computation
node of a distributed memory computer and need no communication or synchro-
nization before being accessed by this processor. On the other hand, before a pro-

INRIA

Loop Level Parallelismand Owner-Compute Rule on Mome 5

cessor is allowed to read some non-owned variables (only read accesses are possible
as long as the owner-compute rule is applied) from its local memory, the current
value of this variable must be updated from the owning processor. This rule can
be applied for the execution of simple instructions on a parallel architecture. When
the owner-compute rule is applied for the distribution of the iterations of a parallel
loop on the processors, a processor executes all iterations which modify owned ele-
ments. All the communications necessary for the update of the non-owned read data
are performed before the loop execution. The application of this simple scheme al-
lows for efficient compilation of a large family of HPF programs. However, a strict
application of this rule can be difficult, or impossible, in some cases:

e complex indexing on left hand side: complex distribution of the iteration
space;

e complex indexing on right hand side: difficult to characterize which parts of
the address space must be updated;

e multiple assignments inside the loop body: it is possible that all the elements
updated by the same iteration are not owned by the same processor.

Many techniques have been developed to handle these complex cases, for instance,
loop transformations or duplicated executions with masking of the updates of non-
owned elements. Another solution consist of relaxing the strict application of the
owner-compute rule. But in this case, the processors must be synchronized after the
execution and must communicate their non-owned but updated elements before the
compilation process can be applied to the remaining part of the program.

Owner-Compute Rule and Software Memory Consistency

The data update sequence inserted by the compiler before the loop executions can
be considered as a form of explicit software memory consistency management. The
efficiency of this update phase depends mainly on the quality of the data dependency
analysis of the compiler. An inaccurate evaluation can lead to the transfer of large
volumes of data and finally to poor performance.

Owner-Compute Rule and Distributed Shared Memory

No need for explicit consistency requests if the DSM is sequentially consistent.
Only synchronization barriers need to be inserted before or after the parallel loops

RR n°4058

6 Yvon JEGOU

in order to enforce the data dependencies. The DSM still gets benefits from the
owner-compute rule applied by HPF compilers: this rule increases the data locality
on the processors. However, as it has been shown by many authors, a sequentially
consistent DSM suffers from false sharing and from the cost of page invalidation.
False sharing appears when updates to some page by one processor conflict with
read or write accesses to different locations of the same page on other processors.
False sharing produces invalidations of the page on the processors and results in
weak performance.

The use of a relaxed consistency DSM avoids the mutual invalidations in case of
false sharing. The consistency management of a DSM can be implemented using a
two-steps procedure. The first step removes all access privileges of the application
to the memory section which must be made consistent. This first step is local to the
requesting processor and generates no processor communication or data transfer.
The second step is initiated when the program touches the memory section and
generates a page-fault. This second step can result in processor communication and
data transfer. This step is applied only on the pages containing data accessed by
the processor. This two-step procedure limits inter-processor communications and
data transfers to the sole pages containing useful data even in case of weak data
dependence analysis at compile-time.

The code generation technique for such a relaxed consistency DSM is close to
the code generation technique for a pure distributed memory architecture based on
message passing: the main difference is that the explicit software management of
the local memories through data communication is replaced by consistency requests
on the memory sections which must be up-to-date. Moreover, in the case where the
strict application of the owner-compute rule must be relaxed, the presence of a DSM
allows a more simple construction of a consistent view of the data: at the opposite
of the message passing version, there is no need to know which processor modified
which data.

3 Mome DSM Consistency Model

Basically, Mome implements a simple relaxed consistency model for the DSM page
management. At any time, the DSM considers a current version of each page. In
the absence of explicit consistency requests from the processors, the current version

INRIA

Loop Level Parallelismand Owner-Compute Rule on Mome 7

of the page is forwarded to any processor requesting a copy of the page, after a page
fault. As long as no processor is granted write access, all processors having access
to the page hold an identical copy. The processors requesting write access to the
page can be allowed to simultaneously modify their local copy. The sole restriction
is that, when two or more processors can modify a page, at least one unmodified
copy of the page must be kept in the system. This original copy is necessary when
the modifications are merged for the creation of the next version of the page. In
general, the Mome DSM allows the first writer to modify its local page and requests
the second writer to keep a copy of the original page.

3.1 Consistency Control

The Mome DSM allows the application to specify which sections of the shared
memory must be made consistent on each processor, mainly after synchronization
operations. The consistency control of Mome is based on a global distributed clock
maintained by the DSM. Mome keeps track of the dates of some events: the date of
the last synchronization barrier, the date of the last release of a distributed lock or the
date of the first modification to the current version of each page. Each consistency
request makes reference to the date of some event in the past. The HPF compila-
tion strategy for Mome inserts a synchronization barrier followed by consistency
requests before each parallel loop. These consistency requests use the last barrier
date as a reference for consistency checking. During the first step of a consistency
request handling, the page is protected from the application and the constraint date
is stored in the page descriptor. This date is transmitted to the global page manager
during the second step after a page fault. The page manager then compares this date
to the current modification date associated to the page. The current version is valid
if no modifications were allowed before the constraint date. In the other case, the
manager initiates a merge of all pending modifications and generates the next ver-
sion of the page. The current implementation of Mome generates the new version
through a bit-wise exclusive or of the modified pages (and of the current version if
the number of modified pages is even).

This two-steps procedure limits the updates to the pages which are really ac-
cessed by the application (a form of lazy update). Using a combination of consis-
tency requests and prefetch requests (see section 4.4), the DSM interface allows to
update the local memory before the application generates a page fault.

RR n°4058

8 Yvon JEGOU

3.2 Shared Page Managers

Each memory page of Mome DSM is managed by a global page manager. The
global managers are distributed on the processors. Mome provides the possibility to
redistribute these page managers (see 4.7). The state of a page in a global manager
is defined using four sets of processors: the set V' of processors holding the current
version, the set M of processors with modifications, the set S of processors which
have asked for strong consistency and the set I of invalidated processors.

When a copy of the current version of the page needs to be forwarded to some
processor, the sender is selected from V. It is possible for V' to be empty only in
the one-writer case and, in this case, M contains exactly one processor. M is non-
empty if one or more processors have been allowed to modify the current version.
If this set contains two or more processors, V' cannot be empty: the current version
of the page is necessary for merging the modifications. Set .S records all processors
having requested read or write access right to the page in strong consistency mode.
These processors also appear in V or in M. As long as this set S is not empty,
no other processor can be granted write access to the page. S can contain multiple
readers or only one writer. In the case where S contains one or more readers, M
is empty. If the global manager receives a write-request, all the processors from S
are requested to invalidate their copy of the page and to forward a write acknowl-
edgment to the future writer. The future writer is allowed to proceed only when it
has received all the write acknowledgments. When all the processors use the strong
consistency mode, the Mome DSM implements the classical multiple readers or
one writer sequential consistency protocol. Set I records the processors which have
modified the current version and forwarded their modifications. The current version
is invalid for these processors because it does not contain their previous modifica-
tions. Any request from an invalidated processor generates a new version of the
page integrating all modifications.

3.3 Controlling Mome from Data Access Analysis

As long as the owner-compute rule can be applied, the compilation strategy for
Mome DSM consists of inserting a synchronization barrier followed by a consis-
tency request on each accessed but not owned memory section before a parallel
loop. This strategy is close to the message-passing strategy and can be implemented

INRIA

Loop Level Parallelismand Owner-Compute Rule on Mome 9

with the same run-time interface. When the memory sections which are accessed
during the computation can be determined with enough precision, it is possible to
combine the consistency request with a non blocking prefetch request. The use of
these requests initiate early page-fault resolution along with a possible merge of the
pending modifications in the background and can reduce the latency of page-fault
resolution. When it is not possible to characterize the accessed memory sections
with enough precision, for instance in the presence of complex indexing of the ar-
rays, the prefetch request can bring unused pages in the processor and should be
avoided.

When the owner-compute rule cannot be applied, the parallel loop execution
leads to the modification on non-owned elements in the shared memory. A sim-
ple synchronization barrier followed by a consistency request on the owned space,
makes this space consistent. This scheme is similar to the explicit message passing
scheme which explicitly updates the owned data.

At the difference of the message passing strategy, it may be necessary to intro-
duce a synchronization barrier when write after read dependencies exist even when
the parallel loop accesses only owned data.

4 EXperiments

4.1 Simulation Codes

The effectiveness of using the Mome DSM for the execution of HPF-style programs
was evaluated on two numerical codes: t ontat v and ngs.

During an external iteration of t ontat v, each data element of a two-dimensional
grid is updated from the values of its neighbors in the previous iteration. Using HPF,
all arrays of t ontat v are block distributed column-wise. The computation load of
the processors is equitably distributed. Each processor reads one column updated
by each of its two neighbors during each iteration.

ngs computes the modified Gramm-Schmidt algorithm. During external itera-
tioni of ngs, columni is normalized and is then used for the orthonormalization
of columns i +1 to n. Different strategies can be used for the parallel execution of
this algorithm. First, the array can be block distributed column-wise or cyclically
distributed. Using block distribution, the computation load is unbalanced, espe-
cially at the end of the computation. During iteration i , only the processors owning

RR n°4058

10 Yvon JEGOU

columnsin therangei +1. . . n work. The use of a cyclic distribution balances the
load on the processors but can result in a more expensive memory management.
Cyclic distribution introduces false sharing on a DSM if the column length is not a
multiple of the page size.

These two numerical codes were transformed manually. These transformations
were limited to the computation of the parallel loop bounds and to the insertion of
synchronization barriers and of consistency requests to the DSM before entering
these loops. A version of the ADAPTOR [3] run-time library should be available
in the future and allow to compare massage-based executions to DSM-based exe-
cutions for the same source codes on the same hardwares. t ontat v was run on a
1023 x 1023 problem for the false sharing case and on a 1024 x 1024 when false
sharing is avoided. For ngs, the results of Fig. 1 were obtained on 1023 x 1023
and 1024 x 1024 problem sizes and the results of Fig. 6 using 2047 x 2047 and
2048 x 2048 problem sizes.

4.2 Experimentation Parameters

The experimentation platform is a group of PCs connected through an SCI ring as
well as a 100Mbits Ethernet network. Each node is a dual pentium Il processor
running SMP Linux 2.2.7. The following parameters were combined during the
runs:

communication layer: 100 Mbits Ethernet or SClI,

false sharing: with false sharing or without,

prefetch: with or without prefetching,

consistency model: sequential or relaxed consistency model,

consistency management strategy: on the whole DSM, on accessed elements
or on non-owned accessed elements,

e localization of page managers: page cyclic, block column or column cyclic
e column distribution: block or cyclic for mgs

4.3 Communication L ayer

During an external iteration of t ontat v, each processor crosses two synchroniza-
tion barriers, receives one column from each of its two neighbors and computes its
local block. When the number of processors increases, only the cost of the block

INRIA

