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Abstract: We consider the busy period in a stochastic fluid flow model with infinite
buffer where the input and output rates are controlled by a finite homogeneous Markov
process. We derive an explicit expression for the distribution of the busy period and we
obtain an algorithm to compute it which exhibits nice numerical properties.

Key-words: Stochastic fluid model, busy period, Markov process, numerical analysis.

(Résumé : tsup)

* This work was supported by the French-Hungarian bilateral R&D program 2000/2001.
t {Nelly.Barbot }{Bruno.Sericola}@irisa.fr
i Dept. of Telecom., Technical University of Budapest, 1521 Budapest, Hungary, telek@hit.bme.hu

Unité de recherche INRIA Rennes
IRISA, Campus universitaire de Beaulieu, 35042 RENNES Cedex (France)
Téléphone : 0299 84 71 00 - International : +332 99 84 71 00
Télécopie : 0299 84 71 71 - International : +3329984 7171



Distribution de la période d’occupation dans les modéles
stochastiques fluides

Résumé : On considére la période d’occupation dans un modéle stochastique fluide a
capacité infinie ot les taux d’entrée et de sortie sont contrélés par un processus de Markov
fini et homogéne. On aboutit & une expression explicite de la distribution de la période
d’occupation et on obtient un algorithme pour la calculer qui posséde de bonnes propriétés
numeériques.

Mots-clé : Modéle stochastique fluide, période d’occupation, processus de Markov, anal-
yse numérique.
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1 Introduction

Stochastic fluid models (SFM) are widely applied to capture the queueing behaviour of
packet switched networks with large buffers [5]. An SFM is composed by a buffer and a
background process that modulates the rate of the fluid accumulation in the buffer. The
modulating process is commonly assumed to be a continuous time Markov chain (CTMC).

The transient analysis of SFMs, i.e., the analysis of fluid distribution in the buffer at
time ¢, is a complex and computationally intensive task. The cardinality of the problem
is characterized by the number of states of the modulating process. The majority of the
published analysis approaches requires the spectral decomposition of a matrix of size of
the state space [4, 2|. The applicability of this approach is limited by the computational
complexity and potential numerical instability due to close eigenvalues. In some special
cases it is possible to obtain an analytical solution exploiting the special behaviour of the
modulating process |1]. For general modulating processes a numerically stable recursive
method was proposed in [6].

There are other important transient measures of SFMs that are considered in the liter-
ature. The importance of the distribution of the busy period! was introduced in [3], where
a SFM with two priorities is studied. In the considered model the higher priority stream
occupies the server capacity as long as there is “high priority fluid” in the buffer and the low
priority stream gets service only when there is no high priority fluid in the buffer. The low
priority stream is served with server vacation, where the server vacation is the busy period
of the high priority stream.

In this paper we provide a stable numerical method to evaluate the distribution of the
busy period in SFMs with infinite capacity. The remainder of the paper is organized as
follows. Section 2 provides the proposed numerical procedure, while Section 3 introduces a
numerical example.

2 Stochastic fluid models

Let {Z(t),t > 0} be an irreducible CTMC on a finite state space S with generator A = [a;]
and let a; = —a;. We denote by m = (m;) the stationary distribution of {Z(¢)}. Whenever
the CTMC stays in state ¢, the fluid level of the buffer is increasing at rate d;. d; is often

1This measure is refered to as first passage time in [3], but we follow a different naming convention
because the analysis of the first passage time to a general fluid level is a more complicated problem than
the analysis of the first passage time to empty buffer.
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4 N. Barbot, B. Sericola and M. Telek

refered to as the drift or the effective rate of state .. When d; < 0 it means that the fluid
level is decreasing in the buffer. Of course, the fluid level can not decrease below 0. Q(t)
denotes the level of fluid in the buffer at time £. The dynamics of the fluid level process
{Q(t),t > 0} can be described as follows:

%Et) = dZ(t) when Q(t) >0 (1)
%it) = maz(dzw),0) when Q(t) =0 (2)

2.1 Analysis of busy period

The busy period is the period of time while the buffer contains a positive amount of fluid
(Figure 1). Without loss of generality we devote attention only to the first busy period in
this paper. The length of further busy periods can be obtained as the special case when the
initial fluid level is 0. The random time 7 is defined by

T =inf{t >0 | Q(t) = 0}

The distribution of the random time 7' conditioned on the initial fluid level and on the
initial state Z(0) is defined as:

Fi(t,z) =Pr(T <t | Z(0)=1,Q(0) = z)
By the given model definition 7' = 0 if Q(0) = 0 and d; < 0, otherwise Pr(7 = 0) = 0.

Theorem 1 F;(t,z) satisfies the backward differential equation

OF(t,x) _  OFi(t.

ot o7 ) = Z Ak Fk(t,l') ifx >0 (3)

kes

with initial conditions

Fi(t,0) = 1ift>0andd; <0
Fi(0,2) = 0ifz>0
Fi(0,0) = 0ifd; >0

INRIA



Distribution of Busy Period in Stochastic Fluid Models 5

Q(t)

Figure 1: Busy periods of a stochastic fluid model

Proof. As mentioned in [3], the backward argument that describes the evolution of the
process is:

E(t,éﬂ) = (1 — QZA)E(t - A,l‘ - dzA) + Z (likA Fk(t — A,CU — d,A) + O(A),
keS,k#i

which gives the theorem by algebraic manipulations and letting A — 0. |

Let |S| be the number of states in S and let m + 1, m < |S|, be the number of distinct
values among all the effective rates d;. These m + 1 distinct effective rates are denoted by
T0,T1,...,Tm and ordered as follows

T > Tl > ... > Ty 2> 0>1_1>...>1T1 >,

where v is the number of negative effective rates. The state space S of the process X can
then be divided into m + 1 disjoint subsets B,,, B;,_1, ..., By where B; is composed by the
states ¢ of S having the same effective rate r;, that is B; = {j € S | d; = r;}. |B;| denotes
the cardinality of subset B;.

RR n " 4057



6 N. Barbot, B. Sericola and M. Telek

If v = 0 the buffer never becomes empty after time 0, so we have T = oco. Thus, we
suppose without loss of generality that v > 1.
With this notation, we have, with probability 1,

1j[ v “:> if 2> 0
—— - ifz
T e iZol 7 T;—_H

[0, 00) ifx=0

7

where 7";'11 =714 for j=0,...,v—2 and 7“;-;1 =0 for j =v —1, so that —z/r} = 400

For x > 0, the distribution of T" has v jumps at points —z/r; for j = 0,...v — 1. If
x = 0, the distribution of 7" has only one jump at point 0. For x > 0, the jump at point
—x/r; corresponds to a sojourn of the Markov process {Z(t)} in the subset B; that starts
at time 0 and ends after time —z/7;. These jumps are given, for z >0and j =0,...,v—1
by

<eA%%%1%>@) ifi € B

0 otherwise

Pr(T =~ | Z(0) = ,Q(0) = 2) = { (4)

Tj

where Ap p; is the sub-infinitesimal generator of dimension |B;| obtained from A by

considering only the internal transitions of the subset B; and 1p, is the column vector of
dimension |B;| with all its entries equal to 1.

We denote by P the transition probability matrix of the uniformized Markov chain
associated to {Z(¢)} and by A the uniformization rate which verifies A > max(a;,i € 5).
The matrix P is then related to A by P = I + A/, where I denotes the identity matrix.
In the following, to simplify notation, we will consider {Z(¢)} as the uniformized process.
For every 1,7 = 0,...,m, we denote by Pp,p; the submatrix of P containing the transition
probabilities from states of B; to states of B;.

The distribution of the first time the buffer becomes empty, 7', is given in the following
theorem that applies the same approach as in [6]. The notation 0Op, stands for the null
column vector of dimension |B|.

Theorem 2 For everyi € S and x > 0, we have

M) s m

Bt = 3 e S (1) g1 — 0 m, ), (5)

INRIA



Distribution of Busy Period in Stochastic Fluid Models 7

s T T
where p; = +7f ift € |——,———, for j = 0,1,...,v — 1. The coefficients
(rj — Tj+1)t Tj 1

bz(])(n, k) are given by the following recursive expressions on the column vectors bgf (n,k) =
(bgj)(n,k))ieBl for0<I<mand0<j<v-—1.

forg+1<1<m:
forn>0: bgl) (n,0) =0p, and bgl)(n, 0) = bgl_l)(n,n) for j >0

G) = T 0) i =T G
Jor 1 <k <m:bg (n k)= ——"=bg (n,k—1)+ L—=>" Pgpbg (n—1k—1),

T, — T, T T i
foro<I<j: ’ T
forn>0: b(v_l)(n n)=1lpg, and b(j)(n n) = b(j+1)(n 0) forj <v—1
— YV.Up ’ B B 3 B ’ J
. L ) T _pm )
Jor0 <k <m—1:68)(nk) = 2@ n, b+ 1) + M S Pp,p b%(n — 1, k).
j+1 M j+1 — Tl i=o
Proof. See Appendix A. [ |

The special case when the initial fluid level is 0 (i.e. Q(0) = 0) is considered in the
following corollary.

Corollary 3 For every i € S, we have

F(t,0) = io: e_Athi(n, n), (6)

!
n=0 n.

where the coefficients b;(n, k) are given by the following recursive expressions on the column
vectors bp,(n, k) for0 <1 <m

forv<Il<m:

forn>0:bp,(n,0) = 0p,

for 1<k <mn:bg(nk)=—tbg(nk—1)+—"5 Pypbg(n—1k—1), (7)
Ty — Ty—1 Ty — Ty—1 ;=

foro<I<wv-—1: 0

forn>0:bg(n,n)=1p,

— Mb& (TL, k+ 1) + foot ZPBlBibBi(n - 1’ k) (8)

for0<k<n-—1:bg(n,k)
T Tt i=o

RR n " 4057



8 N. Barbot, B. Sericola and M. Telek

Proof. When z = 0 we have T" € [0,+00). This corresponds to the case j = v — 1 in
Theorem 2. By taking x = 0 and j = v — 1 in equation (5) we get relation (6) since in this
case p; = 1. The recurrence relation satisfied by the bp, (n, k) are then easily obtained by
taking j = v — 1 in the recurrence relation of Theorem 2. |

Note that the relation (7) and (8) are convex combinations of vectors since we have

r — Ty
0< —t =1l <1 forv<i<m,
Ty — Ty—1 Ty — Ty—1

and

71 Ti

2.2 Computational properties of the numerical procedure

In practical applications the analysis of busy period with initially empty buffer is much more
common. Fortunately, both the computational complexity and the memory requirement of
the numerical method based on Corollary 3 is v (the number of negative distinct drift
values) times less in this case. The computational complexity of the analysis procedure can
be further reduced using the results provided in the following theorem.

Theorem 4 The bg,(n, k) vectors piecewise satisfy the following inequalities:
a) Op, <bg,(n,k) <1lp, for 0<I<m, n>0 0<k<n
b) bg,(n, k) <bg(n+1,k+1) for 0<I<m, n>0, 0<k<n,

(
¢) bp,(n, k) > n+1,k) for 0<I<m,n>0, 0<k<n
d) bg,(n, k) <

(n, k) >

1

nk+1) for 0<I1<m, n>0, 0<k<n,

B;

(

(

ba(
e) by, (n, bg(n+1,k=1) for 0<I<m, n>0,1<k<n,
f) lim, 00 bp,(n,n) =1p,  for 0<1<m.

Proof. See Appendix B. [ |

INRIA
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k—1 k k+1
b b | b
n—1
by by | by
b_ b =4 b_
n
b+ — T = b+ b+

Figure 2: Computation of the b;(n, k)

The computation of the b;(n,k) can be illustrated using figure 2. In this figure, we
represent the b;(n, k) using column vectors b_(n, k) = (bg,(n,k))i=0,..0—1 and bi(n, k) =
(bg,(n, k))i=o,....m and we show graphically the relation (7) and (8) used for the computation
of by(n,k) and b_(n, k).

We assume that the stability condition, 3-;c¢ d;jm; < 0, is satisfied, so that the random
time 7T is finite a.s. Suppose, without any loss of generality, that the initial state ¢ is fixed.
For a given error tolerance ¢, we define integer N’ as

N’ = min {n eN ‘ (1 — bi(n, n)) (1 - ée‘”%) < e} : 9)

Note that the value of N’ will be known only a posteriori since it depends on the b;(n, k).
An upper bound of N, available a priori, that is before the computation of the b;(n, k), is
the classical truncation step of the Poisson series given by

N=min{n€N‘<1—ie"\tM>§€}. (10)

!
r=0 T

RR n " 4057



10 N. Barbot, B. Sericola and M. Telek

From Theorem 4, inequality a), we obtain N’ < N. Using the truncation step N', we get

Fi(t,0)=1-— % e*)‘tM + i’ 67,\1:()\75)"

!
n=0 n. n=0

bi(n,n) —e(N'),

n!

where the rest of the series e(/N') satisfies

(V)= 3 eAtM(l - bi(n,n)> < (1 - bi(N’,N’)) (1 - %e”%) <e (11)

1
n=N'+1 n. n—=0

Another way to reduce the computational complexity is to avoid the calculation of the
vectors bg,(n, k) when all of their components are less than or equal to a given value &'.
It is easy to check based on expression (7) that if the vectors bg,(n,k — 1) and bg,(n —
1,k — 1) have all their entries less than or equal to &' then the vector bg,(n, k) has also
all its entries less than or equal to &’. The same result holds for the appropriate terms in
expression (8). This property is due to the fact that both expressions (7) and (8) are convex
combinations of vectors. This property together with Theorem 4 suggest us to further reduce
the computation of bg, (n, k) vectors. More precisely, let us define, for a given value of ' the
integers Ny, N1, ... and N” as

Nozmin{lgnSN"—l‘bBl(n,O)Ss'llBl forl=0,...,v—1},
for h > 1,

thmin{Nh_1+1§n§N"—1

b[gl](n, h) <&'lg forl=0,...,v— 1},

and,
" . [H+1] - -t ()\t)r
N'=min{neN | (1-=b" " (n,n)) (1= e 1 <ey, (12)
r=0 .

where,

1) for0<I<m,0<n<N,and 0 <k <mn:

b (n, k) = bp, (n, k),

INRIA



Distribution of Busy Period in Stochastic Fluid Models 11

2) forh>1,0<I<mand h <k < N_:
D (N1, k) = by, (Ni1, k),
3) forh>1and 0 <l <m:

foro<li<m, N, 1+1<nand h+1<k<n:

b (n, h) = Og,

T

b (n, k) = l(n,k — 1) + 7“2133131;](71—1k 1),

T — Ty—1 Tr— Tu—1 ;5
for0<iI<v—1,Ny1+1<nand h<k<n-—1:

b%l] (n,n) = 1g,

b%l](n, k) = Mb[g}(n’ k1) + Ty—1 Z PB,B,»b[gg(n 1K),

T T 1=0

4) the index of the greatest considered N, is
H =max{h | N, < N" —1}.

In the above list, Item 1) represents the initialization step for A = 0, and Item 2) for
h > 1. Item 3) provides the application of (7) and (8) and the approximation of the negligible
vectors. Finally, Item 4) defines the greatest level of reduction used in the numerical method.
Note that N as well as N, (0 < h < H) and H are obtained during the execution of the
numerical procedure (a posteriori). By the definition of N, we have h+1 < N, < N" — 1,
so H< N" - 2.

All these mechanisms are illustrated in figure 3, where H = 3. In this figure, we represent
the initial conditions for vectors b_(n, k) and b, (n, k) described in figure 2. The vector 1
means that we have b (n,n) = 1_ and & means that b[h](Nh, h) < £'1_ by definition of
Np. We obtain, in particular, from relation (7), that b[h+1] (Np+1,h+1) <&l and so, to
avoid its computation we set b (Nh +1,h+1) =04 and we also set bh+1 (n,h+1) =04
for n > Nj, + 2. The cells in gray, in ﬁgure 3, are not calculated.

Let us now evaluate the error introduced by the use of the b (n k) instead of the

k)
bp,(n, k). It is easy to check that Theorem 4 is still valid for all the bl (n k), h = . H+1.

RR n " 4057
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No

1 b5 (n, k) = by, (n, k)

ochjo o=

b (n, k)

k

Figure 3: In gray, the cells (n, k) that are not computed

INRIA



Distribution of Busy Period in Stochastic Fluid Models 13

It follows in particular that the 1nteger N" exists. Moreover, for h > 1, n> Ny_1+1, h <

k<mn,and [ =0,...,m, we have b (n k) < b%;l] (n, k) since we start the computation of
the b} (n, k) When, forl =0,...,0—1, 08 (N, _1,h—1) < & and we set b5 (N,_1+1,h) = 0,
for [ = v,...,m. based on these remarks, it can be easily checked by induction that for

every 1€ S5, n>0,0<k<n,and h=1,...,H+ 1, we have
0 < b H(n, k) — M (n, k) < €. (13)

In order to simplify writing, we define N_; = —1 and Ny,; = N". The quantity that is
really computed is F;(t) which is given by

_ N" ( )" H+1 Ny (A" 1h
Et=1-Y¢* +> > e_’\t—‘bg ](n, n). (14)
n=0 h=0 n=Np_1+1 n:
Let us denote by E the error so obtained. We have
E = F(t,0) - Ft)
= (A" ™ (A" h
= Y e ’VT(l - ) > Z e MT (bi(n, n) — Bk ](n,n)>.
n=N"+1 : h=0 n=Nj,_; :

We denote respectively by e;(N”) and eq(NN”) the first and second term of the right hand
side. From Theorem 4, and (13) and (12), we have that

NII

0 < e(N") = i 6Atw<1 — bi(n,n)> < (1-=0b(N",N")) ( Z e—At )

n!

n=N"+1
< (1 b[H+1](N// N// >< NZ” —At >‘t )
=~ — U 5 €
< e

For h = 0, we have by definition b;(n,n) = bEO] (n,n), and for h > 1, we have
h
0 < bz(n7 77,) - bgh](nvn) = Z (bE“—l](n’ TL) - bEU](na n)) = he'.

u=1

RR n " 4057



14 N. Barbot, B. Sericola and M. Telek

Thus, we get from inequality (13),

H+1 Np, n
0 S 62(]\/v//) — Z Z e—At()\t)

h=1 n=Np_1+1

H+1 Ny, ()\t)n

S €I Z h Z e—)\t—’
h=1 n=Np_1+1 n:

< (H+1)

< (N —-1)&.

By choosing ¢’ = ¢/(N — 1), where N is known a priori, we get 0 < e;(N”) < £ and
0<ey(N")<eso |E|=|er(N")—ey(N")| <e.

The pseudocode of the algorithm is given in Table 1. In this algorithm, the b%l](n, k)
are computed successively for the different values of h and are all stored in the bg, (n,k)
according to figure 3 and thanks to Item 2).

Remark : The truncation levels N, N’ and N” are in fact functions of . In order to
compute Fj(t,0) for several values of ¢, say t; < --- < tj;, we only need to determine these
truncation levels for the highest value ¢;; since the rest of the Poisson series, which is used
to bound the errors, is an increasing function of ¢.

INRIA



Distribution of Busy Period in Stochastic Fluid Models 15

input : ¢, 1, t; <--- <ty
output : E(tj), forj=1,..., M.
Compute N from relation (10) with ¢ = ¢,
N” — N;
e'=¢/(N-1);
for /=0 to v — 1 do bp,(0,0) = 1p,; endfor
for [ = v to m do bg,(0,0) = 0p,; endfor
h = 0;
for n=1to N do
for [ =0to v —1do bg,(n,n) = 1p,; endfor
for k =n — 1 downto h do
for [ =0 to v — 1 do compute bp, (n, k) from relation (8); endfor
endfor
for | = v to m do bp,(n, h) = 0p,; endfor
for k=h+1tondo
for | = v to m do compute bp, (n, k) from relation (7); endfor
endfor

if (bBl(n,h) <l VI=0,...,0— 1) then Nj = n: h = h+ 1; endif

if ((1 —bi(n, n)> (1 -y e_’\tMM) < 5) then N = n; break; endif

—0 T.
endfor
_ NII At \n NII At \n
for j=1to M do Fi(t;) =1-> e—f\tj% +3 e—,\tj%bi(na n);
n=0 n. n=0 n:

Table 1: Algorithm for the computation of the busy period distribution

3 Numerical example

The distribution of the busy period and its dependence on the initial state of the busy
period are analyzed in this section. The considered fluid process is generated by m identical
on-off sources whose on and off periods are exponentially distributed with parameter 3 and
v, respectively. The sources generate fluid at rate € during their on period, and do not
generate any fluid during their off period. The fluid generated by the sources is driven to an

RR n " 4057



16 N. Barbot, B. Sericola and M. Telek

infinite buffer whose exit rate is c. In this case the Markov chain that determines the fluid
accumulation has m + 1 states. Assuming the states are numbered from 0 to m according
to the number of on sources (Z(t) = #on sources) the drift of state ¢ is i — c¢. Since the
busy ratio of a source is 7/(y + ) the utilization of the fluid system is

Omry
p= .
c(y+B)
Figure 4 depicts the distribution of the busy period of the fluid system with the following
set of parameters: m =40, f=1,7=0.2,0 =1, c="7.8 (— p = 0.854701), Q(0) = 0, and
e = 107°. The solid line represents the case when the initial state at the beginning of the
busy period is the one with minimal sources of on sources (i.e., Z(0) = min{i | i —c > 0}),
which is Z(0) = 8 in this case, while the dotted line represents the case when all the sources
are in the on state at the beginning of the busy period, i.e. Z(0) = m.

Figure 4: Distribution of the busy period with different initial states

To evaluate the benefit of the numerical procedure based on Theorem 4 the same fluid
model with identical on-off sources was evaluated with a different set of parameters: m = 4,
B=1,v=02,0=1,c=0.8 (= p=0.833333), Q(0) =0, Z(0) = m, and € = 1075. The

INRIA



Distribution of Busy Period in Stochastic Fluid Models 17

obtained uniformization rate is A = 4 and the maximal time at which the distribution is
evaluated is ¢t = 100 (i.e., At = 400).

With these parameters the truncation of the randomization method with respect to ¢ is
at N = 488 and the value of N’ truncation was obtained at 470.

The computational cost of an iteration cycle reduced significantly when the procedure
using the truncation steps Nj is used. With this procedure, we got N” = 470, H = 160.
Some of the values of the N, are : Ny = 80, N; = 88, N5 = 243, Nigg = 352, Ni590 = 450
and the last one is Nigo = 469. The number of cells whose calculation has been avoided is
equal to YF_ (N — N,) = 27512. This number represents approximatively 25% of the total
number of cells, which is (N” +1)(N" +2)/2 = 111156.

Appendix A. Proof of Theorem 2

Forz >0and t e (—E, —i> for j =0,1,...,v—1, we write the solution of equation (3)
Tj Tj+1
for every 7 € S, as
x () n o .
Rita) = 3 eSS (1) b -, ),
n=0 k=0

and we determine the relations that must be satisfied by the coefficients bl(j ) (n,k). We then
have

A n
9| (r'—r-* ) ; '
yen |y AT/ e ( s ) (x +rjt)*(—z — ?"fﬂt)“—kb?)(n, k)

) Z (7];?)(1"1‘7"] )k 1( I—T]—:_lt)n kr]b()(n k)

S
I
—
£
Il
—

_ i M nz::(n — k) ( z ) (x + Tjt)k(_g; — r;-'ﬂt)" k-1 ]++1b (n, k)
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= —\F(t,x)
oo ( /\+ )n n—1
Fe M|y A/ _;j'“ > (k+1) ( k _Ti 1 ) (z +7;t)F (=2 — rjﬂt)”’k’lrjbg])(n, k+1)
n=1 . k=0

- (Ti_i;;l) = n k + n—k—1,_+ 2(J)
- oy > (n—k) ( k ) (@ + rjt)* (=2 — 1 t) Tiab (n, k)
n=1 * k:o

— \E(t,2)

?

n+1

A

—At - (TJ'T;;I) = E+1 n+1 'tk ot tn—k b(]) 1.k+1

te Z (n+1)! Z( +1) E+1 (x+rit)"(—= Tj—|—1) b (n+ 1,k +1)
n=0 : k=0

n+1
G
O\ r;j—rf, n '

For every n > 0 and 0 < k£ < n we have

k+1(n+1>_n—k+1<n+1)_<n)
n+1\k+1 )7 Ty k)= \k )

S0 we obtain

Y ARt )

+ S e M S () P = ) b (0 + 1k + 1) — 00 (0 + 1, E)).
T5 = Tjt1 n=o L —

In the same way, we have

OF(t, x D SR O V3 el .
ha) —— 5 e ,) S (%) =p) B (n+ 1,k +1) = b (0 + 1, k).
Oz 75 = Tj+1 n=0 n o

INRIA
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Using the uniformization technique, we have

Zaw x) = =AFi(t, x) —1—)\2]9" LX),

res reS
that is,
(AT n— j
> aiFy = —\Fi(t,x +)\Ze el ') > ( 7/3 )p?(l—pj) S pirbP (n, k).
res n=0 L — res

It follows that if the b (n, k) are such that

(r; — d)bP (n+ 1,k + 1) + (di — 5, )0 (0 + 1,k) = (rj — 150) Y. parb@ (n, k) (15)

res

then equation (3) is satisfied.
The recurrence relation (15) can also be written as follows, for j =0,...,v — 1.
Fori: € B, U---U B,

| d; — 1+ to—r .

ng) (n’ k) = 7]44 b('y)( k— 1) + —T]+1 i szrbgj) (n - 15 k — 1)
di —j di—1j 15
and fori € ByU---U B;,
d;
b9 (n, k) = 7195] (n,k+1) + ”1 ’pr (n—1,k).
Tj+1 d; J+1 d; res

Using matrix and vector notation, we get for j =0,...,v — 1 and

forj+1<1<m

; T —Th ri, =
b (n, k) = 727 _Zjlbg}(n k—1)+ 73;_74 ! ZP B (n -1,k —1),
J J

7=0
for0<I<y
) I =1 & %)
1k = b k4 1)+ BT S Py b 1,R)
Tit1— T Tit1 — Tl =0

To get the initial conditions for the bz(-j )(n, k), we consider the jumps of F;(¢,x) given by
relation (4) in which we write

o0 —\Z\n
¢ BB Z:OeA%( :J) B, B,
n—=
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For every j = 0,1,...,v — 1 we have p; = 0 when ¢t = —z/r; and p; — 1 when
t — —x/ri,, t < —x/rf;, and so

o AE (_/\%)"
AL

:C -
E - — J b(J) 0
() = e, 0)
and, for j < v —1,
O =z (_/\T_L)n .
lim Fi(t,z) =) ¢ i 7’“131@(71, n).
o T = n!

For j =0, we get from relation (4),

0 n :
bg )(nv O) = (PBOBOEBO) (Z)]-{iEBo}'
Forj=1,...,v—1, we get
F‘i(_ﬁ, .’E) = lim E(t, .’17) =+ (e_ABijTij]lBj> (Z)]-{ZEBJ}
T t—)?—f, t<;—;
It follows that, from relation (4),
b7 (n,0) = b~ (n,n) + (Pp. 5 15, ) () 1iies,)-

that is,

b9 (n,0) = bF (n,n)+ Php Ls,

b (n.0) = b (n,m) for 1 # j

—T

Last we consider the case where j = v — 1, that is when ¢ € [ ,+oo). In this case, since
Ty—1

T;LH =0, we get when x — 0, with z > 0, p; — 1 and so

: . o (A -y
m_l)l({nz>oﬂ(t’ CL‘) - nz::()e n! bz (n,n)

It follows from the initial condition expressed in Theorem 1 that

b D(n,n) =1if d; <0,

7

that is
bgl—l)(n,n) = ]le fortl=0,...,v—1.
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Appendix B. Proof of Theorem 4

a) These inequalities are immediate since the relation (7) and (8) are convex combina-
tions of the vectors bp, (n, k) that initially have their entries equal to 0 or 1.

b) The relation is immediate for n = 0 since we have bg,(1,1) > 0 = bg,(0,0) for
l=wv,...,mand bg,(1,1) = bp,(0,0) = 1p, for I =0,...,v — 1.

Suppose the relation is satisfied at level n — 1, n > 1, that is suppose that for all
[=0,...,mand 0 <k <n, we have bg,(n,k) > bg,(n — 1,k —1).

Forl=0,...,v—1, we have bg,(n+1,n+1) = bg,(n,n) = 1, which means that the
relation is satisfied at level n for £ = n. Suppose the relation is satisfied at level n for

the integer k£ + 1, that is suppose that we have bg,(n+ 1,k +2) > bg,(n,k + 1). Let

TE — Ty—1

us define p = . We have p € [0,1]. Using the relation (8), we get

]
b, (n+1,k+1) — b (n, k) = p(bB,(n+ 1k +2) — by, (n, k + 1))

+ (1 _p) ZPBlBi (bBi(n’ k+ 1) - bBi(n -1, k))
1=0
>0

b

from the recurrence hypothesis.

For [ =v,...,m, we have bg,(n+1,1) > 0 = bp,(n,0) which means that the relation

is satisfied at level n for £k = 0. Suppose the relation is satisfied at level n for the

integer k£ — 1, that is, suppose that we have bg,(n+1,k) > bp,(n,k —1). Let us define
i

g = — . We have ¢ € [0, 1]. Using the relation (8), we get
Ty — Ty

bo(n+1,k+1)—bg(n k) = q(bBl(n—i— 1,k) = by, (n, k — 1))

+ (1 - q)ZPBlBi (bBi(n, k) - bBl(n — 1,1{1 — 1))
=0
>0

- Y

from the recurrence hypothesis.
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c¢) The relation is immediate for n = 0 since we have bg,(1,0) = bp,(0,0) = 0 for
l=wv,...,mand bg,(1,0) < bg,(0,0) =1p, for | =0,...,v—1.

Suppose the relation is satisfied at level n — 1, » > 1, that is suppose that for all
[=0,...,mand 0 <k <n-—1, we have bg,(n, k) < bg,(n — 1,k).

For | =0,...,v — 1, we have bg,(n + 1,n) < bg,(n,n) = 1p, which means that the
relation is satisfied at level n for £ = n. Suppose the relation is satisfied at level n for
the integer £ + 1, that is suppose that we have bg,(n + 1,k + 1) < bg,(n,k + 1). Let
7701 We have p € [0, 1]. Using the relation (8), we get

T

us define p =

bo,(n+1,k) — by (n, k) = p(bBl(n-{— Lk +1) = by (n, k + 1))

+(1-p) i Pos, (bBi (n, k) — b, (n — 1, k))
<0 -

Y

from the recurrence hypothesis.

For | = v,...,m, we have bg,(n +1,0) = bg,(n,0) = 0 which means that the relation
is satisfied at level n for £ = 0. Suppose the relation is satisfied at level n for the
integer k£ — 1, that is suppose that we have bg,(n + 1,k — 1) < bg,(n,k — 1). Let us

define ¢ = " We have q € [0,1]. Using the relation (7), we get
Ty — Ty—1
bp,(n+1,k) — by, (n, k) = q(bBl(n Sl k1) — by (nk — 1))

+ (1 _Q)ZPBlBi (bBi(n7k - 1) - bBi(n_ 17k - 1))
1=0
<0

from the recurrence hypothesis.
d) directly follows from b) and c).
e) directly follows from c) and d).

f) From inequality b), we deduce that for every i € S, the sequence b;(n, n) is increasing.
Moreover, from inequality a), we have b;(n,n) < 1 so, the sequence b;(n,n) converges
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when n goes to infinity. For every i € S, we denote by [; the limit of the sequence
bi;(n,n). We then have

> At)"
Fi(t,0) =) e‘”#bi(n, n) — l; when t — oo.
= n!
In another hand, since we have assumed that the stability condition } ;cgd;m < 0
is satisfied, we have F;(t,0) — 1 when ¢ — oo. Thus, we conclude that for every

’LES,Z,Z]_
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