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Abstract: The double porosity model allows to compute the pressure at a
macroscopic scale in a fractured porous media, but requires the computation
of some exchange coefficient characterizing the passage of the fluid from and
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be numerically computed by some Monte Carlo method, by evaluating the
time a Brownian particle spend in the matrix and the fissures. Although we
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approximation by random walks, and then does not require any discretization.
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Une méthode de Monte Carlo sans grille
pour calculer le coefficient d’échange
dans le modéle double porosité.
Partie I : de la matrice aux fissures

Résumé : La pression dans un milieu poreux fissuré peut étre calculée a une
échelle macroscopique a ’aide du modéle double-porosité, mais cette approche
nécessite de déterminer le coefficient d’échange. Celui-ci caractérise le passage
du fluide entre le milieu poreux (la matrice) et les fissures. Ce coefficient peut
se calculer numériquement en sachant le temps temps passé par des particules
browniennes dans la matrice et dans les fissures. Bien que simulant des proces-
sus stochastiques, I’approche présentée ici ne repose pas sur une approximation
par des marches aléatoires et ne nécessite pas de discrétisation.

Dans cette premiére partie, nous nous intéressons uniquement a des parti-
cules évoluants dans la matrice, ce qui nous donne une premiére approximation
du coefficient d’échange.

Mots-clés : Méthode de Monte Carlo, simulation de temps d’atteinte pour
un mouvement brownien, modéle double-porosité, milieu poreux fissuré
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4 F. Campillo & A. Lejay

1 Introduction

This paper presents an algorithm of simulation of a diffusion in a porous
medium (the matriz) with fissures. The goal is to compute the exchange
coefficient in the double porosity model [WR63]. A first approximation of the
coefficient, which is good under some rather natural assumption on the fissure
net, is given by the average of the first exit time from the matrix of Brow-
nian particles initially uniformly distributed. Thus, the algorithm simulates
the times and position when a Brownian particle hits for the first time the
interface between the matrix and the fissures.

In a forthcoming work [CLR], the behavior of the particle in the fissure will
be studied. There we will use a more complex formula linking the exchange
coefficient and the auto-correlation of the presence function of the particles in
the fissures. In fact, both works use different algorithms, and are then rather
independent.

One should not lose sight of the fact that when one wants to use a Monte
Carlo algorithm to compute a functional involving stopped diffusion process
(i.e. diffusion process given at a certain stopping time), one tends to simulate
the diffusion process itself which is, in many cases, not a good strategy. Here
it is possible to directly calculate the law of stopped diffusion and derive a
good approximation of the exchange coefficient. The cost in time is reduced,
and no grid generation is required (see [NE96| for random walk on regular
grid algorithms, [NE97| for random walk on non regular grid algorithms, and
[CFL*00] for a finite-volume approach).

We illustrate this approach for a diffusion with a two-valued diffusion co-
efficient over a bounded domain © of R? (by periodicity we restrict ourselves
to Q = [0,1]%) presenting a network of fissures: a set of segments. In this
example we can calculate the law of the couple time/point of reaching of this
network of fissure by the diffusion. The case of a field in dimension 3, which
is of interest in practice, including networks of cracks (here polygonal portions
of plans) does not comprise, compared to the case presented here, additional
methodological difficulty but only problems of implementation.

Our work is related to Milstein and Tretyakov’s one [MT99]: their purpose
is to simulate a diffusion process, a stochastic differential equation (SDE), on
a bounded domain of R? and over a finite time horizon.

INRIA



Computation of some exchange coefficient using a Monte Carlo method 5

Contrary to the traditional approach (as presented, for example, in Pardoux-
Talay [PT85]), they do not fix a time discretization step, they adopt a “time—
space” approach: the key point is, starting from a fixed position (¢,z), they
consider the former SDE with frozen coefficients, that is: dX(s) = (¢,z) dt +
g(t,z)dB(s), X(t) = z on the domain [t,t + dt[x|x — dz,z + dx]?. They
thus obtain a Brownian motion (with drift) that they simulate over a small
space-time parallelepiped.

As they work on unspecified bounded domain, arises then the difficulty of
the border. Indeed, they have to propose a method for approximate searching
for exit points of the space-time diffusion from a bounded domain. This point
is quite difficult.

In their approach, they still propose a simulation method for a diffusion.
In ours, the coefficients are constant, so that we avoid this detour and go
straight for the law of the exit points of the diffusion from a bounded, polygonal
domain. For that, we construct iteratively the exit time and position from some
square carefully chosen and as big as possible. However, if the coefficients of
the diffusion are not constant and the boundary of the domain is polygonal,
with size of edges much greater than the oscillations of the coefficient, then
our method may be coupled with the Euler Scheme or the Milstein-Tretyakov
method. So, we have only to simulate some diffusion in squares, which simplify
considerably the way of the boundary problem is treated, since we do not have
to choose smaller and smaller parallepided when we are close to the boundary
with the Milstein-Tretyakov algorithm, or to test each edge of the boundary
at each step to know whether it has been crossed by the particle or not with
the Euler Scheme.

2 Double porosity model

Let 2 be a bounded, closed subset R?, and Q = Q; UQ,,, with QN Q, = 0. We
assume that the media is periodic, and then that € is identify with the whole
space. The subset €2, is the matriz, that is a porous media. The subset {2 is
the net of “thin” fissures.

RR n° 4048



6 F. Campillo & A. Lejay

fractures
Q¢

7

Figure 1: An example of a network of fissures (with zoom)

The simplest equation giving the pressure p(¢, z) of a fluid in such a medium
at time ¢ and in the point z is:

op(t, z)
ot

= Ap(t, iE), (1)

where:

1= o (st @

,Jl

The coefficient a represents the diffusivity of the rock, and we assume that:

am X Id, ifx € Q,
a(x) = .
ars X Id, ifx e Qf,

(3)

with af > an,.

But Equation (1) is written at the scale of the pores, whereas an oil tank
can have length of several kilometers. One of the methods to study the pressure
consists in transforming (1) into a system:

P, Meas(€2
5,20 G AP —a(P—P), ®, = Meas(in)
ot “Meas(Q) (4)
orP; Meas($2r)
oLt — G AP +a(P,—P), ®
Uor — Ut +al 2 £ Meas(Q)

INRIA



Computation of some exchange coefficient using a Monte Carlo method 7

where P,, and P are the mean pressures in the matrix and the fissures over a
given volume V:

1
Po(t, z) = ty)d
(t,2) Meas(z + (VN Q) /x+(vmm)p( v dy
: /
p(t,y) dy.
Meas(z + (V N Q) Jor(vonn 0

and Pi(t,z) =

The coefficients @, and a; are the effective diffusivity coefficients in the matrix
and the fissures. The coefficient « is called the exchange coefficient. And the
model (4) is the double porosity model, here presented in permanent regime
(steady state approximation) [WR63|. A more complicated version of the
double porosity model may be found in [QW96a, CFLT00] (see also references
within), with some numerical analysis.

We deal in this report with the case where the ratio a¢/a,, is very large.
The oil is initially in the matrix, but, when moving, the oil stay essentially in
the fissures net. The term a, AP, is neglectable in front of the other terms.
The Laplace transform of the average of the pressure P;(¢, ) is solution to:

ANZLP(s,z) = sf(s)LP(s,x),
where, in permanent regime, f is the function

e
B Qms + «

f(s)

It is known that the operator A is the infinitesimal generator of a Feller
semi-group, and then that a diffusion process admits A as generator. Further-
more this process is conservative and continuous (see [STR88, LEJ00] for exam-
ple). It may also be studied by the theory of Dirichlet forms [FOT94, MRI1|.
The articles [GOO87, POR79a, POR79b, MT90, MD92] contain some accounts
about the semi-group in case of coefficients having discontinuities along hyper-
surfaces.

The trajectories of the diffusion process are interpreted as the movement of
some particle in the media. In the matrix, the particle moves like a Brownian
motion with speed 2a,. When it is in the fissures, it moves like a Brownian
motion with speed 2a;. The passage from the matrix to the fissures and from

RR n° 4048



8 F. Campillo & A. Lejay

the fissures to the matrix needs some special treatment, which will not be
considered here. However, we may assume that once it has hit the interface
between the matrix and the fissure, the particle enters into the last one. A
justification of this may be found in [CLR].

We are interested by the simulation of these particles. We give now the
link between their trajectories and the double porosity model.

If ¢ is the stochastic process such that e¢(t) = 1 is the particle at time ¢
is in the fissure and &¢(0) = 0 otherwise, then it has been proved in [NE98b]
that the coefficient @ may be computed using the auto-correlation function of
the process &;:

-1

a = 0;d </O+OO(IE,3 [e¢(t)er(0)] — ®F) dt) : (5)

Appendix B contains a proof of this result.

In the permanent regime, when a¢/a,, is considered as infinite and the
fissures are very thin, it has been proved in [NEL99| that if (¢) is the mean
of the first hitting time of the fissures for Brownian particles at speed 2a,,
launched uniformly in the matrix, then:

azé—m:isinceémzl. (6)

)y — (t)

The idea here is to replace the algorithm proposed by B. NETINGER and his
coauthors using random walks in [NE98b, NEQ99, NEL99| by an algorithm
using exact computation on some distribution of diffusion processes. This
algorithm using continuous time random walks in oil engineering is itself an
adaptation of the method introduced first by J.F. McCarthy [McC90, McC91,
McC93a, McC93b]. E. Remy has proved the validity of this algorithm in a
rather general case [REM99].

The fundamental characteristic of such an algorithm is that it is free from
grid generation, which is the most expensive step of the approach either by
random walks or by analytical approaches, which need discretization (see e.g.,
[CFL*00]).

In this first part, we deal with the hitting time of the fissure for some
Brownian particles moving in the matrix. Some numerical results concerning
the computation of the exchange coefficient o by the relation 6 are given in

INRIA
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Section 4. The second part is about the simulation of the particles in the
fissures, and the numerical computation of « by (5) using the auto-correlation
function.

In our algorithm, we iteratively construct some square centered on the
particle at a given time, and we draw the time and the exit position from
this square, until it reaches the fissure network. Hence, the trajectory of the
particle is not simulated. All the difficulty lies in the choice of a “good” square.

From a numerical point of view, this algorithm has the following advantage:

e No grid is required.

e The amount of memory required is of order of the amount of memory
required to store the description of the fissures.

e Since the particles are simulated independently, the algorithm is easily
parallelized (see [CLR]).

e We may use localization technics to work just on some parts of the ma-
trix.

e The code is rather short.

3 Algorithm

3.1 The main work

Let suppose that the fissures network is of the following form:
O = Uier[4s, Bil,

where A; and B; are point from R?. Here, the fissures are supposed to be of
zero width.

The algorithm relies on the simulation of time and position of exit from a
domain of simple geometrical shape, namely the square.

The algorithm is the following (a description in pseudo-language of our
algorithm may be found in Appendix A):

RR n° 4048



10 F. Campillo & A. Lejay

Algorithm A : Computation of exit time and position from the matrix

A.1 At time t, the particle is at a point P of the Q.

A.2 Fori€F,

A.2.1 one computes the projected position H; of the point P on the line in-
cluding the segment [A;, B;].

A.2.2 if the point H; belongs to [A;, B;], then let §; = d (P, H;). Otherwise,
let:

6; =min{d (P, 4;),d(P,B;) }.
The value 6; is the minimal distance of P to [A;, B;).

A.3 Let i € F such that 6; = minjep 6j.

A.3.1 If the point H; belongs to the segment [A;, B;], then one seeks if it
possible to build a square C' of which one on the sides rests on the segment
[A;, B;]. For that, it is enough for the distance 6; to be smaller than
min {d (A;, H;),d (B;, H;) }. If not, we go to step A.3.2.
In this case, C is the square of center P and one on the sides rests on
[Ai, Bi].
Then, it should be checked if the square C' does not intersect any other
fissure. It is enough to test this for that all those whose distance 6; is
smaller than \/26;.
If the interior of the square C' intersects another fissure, we go to step
A.3.2, else we go to step A.4.

A.3.2 Let C be a square of center P and diagonal length 26;.

A.4 We simulate the exit position P' and the exit time 6t from C for a Brownian
particle with speed 2ay,.
If C is a square and the side reached is the one contained in [A;, B;], then the
algorithm stops and returns the position P' and the time t + 6t. If not, we
return to step A.1 with the new position P' and the new time t + 6t.

Figure 2 shows some steps of the simulation of our algorithm A (see also
Algorithm 2 in Appendix A).

INRIA



Computation of some exchange coefficient using a Monte Carlo method 11

0o | - ©

fffff ! L,,J
o R
B~ QO
= b53

Figure 2: Illustration of the hitting-time simulation algorithm: The circled-
cross gives the position of the particle at the beginning of the step. The
squared-cross gives the position of the particles at the end of the step. The
dashed square is the square given whose exit time and position is simulated,
while the dotted square is the square first constructed, but intersecting some
fissures and then rejected.

RR n° 4048



12 F. Campillo & A. Lejay

3.2 Exiting from a square

We remark that in the previous algorithm, we need to simulate random vari-
ables giving us the first time 7 at which a stochastic process /2a,W exits
from a square when it starts at its center, together with the position v/2a,Ws5,
where W = (WM, W®) is a standard 2d-Brownian Motion.

In fact, cW,/.> is again a Standard Brownian Motion for any ¢ > 0, and
the distribution of W is invariant under rotation. We may then assume that
2a, = 1 and that the square is [—1, 1]2. Hence, we are interested by the joint
distribution of:

?:inf{t>0‘|W§i)|:1fori:lori:Q} and Wi

3.2.1 Simulation of the exit time from the square

We have first to simulate the exit time from the square:
C={(aW,2®)eR |2V <1 fori=1,2}.
If 2, is the distribution function of 7, then [MT99, Lemma 4.1, p. 741]
Py(t)=P[T<t]=1—(1— P(t))?
where

2(t) =Pt < ¢] with 7 = inf{t; 0‘|W§1)| =1 }

Hence, if U is a uniform random variable on [0, 1], 22~'(1 —+/U) is distributed
as T.

The following formulas are borrowed from [MT99, Lemma 3.1, p. 737] and
will be used to compute the distribution function & numerically:

PlH)=1- %Z CD” (—%H(% + 1)%) t>0,  (Ta)

, >0 (7b)

INRIA



Computation of some exchange coefficient using a Monte Carlo method 13

where erfc is the complementary of the error function:

erfc(r) = %/ ooe><p(—y2)dy.

This distribution function £ has density equal to

P'(t) = gf(—l)k(% +1)exp <—%7r2(2k + 1)2t> , t>0, (8a)
! _ 2 = k 1 2
P'(t) = Nores ;(—1) (2k 4+ 1) exp <—2_t(2k +1) ) , > 0. (8b)

Formulae (7a) and (8a) are suitable for calculations under large ¢, when
(7b) and (8b) are suitable under small ¢.

3.2.2 Exit position from the square

If one of the component of the 2-dimensional Brownian Motion is the first to
hit a boundary of C at time 7, then the other remains in the interval [—1,1]
during [0, 7]. Hence, to know W5, we compute the conditional probability:

Q(ﬁ,t):P[W@ <5‘\W§2>| <1, o<s<t} .

Using the computations in [MT99],

—+ o0

12 1 . m(2k+1)8
Q(ﬁ’t)_1—ﬁ(t)%;2k+1<(_l)+Sm 2 >

X exp <—é7r2(2k + 1)%) : "

RR n° 4048



14 F. Campillo & A. Lejay

As for Z, (9a) is better for large ¢, when (9b) is suitable for small ¢. Of course,
2 admits a smooth density, which is also expressible as series.

3.3 Simulation of exit time and position

We have now all the element to provide the algorithm to simulate (7, W5),
when C is the square [—1,1]* [MT99, Theorem 4.1, p. 743].

We assume that ideally, the random variables generated by the function
uniform are independent.

If C' is the square with edges Ay, Ay, A3 and A, whose edge length is 2d,
then the time and position is given by the following algorithm:

Algorithm 1 Exit time and Position from a Square
U <—uniform|0, 1]
V <—uniform|0, 1]
T P11 -VU)
E«— 2, YV) (rem: € [-1,1])
k <—uniform{1,2,3,4}

2 -—
return (;Z—mT, A + %Ak Ak—|—1)

The distribution functions &2 and 2 may be computed by relations (7a),
(7b), (9a), (9b) and inverted using a Newton-Raphson method. Figures 3 and
4 represent the distribution function &2 and its density &?', while Figures 5
and 6 show the curve of the distribution function of 2(-,¢) with its density
2'(-,t) for some values of ¢.

INRIA
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Figure 3: Distribution function &2  Figure 4: Density £’ of the distri-
bution function &
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Figure 5: Distribution function 2  Figure 6: Density 2’ of the distri-
bution function 2
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16 F. Campillo & A. Lejay

4 Numerical results

We presents here the numerical computation for three test cases. For the first
layered and the sugar box, the theoretical value of the exchange coefficient has
been computed. The third, we compare our value of the exchange coefficient
with some values given by the Continuous Time Random Walk method and a
finite-volume method.

| |
| periodiciq Z
| |

L i j ‘ L fissures
| fissure |
| |

L L
Figure 7: Layered media Figure 8: Sugar box

4.1 The layered media

The media is infinite in each direction, and is crossed by some horizontal
fractures. The distance between a fracture and a fissure is equal to L (See
Figure 7). The exchange coefficient is known in this simple case [QW96b]|, and
is equal to:

12

In the case of L is equal to 1 and a,,, = 1, the theoretical value (t) = 0.0833.

The experiments in Table 1 shows that the methods provides some quite good
results.

INRIA
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Simulations | 10%-#; 10%-%y 10%-%3 10%2-%4 10%-%5 | 10%2-ms5 | 10% - 05
n= 1,000 | 8.33 8.58 7.88 8.11 8.17 8.21 2.60

n = 2,000 8.53 8.11 8.16 8.75 8.13 8.33 2.92
n = 5,000 8.44 8.33 8.31 8.34 8.16 8.31 1.04
n = 10,000 8.15 8.36 8.42 8.38 8.23 8.31 1.13

Table 1: Mean of n experiments for the layered media with L = 1 and a,, = 1.
We set ms = (t; + -+ +t5)/5 and o5 = sd(ty, ..., t5).

In Table 2, the dependence of L is studied. In fact, our algorithm is scale-
independent, and the results behave as expected when L increases.

a | 1/{t) | 10% x ()
12.00 | 12.14 8.234
3.00| 2.89 | 34.570
1.33 | 1.33| 75.125
0.75| 0.74 | 135.389
0.48 | 0.50 | 198.496

Uk W N —H|

Table 2: Five experiments for 1,000 simulations in the layered media in func-
tion of L

4.2 The sugar box

In this case, the media is composed of porous square box surrounded by some
fractures. We have just to study the mean of the exit time for some particles
launched with uniform distribution on a square of size L x L. The value of «
computed by Warren and Root [WR63| is a = 28.44/L?. When L = 1, the
theoretical value of the exit time is:

(t) = 0.0351.

Experiments in Table 3 show that this algorithm also provides some good
results. Furthermore, the average number of steps is close to 4, as we might
expect.

RR n° 4048



18 F. Campillo & A. Lejay

Simulations | 10%-#; 10%-%y 10%-%3 10%2-%4 10%-%5 | 10%2-ms5 | 10% - 05
n= 1,000 | 3.36 3.51 3.63 3.45 3.48 3.49 1.00

n = 2,000 3.39 3.61 3.35 3.54 3.45 3.47 1.08
n = 5,000 3.53 3.59 3.52 3.53 3.51 3.54 0.29
n = 10,000 3.49 3.56 3.56 3.41 3.49 3.50 0.63

Table 3: Mean of n experiments for the sugar box with L. =1 and a,, = 1. We
set ms = (t; +---+15)/5 and o5 = sd(ty,...,t5).

Table 4 shows that the dependence in the size L of the sugar box is kept.

L o |1/{)|10%x (t)
28.44 [ 30.23 |  3.308
711 6.74 | 14.827
3.16 | 3.35| 29.832
1.78 | 1.87 | 53.526
1.14 | 1.13| 88.816

Ot = W N~

Table 4: Five experiments for 1,000 simulations in the sugar box in function
of L

4.3 Non trivial case

In this case, the fissures net is more complex: see Figure 9.

Figure 9: A non-trivial fissures net

INRIA



Computation of some exchange coefficient using a Monte Carlo method 19

In [CFL*00], the exchange coefficient is computed using a finite-volume
method, and when L =1 and a,, = 1, its value is:

Of.v.m. = 35.03.

We have to note that the model proposed in [CFLT00] is more complex than
our, since the width of the fissure is not assume to be equal to 0, and the
diffusion coefficient a; in the fissure is not assumed to be infinite.

Using the random walk method proposed in [NE98b, NEQ99, NEL99|, the
same authors have found a value:

Opw = 34.18

for this geometry [NE98a|. Here again, the width of the fissures is not ne-
glected.

With 20,000 experiments with the conditions L =1 and a,, = 1, we found
a value of

t =0.028 and o = = = 35.70. (10)

|| —

The average number of steps is 7.4, with a standard deviation of 6.9. Our
value of « is close to the value of the exchange coefficients given by the other
methods.

A The algorithm in pseudo-language

The following functions are used in Algorithm 2:

Square(P, H): returns a square whose center is P and for which the the middle
point of some edge is H.

Square diag(P, H): returns a square whose center is P and for which the
point H is one of its corner.

ExitFromSquare(C): returns the exit time at which the Brownian particle at
a given speed starting from the center of C' goes out from the square C.
It also returns the corresponding position.
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Algorithm 2 Simulation of the hitting time and position of the fissures

S1

particle (¢, P) in the matrix
for (i € F) do
H; + orthogonal projection of P on (A;B;)
0; < d(P,[A;, Bi])
end for
j + Argmin{é;;i € F'}
C < square(P, H))
if (aside of C' C [A;, Bj]) then
exit_possible < true
for (i € F; 6 <+/26;) do
if (C N [AZ, Bz]) then
C < square_diag(P, H;)
exit_possible < false
end if
end for
else if
C < square_diag(P, H;)
exit_possible < false
end if
(1, P') < exit_from_square(C)
if [ (exit_possible) and (P’ € [4;,B,]) 1 then
return (¢ + 7, P')
else if
(t,P) < (t+ 1, P')
goto S1
end if

B

Double porosity model and diffusion process

We assume that the media is periodic, and we denote by 2 a periodic cell. In
fact, we identify the whole space with 2. This means that each function is
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seen as a periodic functions. We denote by (-) the normalized average on €2

{flo = MezlisQ /Qf(x) dz.

B.1 The auto-correlation function of the presence of the
particles in the fissures

Let A= 2 (a(x)%) be the self-adjoint operator with domain

Dom(A) = { u periodic | (Jul*), + (|Vul*), < 400 and Au € L*(Q) } .

This self-adjoint operator is the infinitesimal generator of a continuous strong
Markov process X. This process may be constructed with the help of the
Dirichlet form theory [FOT94, MR91]| (see also [LEJ00]).

Lemma 1. The process X 1is stationary and ergodic with respect to the nor-
malized Lebesgue measure £(dx) = dz/ Meas Q.

Proof. The resolvent of the self-adjoint operator L is compact. With the Fred-
holm alternative, the space of solutions of Lu = 0 is a finite-dimensional space.
The maximum principle forbid that a periodic solution to Lu = 0 to be not
constant. Hence, the constants are the only periodic harmonic functions for L,
and then also for its adjoint L* = L. The Lemma is then proved, since £ is the
unique invariant probability for X. O

Let us define by &¢ the process:

1 if X, € O,
Ef(t) = .
0 if X; € Q.

The auto-correlation function of & under P, = fQ ((dz)P, is

Re(T) € Ey [es(t + T)ee(t) ] = Pe [Xr € QU Xo € O]
1 /Qp(T, z)1lg,(z) dx

~ MeasQ
if p is the solution to (1) with the initial condition p(0,z) = 1q,(z).
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B.2 The double porosity model

Even in non-permanent regime, the double porosity model is a system of two
coupled equations:

(Df% ZEfAPf-FG*Q(Pm—Pf) + S,
0P 9
@mw —a,mAPm—G*a(Pm—Pf)'FSm,

The terms Sy, and Sy are the averaging of the source term. The term G = G(t)
represents the exchange of fluid between the fissures and the matrix. We
assume that this term does not depend on the space variable.

We assume that the fluid is uniformly distributed on the fissure. This mean
that the source term is equal to 1o, (x)dy(t). Hence,

(Sm(t))q =0 and (S¢(t))q = Prdo(t).

Using the periodicity, the averaging over 2 of the terms AP and AP, are
equal to 0. Hence, by averaging the system (11), we obtain:

B (P () = G x S ((Pada — (P) (1) + Bedi),

d d

B (P (1) = =G - (Pad — (Pr)) ().

The normalized average of P; over €2 is the normalized average of the pres-
sure on the fissures: We also remark that

(P (T) = Me;s o /Q p(T, x) dz.

(12)

Hence, with our initial condition,
Ry(T)
o

The Laplace transform operator . may be used in (12) to solve explicitly
(Pr)q, and we find

(Pr) (T) =By [e:(T) | er(0) = 1] =

(13)

BB, + LG (5))
L (Pr)q (s) = 5(Pm®s + .ZG(s))
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Let us define the exchange function

det P ®@s + . ZG(5)

o
1) = 5 76w

so that Z (Pr)q (s) = I

In the permanent regime, the function G is equal to alg+, so that

B D, Drs +

flo) = STl (14

If C(t) is the function
det (Pr)q (t) — D¢ O 1
C(t) > then ZC(s) o \F(s)
We remark that

P, D¢
o

lim £C(s) = / T owat =

s—0
With (13), we have then proved that the coefficient o may be computed by
the formula
07,7

a= (15)

Jo ™ (Ra(t) — @7) dt-

B.3 A first exit time interpretation

Heuristically, the probability that a particle in the interface between the matrix
and the fissure goes to the fissure is (\/af — v/am)/(\/s + /Gm) (see [CLR]).
Hence, if the ratio as/a., is large enough, we may assume that the particles
enter into the fissures net once they have been reached. In fact, this is not
really exact because the trajectory of the particle is very irregular, but the
probability that the particle is in the fissure a short time after reaching it is
close to one.
Let us denote by 7 the first hitting time of the fissures:

T=inf{t > 0]|X, € O }.

We assume
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(H1) The ratio as/ay, is very large.

(H2) The distribution of the particle on the interface between the matrix and
the fissures is uniform given the first hitting time. For that, the particles
are initially uniformly distributed on the matrix.

(H3) The fissures are very thin. So that with (H2) and (H1), we may assume
that the particles are uniformly distributed in the fissures once they have
been reached.

With theses hypotheses, we may then assume that

1
P [X; € dz, 7€ dt|Xg € U] Py [7 € dt | X eQm]%dx (16)
f

Let us denote by Q(t) the density of the law of the first hitting time when
the particle are initially uniformly distributed on the matrix:

T
/ Q) dt ¥ P [r < T|Xo € U]
0
So, with (16),

Eg [Sf(T) |X0 c Qm] ~ /()T]Eg [E(T—t) |X0 € Qf]Q(t) d¢
= (Pr)o* Q(T).

(17)

It is clear that

E, [Sf(T)] =& =L, [Ef(T)gf(O)] + &, E, [Ef T) |8f(0) = 0] .

—~

The Laplace transform of the previous equation and (17) leads to

f(s) = ®¢ + 0, 2Q(s) for any s > 0.

If the exchange function is solution to (14), then df/ds(0) = —®2,/a. We also
know that ZQ(0) =1 and

d‘iQ(o) = B[] X € O],
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Hence o = @,,/E; [7 | Xo € O |-

With the approximation that the contrast between the fissures and the
matrix is infinite, the exchange coefficient « is proportional to the inverse
of the average of the first hitting time of the fractures for particles initially
uniformly distributed on the matrix.
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