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Abstract: We consider a Jackson-type network, each of whose nodes contains N identical
channels with a single server. Upon arriving at a node, a task selects m of the channels at
random, and joins the shortest of the m queues observed. We fix a collection of channels in
the network, and analyse how the queue-length processes at these channels vary as N — oo.
If the initial conditions converge suitably, the distribution of these processes converges in
local variation distance to a limit under which each channel evolves independently. We
discuss the limiting processes which arise, and in particular we investigate the point processes
of arrivals and departures at a channel when the networks are in equilibrium, for various

values of the system parameters.
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Processus ponctuels dans les réseaux de Jackson
"rapides"

Résumé : Nous considérons un réseau de type Jackson, dont chacun des noeuds com-
prend N canaux identiques avec un seul serveur. A son arrivée dans un noeud, une tache
selectionne m des canaux aléatoirement, et entre dans la file la plus courte parmi les m files
observées. Nous considérons une collection fixe de canaux dans le réseau, et nous analysons le
comportement des files d’attente pour ces canaux quand N — co. Si les conditions initiales
convergent d’une maniére appropriée, la distribution de ces processus converge en variation
locale vers une limite pour laquelle chaque canal se comporte indépendamment. Nous étu-
dions les processus limites, et en particulier nous regardons les versions stationnaires des
processus ponctuels des arrivées et des départs, pour des valeurs diverses des paramétres du

systéme.

Mots-clés : Réseau de files d’attente, processus poncutel, réseau de Jackson
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1 Introduction

The class of Jackson networks was introduced in [4] and [5] and has since been one of the
most widely studied in queueing network theory. The basic model consists of a network of
J nodes; each node j, 1 < j < J, has an infinite buffer and a single server with service rate
;5 tasks arrive at node j from outside the network as a Poisson process of rate Aj, and
when a task completes its service at node j, it immediately joins the queue at node k with
probability pjr, 1 < k < J, and leaves the network with probability p; = 1 — > ok Pjk- All
service times, external arrival times and routing decisions are independent.

One of the attractions of this model is the appealing product form of the stationary
distribution for the network; in equilibrium (if the network is not overloaded), the lengths of
the queues at the various nodes in the network at a given point in time are independent, and
are each distributed as for an equilibrium M /M /1 queue with appropriately chosen arrival
and service rates. However, this simplicity of description for single points in time does not
extend to the pathwise behaviour of the network. As specified, the arrivals from outside the
network to the various nodes form a family of independent Poisson processes, and so by a
reversibility argument (see for example [7]) one can show that in equilibrium the same is true
of the processes of departures leaving the network from the various nodes. But the process
of all arrivals, or of all departures, at a given node is not in general easy to describe, and
of course the queue-length processes at different nodes of the network are not independent.
Similarly, the joint distribution of the waiting times experienced by a particular task at the
various nodes it visits in the network is not easy to obtain.

We consider a modification of the Jackson network model, in which each node j of the
network contains N channels, each with an infinite buffer and a single server with service
rate p;. External arrivals arrive at node j at rate N);, and routing between nodes is as
before, according to the matrix P = (p;x). Upon arrival at a node, (either from outside
the network or after being served at the same or another node), each task now inspects m
channels chosen uniformly at random from the N available (with replacement, though this

is unimportant for large N), and joins the shortest of the m queues observed (breaking ties
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4 James B. Martin

at random). The behaviour of the network is therefore specified by the parameters J, N, A,
i, P and m.

Systems corresponding to a single node in this model were studied by Vvedenskaya et
al. in [9]. The network model just described was introduced in [8]. There it is shown
that, as N — oo, the evolution of the system may be asymptotically represented by the
solution of a countably infinite system of ODEs; under a standard non-overload condition
on the parameters A, p and P, the system has an invariant distribution mn for each N,
and, as N — oo, mn converges to a limiting invariant distribution which is concentrated
at a single point, corresponding to the fixed point of the system of ODEs. Under this
limiting distribution, for m > 1, the tail of the distribution of queue lengths decays super-
exponentially, rather than exponentially as in the case of standard Jackson networks —
hence the term “Fast Jackson Networks”.

In this paper we again let N — 0o, but now consider how the paths of the queue length
processes at individual channels behave as the size of the network grows. We show that, if the
initial state of the network converges suitably, the distribution of the queue length processes
at a fixed collection of channels at the same or different nodes converges in “local variation
distance” as N — oo, and that under the limit the component processes are independent.
We describe the limiting processes which arise, and analyse them in particular in the case
where the networks are positive recurrent and are started in equilibrium. Then for m =1
(in which case the networks are standard Jackson networks for finite V), the limiting point
processes of arrivals and departures are Poisson processes, and we examine how they and
the relationship between them change as m increases. For networks in equilibrium, another
interpretation of the decoupling which occurs in the limit is that a typical task, given its
route through the network, experiences a sequence of independent waiting times.

In the next section we introduce notation and restate results from [8] which we will use.
In Section 3 the main theorem is proved, using results of Kabanov and Liptser from [6] which
relate convergence in variation distance of multivariate point processes to the convergence

of their compensators. In Section 4 we interpret this result for the case of networks in
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Point Processes in Fast Jackson Networks 5

equilibrium, and analyse and illustrate the particular point processes that arise for various
different values of the network parameters. Finally in Section 5 we discuss possible extensions
of the results; in particular we compare our approach with that of Brown and Pollett [2],
who investigate how the distance of arrival processes in a standard Jackson network from

appropriate Poisson processes varies as the number of nodes in the network is increased.

2 Preliminaries

The state of a network as described above with N channels at each node may be described
by a vector r = {r;(n), 1 < j < J, n € Z4}, (here and below Z is the set of non-negative
integers), where r;(n) = N~1 2 w>n Mj(n') and M;(n') is the number of channels at node j
whose queue length (including the customer in service) is n’. Hence r;(n) is the proportion
of channels at node j whose queue length is at least n. The process r(t) = {r;(n,t), n €
Z 4, t > 0}, describing the state of the network at times ¢ > 0, is easily seen to be a Markov

process for each N, with state space U3, where

Uy ={g = (9(n),n € Z4) : g(0) =1, g(n) > g(n+1) > 0, Ng(n) €N, Vn,

and g(n) = 0 for sufficiently large n} . (2.1)

Since we wish to let N — oo, we will also consider the limiting space U/, where

U={g=(9(n),n€Zy):9(0) =1, g(n) >g(n+1)>0,Vn, and Y _g(n) < oo} .
n=0

Then Uy, C U7 for all N. Following [9], we define the metric

d(u,u’) = sup supM (2.2)

o 1<j<J n>1 n

on the spaces U7 and Uy;.
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6 James B. Martin

We will consider the following infinite system of non-linear differential equations for

u(t) = {u;(n,t),1 <j < Jyn € Zy}, t >0, with initial condition g € U”:

where, for all j.
h;(0,u) = 0, (25)
hi(n,u) = [N+ Y mepkjue(1) | fuj(n — 1™ = ui(n)™ = pjlui(n) —uj(n +1)] (2.6)

for all n > 1.

The following result, proved in [8], then describes how the solution of this system asymp-

totically represents the behaviour of the network:

Theorem 2.1
(i) If g € U7, the system (2.8)-(2.6) has a unique solution u(t,g), t >0 in U’.

(ii) For any continuous function f : U’ — R and t > 0,

A}i_r)ncO sup |EN [f (2(5)) |£(0) = E] - f(g(s,g))| =0,
geuy,

uniformly in s € [0,t], where En denotes the expectation under the dynamics of the network

with N channels at each node.

3 Convergence as N — oo

We fix the parameters J, A, u, P and m, and consider a sequence of networks indexed by N,
with the Nth network having N channels at each node. We fix a set of K tagged channels
among the various nodes; formally, we fix a function i from {1,2,... ,K} to {1,2,...,J}
such that, in each network, the kth tagged channel belongs to node i(k), 1 < k < K. We

will analyse the behaviour of the process of queue lengths at the tagged channels as N — co.
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Point Processes in Fast Jackson Networks 7

We will describe the evolution of the network by constructing, for each N, a process
(x(t),x(t)), t > 0, with state space U’ x Z¥. Here z(t) will be the length of the queue in
the kth tagged channel at time ¢, and r;(n, ) will be the proportion of channels (including
tagged channels) at node j whose queue length is at least n at time ¢. Thus we do not
distinguish between different untagged channels at the same node. The topology used on
U’ x Zf is the product of the topology induced by the metric (2.2) on &/ and the discrete
topology on Zf .

Let Q be the space of paths [0, 00) — U7 x Zf which are right continuous with left limits,
(representing the paths of (r(t),x(t))). For each t > 0 we define the functions r(¢) and x(t) on
Q by setting (r(t),x(t))(w) = w(t). Define the o-algebra G on Q by G = a(x(s),x(s),s > 0).

For each N > K, let ¢y be a distribution on U7 x Zf , representing the distribution
of (r(0),x(0)) for the Nth network. This, together with the dynamics of the Nth network
described earlier, yields a probability measure P on the measurable space (£2,G) describing
the behaviour of the Nth network. We write Ex for the expectation with respect to Py.

We define the filtration G = {G;}+>0 on G by G; = o(x(s),x(s),0 < s < t). For each N,
(r(t),x(t),t > 0) is a stochastic process defined on (€2, G, P) and adapted to the filtration G.
Note that Py (r(t) € Uy, Vt) = 1. Ultimately we will be particularly interested in the smaller
filtration F' = {F;}4>0, where Fy = o(x(s), 0 < s < t), and F = \/, F;. Clearly F; C G
Vt and F C G, and the process x(t) is adapted to the filtration F'; note also that since, for
all w € Q, the path x(t)(w) is right continuous with respect to the discrete topology, the
filtration F is itself right continuous. Let Py be the restriction of Py to (2, F).

For two measures P and P on (2, F), we will write Var,(P, P') for the variation distance

between P and P’ restricted to Fy:

Var,(P,P') = sup |P(A4) — P'(A)|.
A€EF:

The following theorem states that, if the initial conditions converge suitably, then the pro-

cesses x governed by Py converge in this local variation distance for each t.

Theorem 3.1 Suppose that Yn — 1 weakly, where 1) is a distribution on U’ x Zf under

which the marginal distribution of r(0) on U’ is concentrated at a single point. Then:
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8 James B. Martin

(i) There exists a probability measure P on (Q, F) such that for allt > 0, Var(Pn,P) — 0
as N — oo.

(i) Under the limiting measure P, {x(t),t > 0} is a Markov process (not in general
time-homogeneous) and if 1(0),... ,xk(0) are independent under 1, then the component

processes {z(t),t > 0}, 1 <k < K, are independent under P.

Proof: Given the initial state x(0), we may represent the process x(¢) by a multivariate
point process & = {&(t),t > 0,k,1 € {0,1,... ,K},(I,k) # (0,0)} with K2 + 2K compo-
nents. Each component is an increasing integer-valued process, which has value 0 at time
0, and whose value at time ¢ is the number of points which occur in that component during
the time interval (0,t]. For 1 < k < K, let the points of the component process & x(t)
record times of arrivals at the kth tagged channel which do not originate from a tagged
channel (so are external arrivals or tasks transferring from an untagged channel at the same
or another node), and let those of &, ¢(t) record times of departures from the kth tagged
channel which do not proceed to another tagged channel. Finally, for 1 < k,l < K, let the
points of & ;(t) record times of transfers from the kth tagged channel to the Ith (which is
the same if k = [). So, for example, the total number of departures from the kth tagged
channel during the time interval (0, ] is E{io &k, (t). Note that, Py-a.s. for all N, no two
points occur simultaneously, in the same or different components.

For each N, we associate with the point process & and the filtered probability space
(Q, PN, F,F) to which it is adapted the multivariate compensator B(Y) (indexed in the
same way as £) which is the (unique) F-previsible process such that B(")(0) = 0 and each
component of & — B(N) is a (Py, F)-martingale. If the limit

BN (1) = lim h™'En (€(t + h) — £(1)| 7). (3.1)

exists a.s. for all £ > 0, then ,B(N ) is called the conditional intensity process for & (with

respect to F'), and we have

t
B (¢) = / B™(s)ds as.,
0

INRIA



Point Processes in Fast Jackson Networks 9

for all . (All such relations are to be understood componentwise). For further details, see
for example Section 13.2 of [3].

To show the existence of ,B(N ) for all N , and to demonstrate the convergence as N — 00,
we will additionally consider the conditional intensity of the point process £ with respect to

(Q,Pn,G,G), denoting this by a™¥). Analogously to (3.1), we have

aM(t) = bim h™'En (£(t +h) — £(1)|Gr)- (3.2)

Since, for each N, (r(s),x(s)) is a countable state-space Markov process under Py, with
Gt = o ({r(s),x(s)},0 < s <t), the limit (3.2) exists a.s. for all ¢, and corresponds to a
vector of certain instantaneous transition rates from the state (r(t),x(t)) — the transitions
concerned are those representing a departure or an arrival at a tagged channel, giving rise
to a point in the process &.

Now for any state of the network, the instantaneous departure rate from any tagged
channel is no greater than max; p;, and the instantaneous arrival rate to any tagged channel
(from outside the network and from other nodes in the network) is no greater than

mmla,x{)\i + Z Wwibji}
J

(which is m/N times the maximal arrival rate at any single node). Hence we have

h™ En (Era(t + h) — £ (8)1Ge) < max p; + mmax(A; + > wipii)
i

a.s. for all NV, all k,1, all t and all h > 0.
Then

BM(t) =lim h™'En (&(t + ) - £(1)|72)
= lim h ™"y (En (§(¢ + h) — £(8)[G0)| 72)

=Ey (1}3&1 h'En (&(t + h) — £(t)[Gy) |7t>

= EN (a(N) (t) |.7:t), (33)

RR n° 4036



10 James B. Martin

using a version of the Dominated Convergence Theorem for conditional expectations; see
for example [10], section 9.7.

Conversely to the above, a given conditional intensity process yields uniquely the law
of a corresponding point process, subject to the condition, which we shall require, that no
two points occur simultaneously. See for example [1]. Here, the limiting measure P will be
specified by the initial distribution 1 and by a conditional intensity process (3(t) which we
will construct; 3 will be adapted to F' and represents the limit of the processes ﬁ(N ),

We assume that 1)y — 1 weakly; hence the marginal distribution of x(0) on Zf under
YN converges weakly to that under 1. Thus, since we use the discrete topology on Z%,
Varg(Py,P) — 0. (Here Varg is the variation distance between the two measures restricted
to Fo, the o-algebra containing information only about the initial state x(0) of the K tagged
channels). Theorem 1 of [6] then shows that a sufficient condition for Var,(Py,P) — 0 as

N — oo is that
t
/ B |8 () — Ba(s)|ds — 0 as N — oo, (3.4)
0

for all k,I, where 3 is the conditional intensity of the point process & with respect to
(Qﬂ IP) f’ F) *
Since B is F-adapted, we have, by (3.3) and the £!-contraction property of conditional

expectation, (see again [10], section 9.7), that
t t

/ Ex |54 () = Bea(s)|ds = / En [Ex oy (s) = Bia(s)| 7] |ds
0 0

t
S/ ]EN|04§¢J,\{)(S) — Br(s)|ds.
0
Hence it suffices to construct a non-negative F-adapted process 3 such that
t
/ B [Ex [0l () — Bi1(5)|F:]|ds — 0 as N — oo, (3.5)
0

for all &, I.
Consider a channel at node i whose queue length is z, while the “environment” is u € U”.

We define the quantity ¢;(u, z) by

ci(u,z) = uwi(2)™ "t +ui(2)" Pui(x + 1) + .. +ui(z + 1)

INRIA
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which, provided u;(z) > u;(z + 1), is equal to
wi(z)™ — uy(x + 1)™
ui(z) —ui(z+1)

Here the numerator is the probability, if the overall state of the network is described by
u, that out of m randomly chosen queues at node i, the shortest has length z, and the
denominator is the proportion of queues at node i with length z. Hence N~!¢;(u,z) may
be interpreted as the probability that a new customer arriving at the node chooses this
particular channel to join.

Note that for all z € Zf and u,u’ € Y/,
|ei(u, z)| <m (3.6)
and
lei(u, ) — ¢;(u', 2)| < (¢ + )m’d(u, u'). (3.7)

We now consider the conditional intensities of the three types of component process &, ;,
depending on which of the subscripts k and [ are zero.

First consider the case 1 < k,I < K, so that we are interested in transfers from the
kth tagged channel to the Ith tagged channel. At time ¢, the instantaneous rate at which
departures destined for node i(l) occur at the kth tagged channel is I{x (t) > 0} (k) Pick)icr)
so that we have

oV (t) = Har(t) > 0 i pigryiy N~ iy (£(t) — N ey (@ (t)), z1(2) — I{k = 13).

(Here and below we write e;(n) for the vector in &7 whose only non-zero entry is the (i,n)

entry, which is 1). Then

o ()] < N~"m ma s masep (3.8)
—0as N — oo, (3.9)

so putting
Bra(t) =0 (3.10)
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12 James B. Martin

gives (3.5) for this case.

Next take 1 < k < K, 1l =0. We have

ol (t) = I(@i (t) > O)priqry — Za“
so that putting
Bro(t) = I(zk(t) > 0)pir) (3.11)

gives (3.5) again.
The case £ = 0, 1 <1 < K is the most difficult — it is when considering arrivals at
tagged channels which come from outside the set of tagged channels that the effect of the

environment is most greatly felt. We have

0‘(()],7) () = Mgy ciq ((2), 2 (2))
+ Z { (1 - W) 3 {[rj(n,t) —ri(n+1,t)]
J n=1

X pipsiny iy (£(t) — N™'e;(n), @ (t)) } }

Let g be the point at which the marginal distribution of ¢ on U’ is concentrated. We

will set

Bo(t) = l/\i(l) + Zuj(l,t7§)ujpji(z)] cigy (u(t, g), z:(t)), (3.12)
J
where u(t,g) = {u;(n,t,g),1 <j < J,n € Z,} is defined by Theorem 2.1(i).
Using (3.6) and (3.7) one can find constants D;, Dy and D3, depending on m, A, u and
P but not on N, such that

Ds

6. (¢) = fo.(8)] < Dy min { Do, z(8)d(x(t), u(t. ) } + 7

INRIA
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Thus

t
Jim sup / Ex |a$ (5) — fou(s)|ds

N—oco JO

g)))ds

t
< D, limsup / Ex min (Ds, 1(s)d(x(s), u(s,
0

N—oco

t
<Dy limsup/0 [yEn (d(x(s),u(s,g))) + DoPn(zi(s) > y)]ds  (3.13)

N—oco
for any y. The arrival process at channel /[ may be dominated for all N by a Poisson process
of rate m () + Zj 1iPji(1)), and the distribution of z;(0) under 1 converges to that under

1, so we have
Pn(zi(s) >y) > 0asy — 0,

uniformly in N and in s € [0,¢]. Also, from Theorem 2.1(ii) and the definition (2.2) of the

metric d,

End(x(s),u(s,g)) = 0as N — oo,

uniformly in s € [0,¢]. This shows that the RHS of (3.13) is 0, so that (3.5) holds in this
final case also.

Thus, since B defined by (3.10), (3.11) and (3.12) is non-negative and F-adapted and
satisfies (3.5) for all k£ and [, the first part of the theorem is proved.

For the second part, note that, under P, the instantaneous transition rates at time ¢ of
the process &, and hence also of the process x, can be read off immediately from the vector
B(t). But B(t) is a function of x(¢) — in particular it depends on {x(s),0 < s < ¢} only
through x(t) — so x is Markov.

Further, note that 8y (t) is identically zero if £ > 0 and [ > 0, and that 8y o(¢) and Go x (¢)
depend only on z(t). Conversely, z(t) is a function only of &, (t) and & (t), 0 <I < K.
So in fact the instantaneous transition rates of z; at time ¢ depend on {x(s),0 < s < ¢} only
through z(t), and so if the components of x are independent at time 0, then their paths

thereafter are also independent. O
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14 James B. Martin

4 Systems in Equilibrium

If the networks considered in the previous section are each started in equilibrium, we can
describe more precisely the limiting point process arising from Theorem 3.1.

We will require that no node is overloaded. Assume that the matrix I — P is invertible.
(A physical interpretation of this condition is that, almost surely, every task entering the

network eventually leaves the network). Define the vector p = (p1,... ,ps) by

p=A1-P)"L

Then we have, for all i,

pi=N+ D pibjis (4.1)
1<5<8J
and if
p < p(ie. pj <p;forall j), (4.2)

then the networks are said to be non-overloaded, and N p; may be interpreted as the “effective
arrival rate” in equilibrium at node j in the Nth network, including arrivals from inside as
well as outside the network.

In [8] the following result is established concerning the equilibrium behaviour of the

networks considered:

Theorem 4.1 If (4.2) holds, then:
(i) There ezists a unique fized point a in U’ of the system (2.3)-(2.6), i.e. such that
u(t,a) = a for all t, and a is given by

(m™—1)

aj(n) = (Z—;) o (4.3)

(i) The Markov process rx(t) is positive recurrent for all N, and so has a unique in-
variant probability distribution wx for each N.
(i1i) TN — a weakly as N — 0o, where 84 is the probability measure concentrated at the

fized point a.

INRIA



Point Processes in Fast Jackson Networks 15

So from here on we assume that (4.2) holds and discuss the situation in which, for each
N, the distribution under 1 of the initial state r(0) on U3 is the equilibrium distribution
7w given by Theorem 4.1(ii). Then the sequence ©¥n has a weak limit 1) under which r(0)
is equal to a with probability 1, and we can apply Theorem 3.1. Since u(a,t) = a for all ¢,

(3.12) becomes

Boa(t) = pigycig) (a,z1(1)), (4.4)
using (4.1). For m = 1, ¢;)(.) = 1 identically, and for m > 1 we have

(ps/ p)™ ™ 0 (1= (pif )™ )
(s )™ "7 (1= (il )™ )

As before, B, (t) = 0 for k,I > 1, and By o(t) = I{zx(t) > O}y for & > 1. Thus

ci(a,z) =

under the limiting measure P, the queue length processes at the tagged channels are inde-
pendent time-homogeneous Markov birth-and-death processes. From the fixed point result
in Theorem 4.1(i), it follows that the process at a channel belonging to node ¢ has an equi-
librium distribution under which the probability of the queue length being n or longer is
{ai(n),n € Z4}.

In the case m = 1, the queue behaves simply as an M /M /1 queue, whose arrival rate
does not depend on the queue length. For m > 1, the arrival rate decreases as the length
increases.

The arrival rate when the queue is empty is

1= (pi/pi)™

1—(pi/pi)
which increases as m increases. Thus the average length of an idle period of the queue
decreases as m increases; the overall intensity of arrivals and the average service time stay
constant, so the average length of a busy period decreases also.

We now discuss specifically the point process of arrivals at such a queue. (If the queue is
started in equilibrium, then by a reversibility argument one can show that this has the same

distribution as the point process of departures). If m = 1, this is simply a Poisson process
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16 James B. Martin

of rate p;. As m increases, the average intensity remains the same, but the points tend to
become more “evenly spread”; the probability of a given time interval containing no points
at all decreases, for example. In the limit m = oo, the points of the process are those of a
renewal process, whose renewal intervals are the independent sum of a service time which is
exponentially distributed with rate y; and an arrival time which is exponentially distributed
with rate (1 — p;/u;)~t. This corresponds to a situation where arrivals at a node choose
freely between all channels, and so only ever join empty queues.

This change is illustrated by Figure 1, which shows the results of simulations of sequences
of 500 interarrival times in the cases m = 1, m = 2 and m = oo for p; = 0.5 and p;=1. Asm
increases, very long interarrival distances become less frequent and tend to bunch together
less; the same applies to very short interarrival distances.

A different phenomenon occurs if p; is nearly 1. Then the difference between the Poisson
process of arrivals for m = 1 and the renewal process of arrivals for m = oo is very slight —
and, as noted above, in each case the departure process is distributed exactly as the arrival
process so again is very similar for m = 1 and m = oco. However, the process of queue lengths
at the channel, which is determined by the joint distribution of arrivals and departures, is
extremely different: for example, for m = 1 its stationary distribution is geometric with
mean p;/(1 — p;), while for large m the queue length hardly ever exceeds 1.

We can alternatively consider the network from the viewpoint of a particular task pro-
gressing through it. Since the routing is Markovian, its route may as well be considered
fixed as soon as it enters the network — the route may be taken to include both the order
in which the task visits nodes and the particular channels it inspects on each arrival at a
node.

The above observation that the queue length processes at the tagged channels are inde-
pendent in the limit can then be interpreted as follows: as N — oo, we approach a situation
in which the waiting times of the task at each stage of the route are independent, and where
the queue lengths of the m channels that the task inspects at node ¢ are independently

drawn from the distribution represented by a;(n),n € Z,. Thus the probability that the
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task joins a queue of length n at node 7 is a;(n)™ — a;(n + 1)™, which, from (4.3), can be

m(m™—1) mn+1
)
Hi Hi

decaying superexponentially in n for m > 1.

written as

5 Extensions

An analagous result to Theorem 3.1 holds if we remove the condition that the marginal
distribution of r(0) on &’ under the limiting initial condition ¢ is concentrated at a single

point. Then, however, we must replace 3.12 by
@0 (t) = | Ny + Zuj(lataz(o))ﬂjpji(l) Ci(1) (E(tal(o))aml (t))
J

and

Bo,(t) = Elao, ()| F2].

Now part (ii) of Theorem 3.1 fails, since the observed paths of {x(s),0 < s < t} provide
information about the “hidden” initial environment r(0) and hence about r(t); so in general
x is no longer Markov and the components of x(t) are not independent even if those of
x(0) are. One can formulate an interesting filtering problem concerning the estimation of
the initial environment r(0) given the observed paths {x(s),0 < s <t} of the queue length
processes at the tagged channels.

Following more closely the approach of Brown and Pollett in [2], we can consider letting
J, the number of nodes, rather than N, the number of channels at each node, tend to
infinity. In [2], this limit is considered for single-class Markovian queueing networks with
state-dependent service rates, and, under various conditions, bounds are derived for the

variation distance between the equilibrium arrival process at a node and a Poisson process,
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which tend to 0 as J — oco. For example, an appropriate condition for standard Jackson

networks is that

(1jpji)® — 0 as J — oo.
1

J
Jj=

It seems likely that similar results hold also in the situations we have considered above.
However, the networks considered in [2] all have the property that the equilibrium distribu-
tion of the state of the network has a product form, and this is an important element of the
methods used there. In the networks we have considered here, the lengths of the queues at
channels at the same or at different nodes are not in general independent for finite N, even
in equilibrium, and it seems that different methods will be needed to establish such results

in this case.
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