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Abstract: Let d > 2, and let {Xy,v € Z?} be an i.i.d. family of non-negative random
variables with common distribution F. Let N(n) be the maximum value of 37 . X+ over
all connected subsets ¢ of Z? of size n which contain the origin. This model of “greedy
lattice animals” was introduced by Cox et al. (1993) and Gandolfi and Kesten (1994), who
showed that if EXg(log™ Xo)*+¢ < oo for some € > 0, then N(n)/n — N a.s. and in £;
for some N < oo. Using related but partly simpler methods, we derive the same conclusion
under the slightly weaker condition that fooo (1 - F (m))l/ddx < o0, and show that N <
c f0°° (1 - F(x))l/ dz for some constant c. We also give analogous results for the related
“greedy lattice paths” model.
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Croissance Linéaire pour les "Greedy Lattice Animals"

Résumé : Soit d > 2, et soit {Xy,v € Z9} une famille i.i.d de variables aléatoires de
distribution commune F. Soit N (n) la valeur maximale de } . X+ sur tous sous-ensembles
connexes ¢ de Z? de taille n qui comprennent I’origine. Ce modéle de "greedy lattice animals"
a été introduit par Cox et al. (1993) et Gandolfi et Kesten (1994), qui ont montré que, si
EX§(logt Xo)?t¢ < 0o pour un € > 0, alors N(n)/n — N p.s. et dans £;. Avec des
méthodes similaires quoiqu’un peu plus simples, nous obtenons la méme conclusion sous
Phypothése légérement plus faible que [;° (1 — F(x))l/ “dr < o, et nous montrons que
N<c fooo (1 —F(x))l/ ‘iz pour une constante c. Nous donnons aussi des résultats analogues
pour le modéle de "greedy lattice paths".

Mots-clés : lattice animals, chemins sans répétition, superadditivité, inégalité de concen-

tration



Linear Growth for Greedy Lattice Animals 3

1 Introduction

Let d > 2, and let {Xy,v € Z%} be an i.i.d. family of non-negative random variables, with
common distribution F. For a finite subset & of Z, the weight S(€) of ¢ is defined by

S(€) =) X.. (1.1)

veg
A greedy lattice animal of size n is a connected subset of Z< of size n containing the origin,
whose weight is maximal among all such sets. Let N(n) be this maximum weight.
This model is presented by by Cox, Gandolfi, Griffin and Kesten (1993), and a variety

of applications in statistical physics, queueing theory and percolation are described. Under
the condition that

EX§ (logt Xo)?*¢ < 0o for some € > 0, (1.2)

they show that there exists an N < oo such that

N
lim sup # < N almost surely. (1.3)

n—oo

Gandolfi and Kesten (1994) proceed to show that, under the same condition, one in fact

has more strongly that there exists an N < oo such that

# — N almost surely and in £;. (1.4)

In this paper, we reproduce the conclusions of Cox et al. (1993) and of Gandolfi and
Kesten (1994) under a slightly weaker condition, and in addition obtain an explicit bound
for the limit N in terms of the distribution F'. The methods used are related to those of
the above papers, but are simpler in parts; in particular the need for the rather intricate
probability estimates used there is avoided.

Our ultimate result is the following:

Theorem 1.1 There exists a constant ¢ < oo such that if F' satisfies
/ (1— F(@))"*dz < oo, (1.5)
0
then there exists an N with

N
N — N almost surely and in £, (1.6)
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4 James B. Martin

as n — 0o, and
N < c/ (1-F(z)""da. (1.7)
0

Condition (1.5) is a touch weaker than (1.2); for example, it is implied by the condition
E XZ(logt Xg)?71+¢ < 0o for some € > 0.

See Section 8 for details.

In the first part of our proof (corresponding to the the results of Cox et al., 1993), we
derive a bound on EN(n)/n in the case where F' is a Bernoulli distribution (the result is
related to the “power law” proved by Lee, 1997b). This allows us to control the effect on
N(n) of the tail of F'; an exchange of a maximum and an integral yields the boundedness in
n of EN(n)/n for general F satisfying (1.5). Comparing N(n) to a related process with a
superadditive property then yields the almost sure boundedness of N(n)/n as in (1.3), and
gives a bound of the form of (1.7) for lim sup N(n)/n.

From that point on, it would be possible to complete the proof using a modification
of the arguments in Gandolfi and Kesten (1994), based on martingale inequalities and the
“method of bounded differences”. Instead we deduce from the bound of the form (1.7) a
rather stronger truncation result than was used there, and base the rest of the proof on a
powerful “concentration of measure” result due to Talagrand (1995). We do however follow
Gandolfi and Kesten by partitioning the set of feasible lattice animals of a given size n into
sets each containing lattice animals of a given width m, 1 < m < n, in order to apply
superadditivity arguments. (Here the width of £ is one greater than the difference between
the maximum and minimum values of the first coordinate v(1) among the members v of £).

In Section 7 we consider the related greedy lattice path model which was also treated by
Gandolfi and Kesten. Let M (n) be the maximal weight of a self-avoiding path of length
n starting at the origin. Theorem 7.1 gives a result analogous to Theorem 1.1, showing
convergence of M (n)/n under condition (1.5). Much of the proof carries over directly from
that of Theorem 1.1; certain parts are harder because superadditivity arguments are not so
easily applicable. We simplify the path decomposition argument which was used to prove
the convergence under condition (1.2) in Gandolfi and Kesten (1994).

To our knowledge, the strongest known necessary condition for (1.3) or (1.4) is that
EX? < oo (see Proposition 3.4 and the remark which follows). The gap between this and
condition (1.5) is discussed in Section 9, along with various models and results related to

those mentioned above.

INRIA



Linear Growth for Greedy Lattice Animals 5

1.1 Notation

We write 0 for the origin of Z<, and 1 for the point of Z< all of whose coordinates are equal to
1. For v € Z%, we write v(i) for the ith coordinate of v, 1 < i < d, and ||v|| = max;<i<q |v(i)];
for | € 7, we write Iv for the point of Z¢ whose ith coordinate is lv(i) for 1 < i < d. For
u,v € Z4, we write ||u — v|| for max;<;<q|u(i) — v(i)|. For m < n € Z, we write [m,n]¢ for
the cube {v : m < (i) <n,1<i < d} of size (n —m + 1)¢, and write B(v,m) for the cube
{z : ||z — v|| < m} of size (2m + 1)%.

We regard Z< as a graph in the normal way; two points are adjacent iff they are (Eu-
clidean) distance exactly 1 apart; thus any point has exactly 2d neighbours.

We assume throughout that { Xy, v € Z%} are i.i.d. and non-negative. We write P for the
probability measure governing { X }, and E for the expectation with respect to P; sometimes
we write Pr and E r when we wish to stress the dependence on the common distribution F’
of the variables { X, }; here F(z) = P(Xo < z), > 0. We will write Ber(p) for the Bernoulli
distribution with parameter p under which P(X =1)=1—-P(X =0) =p.

A lattice animal is a finite connected subset of Z%. Let A(n) be the set of lattice animals
of size n which contain the point 0. Defining the weight S(§) of a lattice animal £ as at
(1.1), we have

N(n) = (max S5(8)- (1.8)

2 Boundedness in Expecation via the Bernoulli Case

The following result is Lemma 1 of Cox et al. (1993), and describes how a lattice animal
may be covered by a configuration on a lattice of larger scale:

Lemma 2.1 Let 1 <1 <n andlet £ € A(n). Then there exists a sequence {ug,...,u,} in
7.2, where r = [2n/l1], such that ug = 0, such that ||u; —u;_1]| < 1 for all 1 <i <r, and
such that

¢ c | J Bl 21).

i=0

Consider the case where the X, have Bernoulli(p) distribution. The next result provides
a “power law” for the behaviour of N(n) as p becomes small. It will allow us to bound the
effect of the tail of F on Ep N(n)/n when F' is a distribution satisfying (1.5).

RR n° 4035



6 James B. Martin

Lee (1997b, Theorem 2) shows that there exists a constant ¢ such that

N _

p_l/d lim sup
n—00 n

c

Pger(p)—a-s., for all p. The basis of our argument is similar to that of Lee, but we extend it
to provide control over EN(n) which is uniform in n as well as in p:
Proposition 2.2 There is a constant ¢ < 0o such that, for all p € (0,1] and all n € N,

N(n)

p_l/d]E Ber(p) <c

Proof:
If np'/? < 1, then

i N@) . 1 >
1/d
p ]EBer(IJ) n < W]EBH(I’) VEZd'||V||<"XV

<24, (2.1)

So suppose that np'/? > 1. We will apply Lemma 2.1 with I = [p~'/?]. Note that the
number of sequences u, . .. ,u, (with r = |2n/1]| < 2np'/?) which satisfy the the properties
given in Lemma 2.1 is 39" < 99°7"/? and that for any such sequence, the number of points
contained in (J]_, B(lu;, 21) is no greater than (r + 1)(4l + 1)? < 3np!/d(9p~1/4),

For s > 0, we then have

N(n) .
P —_— > =P v > /d
Ber(p) ( npi/d = s) Ber(p) (ggﬁ(}é) VEEEX > np s)

< Pher(p) (u()r’r}'% ) > > npt/ dS)

velJp B(lu;,21)

< Z ]PBer(p) ( Z 2 npl/ds)
ug,... ,Up

velJp B(lu;,20)

< Z e_npl/dsEBer(p)[eXp< Z Xv)]

ug,...,U, velg B(la;,2t)

INRIA



Linear Growth for Greedy Lattice Animals 7

S s LG

ug,...,Up

pl/d xo13np"/ *(9p~ 1/ %4
< Y e [Bpap)e™)

ug,... ,Up

— Z e_npl/ds(l _p+pe)3np1/d(9p—1/d)d

ugy... ,Up

1/dgd
S gdnpl/de_npl/ds((l _p+pe)1/p)3np 9

1/d _pot/d _1)\3np'/49?
Sgdnp e P s(e(e 1)) P

_opl/d d¢,_1y1npt/?
— e s[gdeSXQ (e 1)] P .

Now take y large enough that e=¥92¢3*9“(e=1) < 1. (This condition does not depend on
n or on p). Then

_ N(n) N(n)
P Eer(p) (T) < y+ Eger(p) [W -y
+

= N(n)
=Yy +/y PBer(p) (npl/d 2 S) ds

—npl/d d(o_ 1/d
<y+ npl/de D y[gde3><9 ( 1)]"1’
_ —yqd 3x9%(e—1)1p"
_y+np1/d [e7vgtex 9" (e~1)]
<y+1 (2.2)

The right hand sides of (2.1) and (2.2) are independent of p and n, so the desired result
follows. -

A straightforward exchange of a maximum and an integral now yields the boundedness
of EpN(n)/n for all distributions F' satisfying (1.5):
Theorem 2.3 There is a constant ¢ < 0o such that, for all distributions F satisfying (1.5),

supE g @ < c/oo(l — F(z))Y4dz. (2.3)

Proof: For any lattice animal £, we have

S =) Xy

veg

RR n°® 4035



8 James B. Martin

:/oo#{veﬁ:Xv>x}d$.
0
Then

N(w) = max S(©)

/ #{veé: Xy >zlde

EGA(H)

g/ooo[max #{v e &: Xy > z}|da. (2.4)

£eA(

Since the integrand is always non-negative, and then since the random variables {I (X >
z),v € Z7} are i.i.d. with common distribution Ber(1 — F(z)), we have

]EFN(n)S/OO [Er max #{v€¢: Xy >z}ldr
0 n

§€A(n)

- /Ooo [EBer(1-F(z))N (n)]dz
< /Ooo[cn(l — F(x))/")dz,

where c is the constant established in Proposition 2.2, giving (2.3) as required. O

3 Almost Sure Boundedness via Superadditivity

For m,n € Z, m < n, let Q(m,n) be the maximum weight of a lattice animal of size not
more than (d+ 1)(n —m), contained in the cube [m, n]¢ of size (n —m + 1)?, and including
the point m1 and a point adjacent to nl, but not including the point nl itself. Certainly
the set of lattice animals described in this definition is non-empty, since there are paths of
length d(n —m) + 1 from m1 to nl contained in [m,n]?.

The following properties are immediate from the definition of Q(m,n):

Non-negativity:
Q(m,n) > 0 for all m < n; (3.1)
Stationarity:

The collections {@Q(m,n),m < n} and {@(m + 1,n+1),m < n}

have the same joint distributions; (3.2)

INRIA
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Superadditivity:
Q(l,m)+ Q(m,n) < Q(l,n) for all Il <m < n. (3.3)
We will use the collection ) as both an upper bound and a lower bound for the process
N:
Lemma 3.1
(i) Q(0,n) < N((d+ 1)n) for all n.
(i) N(n) < Q(—n,n) for all n.

Proof: Part (i) follows immediately from the definition of Q(0,n). For part (ii), note that
there are paths of length 2dn in [-n,n]?\ {n1} going from the point —n1 to a point adjacent
to nl, and passing through the point 0. If £ is any lattice animal in the set A(n) (i.e. a
lattice animal of size n which contains 0), then the union of £ and such a path is a lattice
animal of size no more than (2d+1)n < (d+1)2n, contained in [-n,n]?\ {n1} and including
the point —n1 and a point adjacent to nl. The result follows. .

Lemma 3.2 There ezists q € [0, o] such that:

oo EQOn)

W fm = =4

(i) lim QO.n) =q a.s. and in Lq;
n—oo n

o Q(=n,n) )

(ii1) nll)ngo 5, =408 and in L.

If (1.5) holds, then

1/d

g < (d+1)e /0 " (1= F@)) e, (3.4)

where c is the constant given by Theorem 2.3.

Proof: Parts (i) and (ii) follow from properties (3.1), (3.2) and (3.3) and the fact that
{Xy,v € Z4} are independent, using Kingman’s subadditive ergodic theorem, (or rather a
superadditive version of it). Part (iii) follows similarly from a “two-sided” version of the
same theorem - which is, for example, a special case of Theorem 2.7 of Akcoglu and Krengel
(1981). The bound (3.4) is implied by part (i) of Lemma 3.1 and by Theorem 2.3. O

We can now obtain immediately the almost sure boundedness of N(n)/n:

RR n° 4035



10 James B. Martin

Theorem 3.3 If (1.5) holds, then

1/d

N o0
lim sup () <2(d+ 1)c/ (1- F(z)) "dxz,
n—oo n 0
almost surely, where c is the constant given by Theorem 2.3.
Proof: The result follows from part (iii) of Lemma 3.2 and part (ii) of Lemma 3.1. O

In passing, we note the following:

Proposition 3.4 The following are equivalent:

N
(i) limsup (n) =00 a.§
n—o00 n
v Nm)
(i3) nlgr;o =00 a.5.
N
(i) limsup]Eﬂ =
n—oo n
o N@m)
(o) BB =

The equivalence follows again from Lemmas 3.1 and 3.2. In particular, it was shown by
Cox et al. (1993) that EX? = oo is a sufficient condition for (i) to hold — in fact even for
the stronger conclusion

. v
limsup max — = oo a.s.
n—oo VE[—n,nld N

to hold — thus the conclusion (ii) (which was proved in the same paper under a stronger

condition) is also true whenever EX? = co.

4 Truncations

For a lattice animal ¢ and for y > 0, we define the “y-truncated” weight of £ by

SW (&) => min[Xy,y], (4.1)
veeg
and then define
N®(n) = max SW (). 4.2
() = max S(¢) (42)

INRIA
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From this definition, we have immediately that, for all n € N and y > 0,

N () < Nn) < N0 () + max SOIXy ~ sl (43)

veg
The following result gives a bound on the growth rate of the last term on the RHS of (4.3).
Under condition (1.5), the RHS of (4.4) will tend to 0 as y — oo; this will allow us to
approximate the quantity limsup,, .. N(n)/n arbitrarily closely by limsup,, ., N®¥ (n)/n
for appropriate y, and so to work for most of Section 6 with the quantities Xy replaced by

the truncated versions min[ Xy, y].

Lemma 4.1 For anyy > 0,

oo

hmsup — max Z[X +<2(d+ 1)0/ (1-— F(x))l/ddw a.s. (4.4)

n—oo T EEA (”) y

Proof: The expression
a Xy
i 2 -

corresponds to an expression for N(n) in which Xy has been replaced by [Xy — y]4+.
Now the random variables [Xy —y]+, v € Z<, are i.i.d. and non-negative with distribution
F(>¥) | where

FCY(z) = F(z +y), 2 > 0.
We have
/ (1- F(>y)(x))1/ddm = / (1- F(x))l/ddm,
0 y

so (4.4) follows directly from Theorem 3.3, applied to the situation where the distibution F'
is replaced by the distribution F(>¥), O

Remark 4.2 Let f : Z? — Rt be any function such that f(v) — oo as ||v|| = oo. Let
Xy = min{ Xy, f(v)}. One can deduce straightforwardly from Lemma 4.1 that, under
condition (1.5),

1 .
~ max (Xv—Xyv)—0

n £eA(n)

veg

a.s. as n — oo. This was proved by Gandolfi and Kesten (1994) under condition (1.2) for
the case f(v) = log(||v]| + 1).

RR n° 4035



12 James B. Martin

5 A Concentration Inequality

The following concentration inequality is based on a result of Talagrand (1995). When we
use it, C will correspond to a set of lattice animals each of a given size R, and the variables
Y; will correspond to truncated weights min[Xy,y]. The particular usefulness of the result

for our purposes is that the bound provided depends only on R, and is independent of K.

Lemma 5.1 Let Y;,1 <1i < K be independent random variables, such that
PO<Y;<y)=1

for each i. Let C be a set of subsets of {1,2,...,K?}, such that

max |C| < R,
cec

and let
Z = max Y.
CceC
ieC
Then
u?

Proof: Let M be a median of the random variable Z, and let s > 0. Theorem 8.1.1 of
Talagrand (1995) then implies that

2
We then have
[EZ — M| <E|Z — M|

:/ P(|Z — M| > s)ds
0

~ Y 4

< exp (——) S

/0 4Ry?

= 8y\/1?€/ exp(—xQ)d:L‘
0

< 16y\/}_2 .

INRIA
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If u > 32yv/R, we can combine this again with (5.2) to give

P(|Z ~EZ| >u) <P(|Z ~ M| +|EZ — M| > u)
P(|Z — M| > u — 16yVR)
P(Z - M| > u/2)

(u/2)?

4exp( 1Ry
U2

=4 -

e"p( 16Ry2>

U2
< exp (—W +64) .

IA

IA

IA

If u < 32yV/R, then (5.1) holds trivially, since the RHS is at least 1. O

6 Convergence Almost Surely and in £;

For z € Z¢ and I,n € N, I < n, define A(z,n,l) to be the set of lattice animals £ of size
n such that z € ¢, and such that minycsv(1) = 2(1) and maxyeev(1) = 2(1) +1 — 1.
(Here v(1) and z(1) represent the first coordinates of v and of z). One could say that
A(z, n, 1) is the set of lattice animals of size n, of width I, and including z as a leftmost point.
Classifying lattice animals by their width in this way will enable us to apply arguments
based on superadditivity.

ForaceR a>1,y>0,z¢€Z%and m € N, define

W®¥(z,m,a) =  max SW (). (6.1)
§€A(z,lam|,m)
Here S®)(£) is the y-truncated weight of ¢ as defined at (4.1). Thus W) (z,m,a) is the
maximum (y-truncated) weight of a lattice animal of size |am| and width m which includes
z as a leftmost point.
For each @ > 1, y > 0, we then define

EW®
Wo(‘y) = sup w_ (6.2)
m m
Finally we set
(¥)
N = supsup Wa (6.3)

a>1y>0 «

RR n° 4035



14 James B. Martin

(This supremum will not be finite for all F', but for F satisfying (1.5), we will show that the
bound (1.7) holds).

We note the following properties of the quantities W®)(z,m, ). Part (iii) corresponds,
essentially, to the observation that any lattice animal of size n containing the origin must
have a leftmost point somewhere in [—n,n]? and have width m for some 1 < m < n.

Lemma 6.1 Foralla>1,y > 0:
(i) For allm € N, W) (z,m,a) has the same distribution as W ¥ (0,m, ) for all z € Z°.
(i) For all m € N,

W (0,m,a) < N (lam]). (6.4)

(#i) For all n € N,

N® )< max max W¥(z,m,n/m). (6.5)

z€[—n,n]d 1<m<n

Proof: Part (i) follows from the fact that {Xy,v € Z9} are i.i.d. and so certainly stationary
— taking z rather than 0 amounts merely to a translation.
Parts (ii) and (iii) follow from the definitions (4.2) and (6.1) and the observations that

A(0, |am],m) C A(lam)])
for all @ > 1, m € N, and that

A(n) C U U A(z,n, m)

z€[—n,n]¢ 1<m<n
for all n € N, respectively. O

Next we apply the concentration inequality of Section 5 to control the deviation of the
quantities W(¥) (z,m, a) from their expectations:

Lemma 6.2 Lety >0, a>1, meN, z € Z% Then

2
(v) _ (v) __ v
P (‘W (z,m,a) —EW (z,m,a)| > u) < exp < T6amy? + 64) .

INRIA



Linear Growth for Greedy Lattice Animals 15

Proof: We have

W® (z,m,a) = _ max Zmin[XV,y].
E€A(z, am],m) vee

Since A(z, |am|,m) is a finite set, and all of the lattice animals contained in it have size
no greater than am, and since 0 < min[Xy,y] < y for all v, we can apply Lemma 5.1 with
R = am to give the result. O

We now note a superadditivity property of the sequences {]EW(?/) (0,m,a),m € N}:

Lemma 6.3 For anyy > 0 and o > 1, and for all my,ms € N,
EWW (0,my +ma,a) > EWW (0,my,a) + EWY (0, ms,a).

Proof: Let & be a lattice animal in A(0, |am; |,m,) for which W®)(0,m,,a) attains its
maximum — (see the definition (6.1)) — and let z’ be a rightmost point of & ; i.e. a point in
& such that 2/(1) = maxyeg, v(1) = my — 1. If there is non-uniqueness in the choice of &; or
of z', then make the choice by any method which is independent of {Xy,v € Z% v, > m; }.

Let z"" be the point obtained by increasing the first coordinate of z’ by 1; then 2" (1) = my,
and z" is adjacent to z'.

Let & be a lattice animal in A(z", |ama|,ms) for which W) (2" my,a) attains its
maximum.

Then & and &, are disjoint (since & C {v:0<wv(1) <m;}and & C {v:m; <ov(l) <
my +ms}), and & U&s is a subset of a lattice animal in A(0, [a(my +ms,) ], my +ms), (since

z' € & is adjacent to z" € §; and since |a(my +m2)| > [amy] + [amz]). Thus we have
W®(0,m1 +ma,a) > SW(& U L)
=5W(&) + SV (&)
= W(?!) (O,m]_,Oé) + W(y) (Z”,mQ,Oé)- (66)

But by the independence of {Xy,v(1) < m;} and {Xy,m; < v(1l) < myg + may}, the
random variable W ®) (2" ms, ) has the same distribution as W (#)(0,ms, a). Hence taking
expecations in (6.6) gives the desired result. O

We combine the previous two lemmas to show that the supremum W defined at (6.2)
in fact represents the linear growth rate of W®)(0,m, a) as m becomes large:

RR n° 4035
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Lemma 6.4 Leta>1,y > 0.

EW® (0,m,0) S WY as m — oo. (6.7)

and

W (0,m,a)

— W) almost surely, as m — oo. (6.8)
m

Proof: Property (6.7) follows from the definition (6.2) and from the superadditivity property
for the sequence {EW®) (0,m,a),m > 1} established in Lemma (6.3), (see for example
Walters, 1982, Theorem 4.9).

Now, given any € > 0, let mg be large enough that

_ Wéy) <

¥
‘w < & for all m > mo. (6.9)

m

(Such an myq exists by (6.7)). Then, for m > mg, we can apply Lemma 6.2 to give

) @) ¥
]P‘(‘W (0,m, ) ZG)SP(‘W (0,m, ) EW (0,m,a)| _ e

> 5) (by (6.9))
=P (W0 (0,m,0) ~EW® (0,m,0)| > ")
< exp ( (em/2)* + 64)

 16amy?

—ww —
m m m

em
= - 4. 1
exp ( 6407 +6 ) (6.10)

Since the sum of the RHS of (6.10) over all m is finite, we have by Borel-Cantelli that

W®(0,m,a)

lim sup — Wa(f’) <e
m—0o m
almost surely. This holds for all € > 0, giving the required result. d

The previous lemma will give us the lower bound that we need. To get a corresponding
upper bound, we argue similarly, using the upper bound for N(#)(n) given by Lemma 6.1iii):

Lemma 6.5

N®
lim sup — < N a.s., for all y > 0.

n—oo

INRIA
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Proof: Let € > 0. From Lemma 6.1(iii), we have, for any n,

P (lN(y)(n) > N+e> <P (l max max W (z,m,n/m) > N+e>
n

N z€[—n,n]d 1I<m<n

< Z Z ]P’( W (z,m,n/m) > N—}—e) (6.11)

z€[—n,n]d 1<m<n

Now, for any «, y, m,

EW® (z,m,a) = EW® (0,m,a)
< mW(gy)

< maN,
from the definitions (6.2) and (6.3) of Wéy) and N. Thus, for all y, z, m, n,
EW® (z,m,n/m) < nN. (6.12)
Then for all m < n, 2z € Z%, we can apply Lemma 6.2 with a = n/m to give
P (%W(y)(z7m,n/m) >N+ e) <P (%(W(y)(z,m,n/m) _EW® (z,m,n/m)) > 6)

<P (‘W(y) (z,m,n/m) —EW® (z,m,n/m)‘ > ne)

(ne)?
< exp (— 16ny? + 64

2
= exp ( 1’26 -+ 64) (6.13)

Finally, from (6.11) and (6.13), we have that

P(%N(y)(n)ZN—ke)S > exp( 162+64)

ze[ n 'n,]d 1<m<n

€2
— d ne
=n(2n+1)%exp ( 1647 + 64) (6.14)
Since the sum of the RHS of (6.14) over all n is finite, we have from Borel-Cantelli that
. 1
limsup —N®(n) < N + € a.s.
n—oo N

Since this holds for all € > 0, the result follows. O
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The bounds we have established from above and below established allow us to complete

the proof of the main result:

Proof of Theorem 1.1:
We define N as at (6.3). Then, under condition (1.5), the bound (1.7) follows from the
domination of the quantities W®) by the quantities N(*) given by Lemma 6.1(ii), and the
bound on EN(n)/n (and hence, by (4.3), on EN‘¥) (n)/n) given by Theorem 2.3. The value
of ¢ can be taken as that established in Proposition 2.2.

Now, for all « > 1,y > 0,

lim inf N(n) > lim inf

n—o0o n n—oo

N(leln/a]])

= lim inf 7N(La Ln/a“)
% " aln/al
> lim inf 7N ( Lozmj)

1. . . W®0,m,a)
m

> —limin (from Lemma 6.1(ii))

o Mm—oo

> lWo(ky) a.s. (from (6.8)).
e

Thus

(v)
timint Y > qup Vo _ (6.15)

n—0o n ya O

as desired.
On the other hand, if (1.5) holds, then, by Lemma 4.1, for any € > 0 we can fix a y such

that

lim sup — max Xv
n—)oop n EGA(TL) Z[

almost surely. Then, from (4.3),
. 1 . 1
lim sup —N(n) < limsup —N®¥(n) + ¢
n—oco N n—soo N

<N +e, (6.16)

almost surely, by Lemma 6.5. This holds for all € > 0; combining this with (6.15) gives the

a.s. convergence in (1.6).
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For the L1 convergence, note that, by Lemmas 3.1 and 3.2,
1
—N(TL) < EQ(_nan);
and that
1
EQ(—n,n) — 2q in L, (6.17)

where ¢ < 0o under condition (1.5). Thus the dominated convergence theorem and the a.s.
convergence already established give the £; convergence desired. O

7 Greedy Self-Avoiding Lattice Paths

A sequence T = (v1,...,Vv,) of n vertices of Z% is a self-avoiding path of length n if v; # v
for all ¢ # j and v; is adjacent to v;41 for 1 <i<n —1.
Let II(n) be the set of self-avoiding paths of length n starting at 0. For 7 = (vy1,...,vp) €

II(n), we write also 7 for the set {vi,..., vy} of size n consisting of the points on the path
m. The weight S(7) of a path 7 is then defined by (1.1).
Let
M(n) = max S(m). (7.1)
w€ll(n)

M(n) is the weight of a “greedy lattice path” of length n. In this section we prove the
following result, which corresponds to Theorem 1.1 for greedy lattice animals.

Theorem 7.1 If F satisfies (1.5), then there exists M such that

M(n) — M almost surely and in L;. (7.2)

Since II(n) C A(n), it’s immediate that M(n) < N(n), and so M < N, where N =
lim, 0o N(n)/n is established by Theorem 1.1. Thus M will also obey the bound (1.7).
Lee (1993) shows that, in fact, the strict inequality M < N holds, except in the special
case where the X, have bounded support and attain their maximum value with probability
at least p., where p, is the critical probability for site percolation on Z® Lee’s results are
stated under condition (1.2), but in fact the argument covers any case in which the limits
M and N exist almost surely.
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We introduce a truncated version of the quantities M (n), as we did for N(n) in Section
4. For y > 0, let

M®(n) = max SW(r). (7.3)
w€ll(n)

Note then that as at (4.3), we have

M®(n) < M(n) < M®)(n +7rr€nr?(}7cl) Z[X —yls < MW(n ) + max Z[X
so that Lemma 4.4 can serve the same purpose as in the previous section.

We follow Gandolfi and Kesten (1994) by considering in particular a subset of II(n)
consisting of cylinder paths. We call a self-avoiding path a cylinder path if its first point
is a leftmost point and its last point is a rightmost point. That is, a self-avoiding path
(Vi,...,Vy) is a cylinder path if v; (1) < wv;(1) <wvp(1) forall 1 < j < mn.

Let C(z,n,l) be the set of self-avoiding cylinder paths of length n and width ! which
start at z.

Let a > 1 and y > 0. Analogously to the definitions of W®), W and N at (6.1)-(6.3),
define

RW(z,m,a) = max SW (). 7.4
( ) n€C(z,lam],m) ( ) ( )
and
(v)
R((Iy) = sup E—R (0,m, oz); (7.5)
m m
then define
(¥)
M = sup sup RL (7.6)
a>1y>0 &

The quantities R*) will behave in a conveniently superadditive way, just as the quantites
W) in the previous section, and the lim inf part of Theorem 7.1 can be established in exactly
the same way as that of Theorem 1.1; we will give very brief details. For the lim sup part,
we will have to work a little harder than in the previous section, since not every self-avoiding
path is a cylinder path, and so in particular there is no upper bound on M(¥) (n) in terms
of the R®) which corresponds to the inequality (6.5) between N®)(n) and the W®). To
complete the argument we give a method for decomposing any lattice path in II(n) into a
suitable union of cylinder paths; the method is a simplified version of that used in Gandolfi
and Kesten (1994).
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7.1 Lower Bound
Lemma 7.2 RY(0,m,a) < M®(lam]) for alm €N, a> 1,y > 0.
Proof: As in Lemma 6.1(ii), this follows from the fact that C(0, |am],m) C II(|lam]). O

Lemma 7.3 Lety >0, a>1, meN, z € Z% Then
2

P (‘R(y)(z,m,a) —ERW (z,m,a)| > u) <4exp (_moqjimgﬂ + 64) . (7.7)
Lemma 7.4 For anyy >0 and o > 1, and for all my,ms € N,

ER™ (0,m1 + my,a) > ERY (0,my, ) + ERY (0,m,, a).

Lemma 7.5 Leta>1,y > 0.

(v)
ERY(0,m,0) — RY as m — oco. (7.8)
m
and
)
W — RW almost surely, as m — cc. (7.9)

Proofs: The proofs of Lemmas 7.3-7.5 are essentially identical to those of Lemmas 6.2-6.4.
O

Arguing as at (6.15), we can then derive that

lim inf M(n) > M as. (7.10)

n—oo n

7.2 Upper Bound

The first lemma corresponds to Lemma 9 of Gandolfi and Kesten (1994), and shows that,
for large n, all paths of “unusually large” truncated weight contained in [—n,n]¢ are fairly
short compared to n (of length less than n%). This will be used together with the subsequent
lemma, which shows that any self-avoiding path of length n can be decomposed into cylinder

paths most of which have length at least n’.

Lemma 7.6 Let 0 < d <1, let y > 0, and let € > 0.

Let B(n) be the event that there exists a cylinder path m contained in [—n,n|?, with
n® < |n| < n, and with SW (7) > (M + €)|x|.

Then with probability 1, the event B(n) occurs for only finitely many n.
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Proof: A cylinder path of the type concerned in the event B(n) has length [ for some
n® <1< n, width w for some 1 < w < 1, and starting point z € [-n,n]d.
Thus we have

U U U BY@wl/w) >0+l

né<i<n 1{w<l zg[—n,n]d

Using Lemma, 7.3 and the definitions (7.4) and (7.6), we can argue as at (6.13) to get

(R(y)(z w,l/w) > (M + e)l) < exp ( 66212 + 64)

Hence

<X Y ¥ exp( ;+64>

n5<l<n 1<w<l zg[—n

ezn‘s
< (2n+ 1) 2exp ( 16,2 + 64)

Since the sum of the RHS over all n is finite, the Borel-Cantelli Lemma gives the result. O

Lemma 7.7 Any self-avoiding path of length n can be represented as the disjoint union of
a set of cylinder paths, such that at most 2n® paths in the set have length less than n®.

Proof: Let # = (v1,...,vy,). For the sake of argument, assume that the first-occurring
leftmost point of 7, say v;, occurs earlier than the last-occurring rightmost point of m, say
v,. (If not, then reverse the order of the path).

The path 7 is then the union of an initial segment I = (v1,...,vi_1), a central segment
C = (vi,...,v.) and a final segment F = (Vy41,...,Vy). The central segment is a cylinder
path whose width is the width of 7. We take this as the first path in our set.

The first point v,y; of F' is a rightmost point of F. Take the portion of F' from v,41
up to the last-occurring leftmost point of F', say v;. This portion is itself a cylinder path
(viewed in reverse), whose width is the width of F. We add this path to our set. Let F’
be the remainder of F', which is (vy41,...,v,). The path F' has smaller width than F,
and has its first point vy 41 as a leftmost point. Take the portion of F’ from vy4y up to
the last-occurring rightmost point of F’, say v,.. This portion is a cylinder path whose
width is the width of F'. Add this path to our set, and let F" be what remains, which is
(Vir41y--- , V). The path F'' has smaller width than F’, and has its first point v, y; as a

rightmost point. Continue by taking the portion of F" from v,;1 up to the last-occurring
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leftmost point of F”, and so on. Continue this process until the remaining portion is itself
a cylinder path.

In this way, F' is decomposed into a sequence of cylinder paths with strictly decreasing
widths.

Similarly, the initial segment I may be decomposed into a sequence of cylinder paths
with strictly decreasing widths.

The central segment C' is a cylinder path, and has greater width than any of the cylinder
paths comprising F' and I.

Hence we have decomposed 7 into a set of cylinder paths, such that for any w, there are
at most two paths in the set with width w. Thus there are fewer than 2n? paths in the set
with width less than n’. Since the length of a path is at least as large as its width, there
are fewer than 2n® paths in the set with length less than n?, as desired. An example of the
decomposition is given in Figure 7.1. O

Figure 7.1: A lattice path and its decomposition into cylinder paths according to the method
in the proof of Lemma 7.7. The endpoints of each path are marked. Working from bottom
to top, the cylinder paths have widths 2, 4, 6, 12 (the central segment), 8, 5, 1.

We combine the previous two lemmas to complete the proof:
Proof of Theorem 7.1: Let 0 < § < 1/2, € > 0, and y > 0, and define the event B(n) as in

Lemma 7.6.
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From Lemma 7.7, any path = € II(n) is the disjoint union of a set of cylinder paths each
of which has length at least n%, and of a set of single points of size at most 2n2°.

Suppose the event B(n) does not occur. Then each of these cylinder paths of length at
least n’ has (y-truncated) weight at most (M + €) times its length. But the y-truncated
weight of any of the single points is at most y. Thus

SW () < (M + €)|x| + 2n?y

= (M + €)n + 2n%y.

Since, by Lemma 7.6, B(n) almost surely happens only finitely many times, we have

(¥)
lim sup M (n) < limsup 1 [(M +e)n + 2n2‘5y]

n—oco n n—oco T

=M+e€

almost surely. This holds for all y > 0. As at (6.16), it therefore follows under condition
(1.5) that

M
limsup$ <M+e

n—oo

almost surely, for all e. Combining this with (7.10) gives the a.s. convergence in Theorem

7.1. The £; convergence follows by the dominated convergence theorem as at (6.17). d

8 Moment Conditions

In this section we derive sufficient conditions for (1.5) to hold, in terms of the expectation

of functions of Xg under F'.

Proposition 8.1 Suppose g : (0,00) — (0,00) is a function with a strictly positive deriva-

T

If X is a non-negative random variable with distribution F', then

tive, and with

Eg(X) < 00 = /oo (1- F(x))""dz < co. (8.1)
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Proof: Using Holder’s inequality,

In particular, define

and, for r > 1, let
I-(z) =log" I, ().

Then one can use Proposition 8.1 to show that condition (1.5) is weaker than the condition

k
E lxg (H[lr(Xo)]d‘1> (lk(Xo))E] <00

r=1

for any k£ > 0 and € > 0; for example, taking k = 1 or 2, it is implied by
EXJ(logt Xg)?71%¢ < o0
or

EXJ (log™ Xo)? ! (log™ log™ Xo)? 1€ < o0.

9 Further Questions and Comments

(a) What happens when (1.5) does not hold? We have proved that (1.5) is sufficient
for the a.s. convergence of N(n)/n in (1.6), and have also seen (Proposition 3.4 and the
comment after) that the condition EXJ < oo is necessary even for the a.s. boundedness as

in (1.3). The limiting behaviour of N(n)/n does not seem to be known for any F' such that
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EX¢ < oo but for which (1.5) fails; that is, we do not know of any proof either that (1.5)
is not necessary for (1.3) or that EX¢ < oo is not sufficient for (1.6).

If there are in fact F' for which (1.5) does not hold, but for which a.s. boundedness or a.s.
convergence of N(n)/n does hold, then the loss of power in our argument occurs at (2.4),
when the exchange of integral and maximum is performed.

We saw in Proposition 3.4 that limsup,,_,., EN(n)/n < oo iff limsup,,_, . N(n)/n < 0o
a.s. (These are also equivalent to the property that limsup,, ,..EM(n)/n < oo, or that
limsup,, ,., M(n)/n < oo a.s., as can be seen by comparing M (n) to @(0,n) and Q(—n,n)
as in Lemma 3.1). Could there be distributions F' for which these properties hold, but for
which a.s. convergence of N(n)/n as in (1.6) or of M(n)/n as in (7.2) fails? Essentially, a
result such as Lemma 4.1 is enough to give the a.s. convergence in either case — to apply
the methods of Sections 6 and 7 it suffices to have a bound for the LHS of (4.4) which
tends to 0 as y — oo. So if a.s. boundedness holds, but a.s. convergence for M (n) or for
N(n) fails, this implies that the LHS of (4.4) is finite for all y, but bounded away from 0 as
y — oo. This seems implausible, but we do not currently have an argument which excludes
it. More weakly, is it the case that the LHS of (4.4) tends to 0 whenever N (n)/n (respectively
M(n)/n) converges a.s.? This would show for example that the a.s. convergence of N(n)/n
implies (respectively is implied by) that of M(n)/n.

(b) Oriented Lattice Paths. Following on from (a), one can consider models in which
the set of feasible configurations is considerably more restricted. For example, let Y(n) be
the maximal weight of a path from 0 to nl1, in which each step must consist of increasing
a single coordinate by 1. For d = 2, such models are used, for example, in the analysis of
systems of queues in tandem (e.g. see Glynn and Whitt (1991) and Baccelli, Borovkov and
Mairesse (2000)). By superadditivity arguments, Y (n)/n converges a.s. to a finite constant
whenever EY (n)/n is bounded in n. Could there be an F' for which this occurs, but for
which EN(n)/n and EM(n)/n are not bounded?

(c) Continuity of M and N under weak convergence of F. We write N(F') and M (F)
for the values of N and M in Theorem 1.1 and Theorem 7.1 which correspond to a given
distribution F. Let {F,,n € N} be a sequence of distributions which converge weakly to a
limiting distribution F' as n — oco. Lee (1997a) shows that M (F,,) - M(F) and N(F,) —
N(F) as n — oo under the condition that there is a distribution G which stochastically
dominates F' and all the F),, and such that (1.2) holds under G.
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The distribution G is used as the majorant for an application of the dominated conver-
gence theorem. Using our Theorem 1.1, Lee’s argument applies almost identically to give
the same conclusion whenever G obeys (1.5).

References

Akcoglu, M. A. and Krengel, U., 1981. Ergodic theorems for superadditive processes. J.
Reine Angew. Math. 323, 53-67.

Baccelli, F., Borovkov, A. and Mairesse, J., 2000. Asymptotic results on infinite tandem

queueing networks. Probab. Theory and Related Fields (to appear).

Cox, J. T., Gandolfi, A., Griffin, P. S. and Kesten, H., 1993. Greedy lattice animals I: Upper
bounds. Ann. Appl. Prob. 3, 1151-1169.

Gandolfi, A. and Kesten, H., 1994. Greedy lattice animals II: Linear growth. Ann. Appl.
Prob. 4, 76-107.

Glynn, P. W. and Whitt, W., 1991. Departures from many queues in series. Ann. Appl.
Prob. 1, 546-572.

Lee, S., 1993. An inequality for greedy lattice animals. Ann. Appl. Prob. 3, 1170-1188.

Lee, S., 1997a. The continuity of M and N in greedy lattice animals. J. Theoret. Prob. 10,
87-100.

Lee, S., 1997b. The power laws of M and N in greedy lattice animals. Stoch. Proc. Appl.
69, 275-287.

Talagrand, M., 1995. Concentration of measure and isoperimetric inequalities in product
spaces. Inst. Hautes Etudes Sci. Publ. Math. 81, 73-205.

Walters, P., 1982. An Introduction to Ergodic Theory. Springer-Verlag.

RR n° 4035



/<

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lés-Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38330 Montbonnot-St-Martin (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http://www.inria.fr

ISSN 0249-6399



