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Automates en Junior

Résumé : On décrit comment produire des machines d’états finis & partir de programmes
écrits en Junior, un formalisme permettant une programmation réactive en Java. On intro-
duit la notion d’automate partiel, utile lorsque le nombre d’états est trés grand.
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1 Introduction

Junior[4, 2] is a formalism for reactive programming in Java. It basically defines concurrent
reactive instructions communicating with broadcast events. This paper describes production
of finite states machines from Junior programs. It is implemented in Java using Junior itself.

Finite states machines, also called automata, are made of states and transitions: at each
computing step, control starts from current state and executes the associated transition,
leading to a new state which is the starting point for next step.

Basically, transitions are trees made of tests and of elementary computing actions. To
execute a transition, one starts from the root of the tree and one executes elementary actions
in sequence, following a path reaching to a leave which defines new state for next instant.
Figure 1 shows the graphical representation of a transition :

t1

al over

goto 1

Figure 1: Transition

Execution starts by evaluating test t1; if t1 returns true, the left branch is choosen, action
al is executed, and next state is set to state 1; if t1 returns false, then right branch is
choosen, and next state is set to final state, called over. The key point is that running a
transition means to execute sequential code, by contrast with reactive instructions of Junior
which basically are concurrent code.

In standard automata graphical representation, states are shown as circles, linked by
transitions. Figure 2 is a representation of an automaton. Initial state has number 0, and
over is final state. Transition starting from state 0 is the one of figure 1. Transition starting
from state 1 consists in executing a2, then a3, then setting next state to state 0. Finally,
transition from over is the empty transition.

Producing an automaton from a reactive program thus can be seen as compiling con-
current code into sequential code. The benefit is that one gets a more efficient execution
(concurrency is managed once for all at compile time, not at run time) and possibility to in-
terface with analysis and verification tools specially designed for automata. However, there
are several drawbacks:

e Producing automata is not always possible; for example, recusivity can be an obstacle
to production of an automaton.

RR n°® 4031



4 F. Boussinot

Figure 2: Automaton

e Automata can be very large, getting huge code size.

e Automata are less modular than initial programs: passing from parallel to sequential
code forbids later uses in some contexts.

Automata are thus a compromise between efficiency on the one hand, and size and
reusability on the other hand. In this paper, one make the proposal of an new kind of
automata, called partial automata, for dealing with large sized automata.

The structure of the text is as follows: automata are introduced in section 2 and reactive
compilers to produce them in section 3. Section 4 describes automata printers in Java and
evaluators. Finally, partial automata and compilers are introduced in section 5.

2 Automata

An automaton is basically a table of states, where each state stores an associated transition.
Automata are instances of class Automaton with basic methods:

Automaton ()
Vector stateTable()

First method is the constructor for automata. Second method returns the states table
implemented as a Java vector; elements of the vector are states defined in 2.1. Automata
are produced by the reactive compiler described in section 3.

2.1 States

States are instances of class State; a state has a number and a transition starting from it.
The number is a new fresh integer, given by the system at construction. Actually, each state
of a Junior automaton is representing a reactive instruction provided when constructed.
Methods for using states are:

INRIA
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State(Instruction instruction)
Instruction instruction()

void assignTransition(Transition t)
Transition transition()

int num()

First method is the constructor for states; parameter is the reactive instruction from which
state is built; second method returns this reactive instruction. Third method sets the tran-
sition which is returned by fourth method. Finally, last method returns the state number.

2.2 Transitions

Transitions define sequential code associated to states. A transition has the form of a tree in
which leaves are gotos or over, finishing execution for current instant; transition nodes are
either binary nodes for testing events or boolean conditions, or unary nodes for actions or
event generations. Execution of a transition starts from the root and follows a path reaching
a leave which defines either a new state for next instant, or the over state which means that
program is completely terminated.

Transitions implements the following interface:

public interface Tramnsition {
final int CONT = -2, OVER = -1;
int execute(Environment env);

}

Method execute executes the transition; for leaves, it returns OVER if over is reached,
and the reached state otherwise; for others nodes, it returns CONT.

Now, one presents the various transitions. This description is useful when implementing
new ways of printing or running transitions; it can be skipped when it is no the case.

2.2.1 Action

ActionTransition(Action action)
This transition executes action and returns CONT when executed.
2.2.2 Event Test

EventTestTransition(Identifier event, Transition transition)

Event event is the tested event, and transition is the transition that must be executed
when event is present; in this case, execution returns the result of transition execution;
otherwise (event is absent), it returns CONT.

RR n° 4031
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2.2.3 Condition Test

ExpTestTransition(BooleanWrapper condition, Transition transition)

Wrapper condition is the tested condition; transition is the transition that must be
executed when condition is true; in this case, execution returns the result of transition
execution; otherwise (condition is false), it returns CONT.

2.2.4 Generation

GenerateTransition(Identifier event)
Event event is the generated event; execution returns CONT.
2.2.5 Goto

GotoTransition(int target)

This transition is a leave that terminates transition execution for current instant; new state
for next instant is state with number target; execution returns target.

2.2.6 Over
Over()

This transition is a leave that indicates that automaton execution is over; execution returns
OVER.

2.2.7 Sequence

SeqTransition(Transition left,Transition right)

This transition is the sequence of transitions left, then right. If execution of left returns
CONT, it returns the value returned by right execution; otherwise, it returns the value
returned by left execution.

2.2.8 Link

LinkedTransition(Object object)

This transition sets the linked object, accedeed by atoms through environment; it corre-
sponds to Link instructions of Junior; execution returns CONT.

2.2.9 Empty Transition

EmptyTransition()

The empty transition; execution returns CONT.

INRIA
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2.3 Basic Printer
The basic printer prints an automaton as a list of transitions of the form:

statei: tramnsition
where i is the state number and transition is the transition from the state. More precisely:

e Tests are of the form if x then tr end, where tr is a transition and x is an event or
a boolean condition.

Atomic actions are printed as they are.

Generation of event e is printed as generate e.

Goto are of the form goto statei; a final state is printed over.

e The sequence of two transition t1 and t2 is printed t1;t2.

For example, the states table of the automaton shown in figure 2 is:

state0: if tl1 then al; goto statel end; over;
statel: a2; a3; goto state0;

Basic printers are instances of class BasicPrinter with methods:

BasicPrinter (Automaton automaton)
void print(String name)

First method is the basic printer constructor; automaton to be printed is passed as parame-
ter. Second method is called to print automaton; parameter is the name given to the printed
automaton. For example, to print an automaton aut with name EXAMPLE1, one writes:

new BasicPrinter(aut).print("EXAMPLE1");

which produces:

automaton EXAMPLE1:
state0: if e then over; end; goto state0;
end of automaton EXAMPLE1

This automaton actually corresponds to the Junior program Jr.Await ("e"). It has only one
state, named state0. Transition from stateO tests event e; if e is present, then automaton
is over; otherwise, automaton remains in state0.

RR n° 4031
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3 Reactive Compilers

Reactive compilers symbolically execute programs, producing automata with equivalent be-
havior. Reactive compilers are instances of class Rcompiler, which has methods:

Rcompiler (Program program)
Automaton compile()

First method is the reactive compiler constructor; parameter is the program to compile.
Second method returns automaton produced when compiling the program. For example,
the automaton corresponding to program Jr.Await("e") can be obtained by:

Automaton aut = new Rcompiler(Jr.Await("e")).compile();

3.1 Compiling Process
Basically the compiling process is the following:

e Two sets of states are defined: the set of created states and the set of analyzed states.
Initial state associated to the initial program is created; it is put in the set of created
states.

e While there exists created states which are not analyzed, one of them is chosen and
analyzed. When all created states are analyzed, if it happens, then the set of created
states is returned as being the constructed automaton.

Analyzing a state means:

e Instruction associated to the state starts to be executed. When a non-local event is
tested for presence during execution, one considers the two cases where event is, or
is not, generated by the external world. Analysis forks assuming on one branch that
event is generated, and on the other branch that it is not (noticing assumption on
the event, in order to forbid future assumptions on it). Analysis of the two cases are
reflected in the transition produced by a test on the event considered.

e If instructions are processed in the same way, except that the event test is replaced
by a condition test.

e A goto is produced when execution of a branch is finished for current instant; the
target is obtained by comparing the program which remains to be executed for next
instants (the residual program) with already created states; if there exists a state with
an equal program, then it is the target; if no state is found, then a new state is created
with the residual program as associated instruction; this new state is put in the set
of created states. Finally, over is used instead of goto if execution is completely
terminated.

Now, one describes several important aspects of the compiling process.

INRIA
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3.2 Parallelism

Parallelism does not exist anymore in automata: it has been compiled in sequential code
transitions. Consider for example the program which is waiting in parallel for two distinct
events:

Jr.Par(Jr.Await("e"),Jr.Await ("£"))

The corresponding automaton is:

automaton EXAMPLE2:

state0: if e then if f then over; end; goto statel; end;
if f then goto state2; end; goto stateOl;

statel: if f then over; end; goto statel;

state2: if e then over; end; goto state2;

end of automaton EXAMPLE2

In statel, the automaton waits only for £ because e was previously present. Similarly, in
state2, the automaton waits only for e.

Note the “states explosion” phenomenon which appears when compiling parallelism; for
example, with:

Jr.Par(Jr.Await("el"),

Jr.Par(Jr.Await ("en"),
Jr.Await("en+1")...));

one gets an automaton with 27+! — 1 states.

3.3 Events

Presence status of events are taken in account during the compiling process. For example,
consider:

Jr.Seq(Jr.Generate("e"),Jr.Await("e"))

There is no test for event e in the produced automaton:

automaton EXAMPLE3:
stateQ: generate e; over;
end of automaton EXAMPLE3

Indeed, testing e is not needed, as it is generated in all cases.
In the special case of local events, presence status are completely solved at compile time.
For example, consider:

Jr.Local("e",
Jr.Local("f",
Jr.Par(
Jr.Seq(Jr.Await ("£f"),Jr.Generate("e")),
Jr.Seq(Jr.Generate ("£"),Jr.Await("e"))
)

RR n°® 4031
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There is a communication from second branch of Par to the first branch, using event f;
there is also a communication from first branch to the second, using event e; these two-way
communications occuring in the same instant are what is called an “instantaneous dialog”[1].
The produced automaton is:

automaton EXAMPLE4:

stateQ: over;
end of automaton EXAMPLE4

As e and f are local events, they do not appear in the automaton.

3.4 Finite Loops

There are two ways for compiling finite loops, depending on the type of the expression
defining the number of loop cycles.

3.4.1 Expanded form

Expanded form is obtained when expression defining the number of cycles is a constant n
(integer or ConstIntegerWrapper); then, in the produced automaton, it is as if the loop
body were expanded in n occurrences. For example, consider:

Jr.Repeat (3,Jr.Seq(Jr.Generate ("absent") ,Jr.Stop()));

Automaton produced is:

automaton EXAMPLES:

stateQ: generate absent; goto statel;
statel: generate absent; goto state2;
state2: generate absent; goto state3;
state3: over;

end of automaton EXAMPLES

Note that in expanded forms, the number of states highly depends on the value of the
constant.

3.4.2 Compact form

Compact form is produced when expression defining the number of cycles is not a constant.
In this case, the number of states does not depend on the value of the expression. For
example, consider:

Jr.Repeat (new IntegerExpression("3"),
Jr.Seq(Jr.Generate("e"),Jr.Stop()))

Then, automaton produced is:

automaton EXAMPLES:

state0: _counter0=3; if _counter0--<0 then over; end; generate e; goto statel;
statel: if _counter0--<0 then over; end; generate e; goto statel;

end of automaton EXAMPLES

INRIA
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3.4.3 Comparison of the two forms

One could think that expanded forms always leads to larger programs than compact forms!.
This is false, as shown by the following example. Let us first call huge an instruction which
produces a large size automaton. Then, consider the 3 following instructions:

Program fast =
Jr.Seq(Jr.Repeat(5,Jr.Stop()),
Jr.Seq(Jr.Atom(ForAut.Print("fast")),Jr.Generate("exit")));

Program slow =
Jr.Seq(Jr.Repeat(50,Jr.Stop()),
Jr.Seq(huge,
Jr.Seq(Jr.Atom(ForAut.Print("slow")),Jr.Generate("exit"))));

Program prog =
Jr.Local("exit",
Jr.Loop(Jr.Seq(Jr.Until("exit",Jr.Par(fast,slow)),Jr.Stop())));

Instruction fast prints a message after 5 instants and then generates exit. Instruction
slow waits for 50 instants, then runs previous huge instruction before printing a message
and generating the same event exit. Instruction prog runs fast and slow in parallel and
preempts them by exit (which is local). As 5 is less than 50, message slow is never printed
because preemption always occurs before the printing action of slow gets a chance to be
executed. Compiling prog gives:

automaton TOTAL:

state0: goto statel;

statel: goto state2;

state2: goto state3;

state3: goto stated;

state4: goto stateb;

stateb: System.out.print("fast"); goto state6;
state6: goto statel;

end of automaton TOTAL

The point is that size of the automaton is independant of huge, which is actually never
executed. Now, replacing the two constants 5 and 50 by expressions returning same values,
one gets an automaton which always has more states than the one of huge. Thus, the
automaton produced in this case is larger than the previous one.

Producing TOTAL from prog can be seen as a (very elementary) proof that message slow is
never printed by prog; note that values of the two constants must necessarilly be considered
to manage such a proof.

Lat least, when number of cycles is greater than 2.

RR n° 4031
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3.5 Minimality

It is natural to consider as equivalent two states from which the automaton will for ever
perform the same actions, provided inputs are the same. More precisely, two states are equiv-
alent? if, with same input, the automaton performs the same elementary actions, reaching
two new states which are also equivalent.

Equivalent states are clearly redondant in an automaton: it is possible to suppress all but
one of them (changing gotos on redondant states, by gotos on the remaining state) without
changing the automaton behavior. This transformation is called minimisation, and one says
that an automaton is minimal if it does not contains two equivalent states.

Unfortunately, automata produced from Junior programs are not minimal, as shown by
the very simple example:

Jr.Par (Jr.Await ("e"),Jr.Nothing())

The produced automaton is:

automaton NotMinimal:

state0: if e then over; end; goto statel;
statel: if e then over; end; goto statel;
end of automaton NotMinimal

Actually, state0 corresponds to the initial program, in which none of the two parallel
branches are executed; statel corresponds to situation where e is not present but sec-
ond branch has been executed. These two states are clearly equivalent as their associated
transitions are identical. Once minimized, one gets the automaton:

automaton Minimal:
state0: if e then over; end; goto stateO;
end of automaton Minimal

To get a way to minimize automata, reaching thus minimal automata, would certainly
be a good point for reducing automata code size. This could be obtained by interfacing
Junior automata with validation tools in which minimisation is implemented; this point is
left for future work.

3.6 Modularity

Compiling parallel code into sequential code is non modular because choices made dur-
ing compilation may be obstacles to reusability. To show this phenomenon, consider the
following instruction P:

Jr.Par(
Jr.Seq(Jr.Await ("11"),Jr.Generate("12")),
Jr.Seq(Jr.Await ("r1"),Jr.Generate("r2")));

2Qne also says that they are bisimilar.

INRIA
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P terminates when put in parallel with L:

Jr.Seq(Jr.Generate("11"),Jr.Seq(Jr.Await ("12"),Jr.Generate ("r1")))

or with R:

Jr.Seq(Jr.Generate("r1"),Jr.Seq(Jr.Await ("r2"),Jr.Generate("11")))

Situation is symetric because, in both cases, execution can fire the parallel branch of P
corresponding to the first generated event, leading to generation of the other event.

Symetry is lost if sequential code is used instead of parallel code. Indeed, in order to
compile P into sequential code, one must choose one event, out of 11 and ri, that is first
tested for presence. Let us suppose that 11 is chosen. Then, as sequential code is considered,
status of 11 must be determined at the very first step. Putting the sequential code in parallel
with L would be ok; but execution will block with R, as there would be no way to progress.
The point is that the same problem would appear if r1 is chosen, instead of 11, to be
first tested for presence. Actually, for each possible choice, there exists a context in which
execution blocks.

This discussion shows that modularity is, in a way, the price to pay for compiling parallel
code into sequential code. This has important consequences when one wants to produce
executable code from automata; it will be discussed in section 4.1.

4 Printers

Basic printers of class BasicPrinter have been defined in section 2.3. Two other printers
for automata are presented in this section.

4.1 Java Printer

Java printers are producing reactive machines from automata. Produced machines imple-
ments interface Machine but dynamic adding of new programs is not possible (a warning
message is printed when method add is called). Actually, one uses the REPLACE implemen-
tation of Junior and produced machines extends class BasicContext defined in the package
junior.core of this implementation (see [2] for details).

Java printers are instances of class JavaPrinter with methods:

JavaPrinter (Automaton automaton)
void print(String name)

First method is the class constructor, and parameter is the automaton to be printed. Second
method prints automaton, giving it the name in parameter.
For example, let us consider the program:

RR n°® 4031
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Program p =
Jr.Loop(
Jr.Until("suspend",

Jr.Loop(Jr.Seq(Jr.Generate("step"),Jr.Stop())),
Jr.Seq(Jr.Stop() ,Jr.Await ("resume"))));

The machine produced by:

Automaton stepProducer = new Rcompiler(p).compile();
new JavaPrinter(stepProducer).print("stepProducer")

is:

class stepProducer extends junior.core.BasicContext

{

public stepProducer(){ super(Jr.Nothing()); }

protected int state = 0;

public void add(Program program){ System.out.println("Warning: no add allowed");}

boolean test(String s){ return env.isGenerated(Jr.Stringldentifier(s)); 2}
void gen(String s){ env.generate(Jr.Stringldentifier(s)); }

public boolean react(){ // activation method

boolean res = false;
switch (state){
case 0: gen("step");
if (test("suspend")){ state =
state = 2; res = false; break;
case 1: if (test("resume")){
gen("step");
if (test("suspend")){ state =
state = 2; res = false; break;
} state = 3; res = false; break;
case 2: gen("step");
if (test("suspend")){ state =
state = 2; res = false; break;
case 3: if (test("resume")){
gen("step");
if (test("suspend")){ state =
state = 2; res = false; break;
} state = 3; res = false; break;
default: res = true;
}
env.newInstant();
return res;
}

} //end of class stepProducer

In this code:

1;

1;

1;

1;

res

res

res

res

false; break; }

false;

false;

false;

break;

break;

break;

e add method is redefined in order to forbid dynamic addings; moreover, the program
passed to the super class is never used (it is, thus, simply set to Nothing).
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e react method is implemented as a switch statement on variable state which contains
the actual state number.

¢ Event generations and tests are performed on the machine environment (using the two
auxiliary methods test and gen).

Note that automaton is not minimal: states O and 2 are equivalent, as are states 1 and 3.
As explained in section 3.6 in discussion about modularity, it would not be possible to
produce a program, or a reactive instruction, in place of a machine; indeed, a produced
program could be put in parallel with others programs, and modularity problems could then
appear. This is why automata produced from Junior programs are implemented as reactive
machines and not as reactive instructions: a reactive machine can only be used as top level
executable code, and reusability is restricted to production of new instances of it.

4.2 FEvaluators

Evaluators are extracting three characteristics from automata: the number of states, the
global number of elementary actions (generation, tests, Java actions, and gotos) present in
the automaton, and the size of the longest transition (number of elementary actions of the
longest path). Evaluators are instances of class Evaluator. For example, the call:

new Evaluator(stepProducer).print("stepProducer");

produces output:

//evaluation of stepProducer - states: 4, actioms: 20, longest path: 4

5 Partial Automata

A partial compiler is a machine that performs the compiling process during program exe-
cution. In a partial compiler, automaton is built on demand, when needed by execution;
it is called a partial automaton because it can be run despite the fact that some states are
left unanalyzed. The point is that states that are not reachable by execution (often called
unreachable states) are not analyzed and will not appear in the constructed automaton. This
is thus a way to reduce automata size.

Partial compilers have two running modes:

e In the unlimited mode (which is the default mode), there is no limit to the size of the
automaton built. Each reaction executes the transition associated to the current state
if it exists (that is, if it has been previously analyzed); otherwise, reaction starts by
analyzing the state, that is computes the associated transition before executing it. In
this mode, each reaction executes a transition.

RR n°® 4031
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e In the limited mode, the number of analyzed states is limited. When limit is reached,
then program is run if the machine has to execute an unanalyzed state (a state without
any transition associated to it). Thus, in limited mode, when automaton cannot be
run, program is executed instead, as with a standard machine.

Partial compilers are instances of class RpartialCompiler and have the following meth-
ods:

RpartialCompiler (Program program)

int howManyAnalyzedStates()

void limit(int max)

boolean limited()
void noMoreStates()

¢ First method is the constructor; parameter is the program to be run; it cannot be
changed: calls to the add method have no effect.

e Method howManyAnalyzedStates returns the number of states currently analyzed
(that is, for which an associated transition exists).

e Method limit sets the limit number of analyzed states to the value of its parameter.
e Method limited returns true if the compiler is in limited mode, false otherwise.

e Method noMoreStates puts the compiler in limited mode and sets the limit of analyzed
states to the actual number of them; thus, after the call, no new states can be analyzed
(or even created).

5.1 Unlimited Mode

One considers a small program which cyclically prints a message; this program is put in
parallel with an instruction that waits for an event and then falls in an instruction producing
a huge automaton:

Program go =

Jr.Loop(Jr.Seq(Jr.Repeat(3,Jr.Stop()) ,Jr.Atom(ForAut .Print ("Go"))));
Program prog = Jr.Par(Jr.Seq(Jr.Await("e"),huge),go);

Then, one defines a partial compiler partial, and let it react several times:
for(int i = 0; i<50; i++){ partial.react(); }

Finally, one gets the automaton built and prints it:

Automaton aut = partial.automaton();
new BasicPrinter(aut) .print ("UNLIMITED");

The point is that huge is never reached because event e is never generated; thus, the produced
automaton has a small size:

INRIA
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automaton UNLIMITED:

state0: if e then goto statel; end; goto state2;

statel:

state2: if e then goto state3; end; goto stated;

state3:

state4: if e then goto stateb; end; goto state6;

stateb:

state6: if e then System.out.print("Go"); goto statel; end;
System.out.print("Go"); goto state2;

end of automaton UNLIMITED

Only even states are reached (odd states correspond to huge), and execution always stays in
this set of states as long as e is absent. Using a partial compiler, it thus becomes possible,
in specific situations (here, absence of e), to run a program as a finite states machine, but

without having to produce the global automaton.

5.2 Limited Mode

Here is a small example of an executable program run by a partial compiler in limited mode.
The considered program is a finite loop producing a 10 states automaton, enclosed in an
infinite loop. The partial compiler is allowed to analyze at most 5 states. After several

instants, automaton stored in the partial compiler is printed:

public class Partial
{
public static void main(String[] argv){
RpartialCompiler partial =

new RpartialCompiler(Jr.Loop(Jr.Repeat(10,Jr.Stop())));

partial.limit(5);

for(int i = 0; i<100; i++){
System.out.print ("#**** instant "+i+": ");
partial.react();
System.out.println("");

}

Automaton aut = partial.compiler().automaton;
new BasicPrinter(aut).print("LIMITED");

The partial automaton which is finally printed is:

automaton LIMITED:
state0: goto statel;
statel: goto state2;
state2: goto state3d;
state3: goto stated;
state4: goto stateb;
stateb:

end of automaton LIMITED

RR n° 4031



18 F. Boussinot

Thus, 6 states have been created, out of which 5 are analyzed. Output is (only the 16 first
instants are printed):

**x*x* instant 0: runing state O..

%%k instant 1: runing state 1..

**¥%*x* instant 2: runing state 2..

***x* instant 3: runing state 3..

%%k instant 4: runing state 4...

**%*x* instant 5: running the program...
***x* instant 6: running the program...
***x* instant 7: running the program...
#*xkx* instant 8: running the program...
**x*x* instant 9: running the program...
**%x** instant 10: running the program...
#*x*xx* instant 11: runing state 1...
**kk* instant 12: runing state 2...
s*xkx* instant 13: runing state 3...
**%*x* instant 14: runing state 4...
#**x* instant 15: running the program...

This output shows how execution cyclically switches from states to program, and conversely
from program to states.

5.3 Possible Variants

To end this section, one can think of several possible variants of partial compilers and
automata:

e The state table of a limited compiler can be considered as a cache table; a state which
is not run during a certain delay would be removed from the table, leaving place for a
new one.

e Only states with limited size transitions are stored; thus, automaton size would be con-
trolled not only in the number of analyzed states, but also in the number of elementary
actions it contains.

e After a certain time, one extracts the automaton of an unlimited compiler (for example,
in order to analyze it); after extraction, an error is produced if execution run out of
the analyzed states.

6 Related Work
6.1 JIT Compilers

The approach of partial automata is actually close to “just-in-time” (JIT) optimizing tech-
nics notably used by Java compilers[6]; in both cases, execution is a compromise between
interpretation and compilation, and this compomise can vary along time. Main difference is

INRIA



Junior Automata 19

that partial automata put the focus on concurrency, and not on sequential code optimization
as JIT technics do; note however that the two approaches are compatible and could be used
jointly.

6.2 Synchronous Languages

Automata have been used as targets when compiling synchronous languages[3], specially
in the v3 implementation of Esterel[l] (let’s called it Esterel v3, for short). In Esterel
v3, automata states are program states, and transitions are statements coding for program
reactions. A program state is actually completely determined by the sets of halt instructions
on which control is stuck. Basically, the Esterel v3 compiling process symbolically executes
the program, building two sets:

e the set of states (called halt-sets) corresponding to program states;

e the set of transitions associated to states. A transition is a tree made of boolean tests
(signal tests, and if statements) and of actions (variable assignments, procedure calls,
etc.).

Actually, the compiling process for producing automata from Junior programs is more
or less the one of Esterel v3. However, there are several differences:

o Instantaneous loops are not detected in Junior[4]; running an instantaneous loop can
thus lead to a non convergent situation.

e At the basis of Junior is the rejection of immediate reaction to absence, which is one
of the major difference with synchronous formalisms. A consequence is that causality
cycles, which are a major problem in Esterel, do not exist in Junior. Thus, there is no
need for causality cycles detection during automata construction.

e Recusively defined programs can also lead to non convergent situations; this is impos-
sible in synchronous languages, where recursivity is forbidden.

In current version of Esterel (v5), automata have been rejected to avoid states combi-
natorial explosion problems. Automata are replaced by equations sets; however, software
execution of equations is slower than execution of automata; this is the usual tradeoff be-
tween efficiency and code size. Moreover, equations are closer to harware circuits, for which
Esterel is targeted, than automata are.

6.3 Mealy Machines

Mealy machines are finite states machines in which transitions are linking states and are
holding conditions and output produced when condition holds; several transitions can be
associated to same state, and runing the automaton means to choose a transition from
current state that have a condition which is true. For example, figure 3 shows the Mealy
machine associated to:
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Jr.Par(Jr.Await("e"),Jr.Await ("£f"))

On this drawing, conditions are put over transitions which are simple arrows (one does not
consider outputs). Presence of an event z is represented by z, and absence by Z. Conditions
are simply concatenations of event presences or absences; for example ef means e present
and f absent.

Figure 3: Mealy Machine

Mealy machines are well suited for program verification systems because transitions are
very simple; moreover, each state directly exhibits all possible program behaviors from it.
However, Mealy machines are less adapted to be directly run, because before executing a
transition there is always the overhead of determining it.

Mealy machines are important in the context Junior automata because Mealy machines
are standard input for automata-based verification systems; first step for verification of
Junior automata would be, then, to translate them in Mealy machines.

6.4 Mode Automata

Mode automata[5] have been recently introduced in the context of dataflow synchronous
languages|[3] to deal with reactive systems which have running modes. Actually, in the mode
automata model, states are labelled by dataflow programs, and are representing system
modes. Thus, mode automata are a mix between dataflow and imperative programming.
They can also be seen as mixing concurrent code (dataflow programs) and sequential code
(transitions).

Mode automata are a way to avoid the combinatorial state explosion when compiling
dataflow synchronous programs because the number of states depends on the semantics of
the program modes; thus, one can hope that programmers may limit the number of produced
states, using appropriate syntax constructs.
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7 Conclusion

A way to produce automata from Junior programs has been described. Basically, the com-
piling process transforms parallelism into sequential code, when possible.

There are two intrinsic problems with automata: modularity, that is reusability, and
code size. Proposition to deal with these problems is twofold:

e Automata are implemented by reactive machines to avoid modularity problem that
would occur if they were implemented as reactive instructions. Of course, it is a
very limited solution as reusability is thus restricted to production of new program
instances.

e Partial compilers give possibility to limit the number of states produced; a partial
compiler can run the automaton states or the program, according to the number of
analyzed states. Thus, partial compilers give a way to deal with programs whose
automata have large numbers of states.

A specific problem of the compiling process is that non minimal automata are produced.
To minimize automata is left for future work.
Automata seem useful in several contexts:

e Program analyzis and verification of program properties. Model checking is the natural
verification technics with automata; it would be helpful to be able to print automata
in some verification system input format. A possible use would be to extract some re-
quired properties from automata; non-regression tests could then verify that properties
are still valid for new program versions.

e Production of automata for security concerns: the simple fact that an automaton has
been produced from a program shows, for example, that it will never fall in a recursive
loop where new parallel components are created for ever, forbidding the rest of the
system to work properly. This could be useful for migrating agents; indeed, agents are
generally small programs, from which automata can thus be produced; one can thus
imagine some kind of “automaton carying agent” which can exhibit the automaton
produced out of it, in order to enter into a remote site.

e Evaluation, as shown in section 4.2, of the longest transition of an automaton. This
could be used for Quality of Services (QoS) purposes: for example, one could think to
restrict the language of elementary actions, for being able to evaluate execution time
for them; in this context, it would be possible to compute bounds for execution time,
which is an important matter for QoS, and more generally for real-time programming.

The Junior implementation and processors presented in the paper are freely available on
the Web][7].
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