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Abstract: Subspace identification algorithms have proven efficient for performing
output-only identification of the eigenstructure of a linear MIMO system subject to
uncontrolled, unmeasured, and nonstationary excitation. Such a problem arises in
mechanical engineering, for modal analysis of vibrating structures and machines. A
common practice there is to collect data from varying sensor locations, using both
fixed and moving sensors, in order to mimic the availability of a larger set of sensors.
The purpose of this paper is to investigate how subspace-based identification can
be adapted to handle such a situation, to prove its consistency under nonstationary
excitation, and to report on a real application example.

Key-words: Blind eigenstructure identification, nonstationary excitation, sub-
space algorithms, moving sensors, vibration analysis.
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Méthode sous-espace pour ’identification aveugle de la
structure propre d’un systéme linéaire sous excitation
non-stationnaire en utilisant des capteurs mobiles.

Résumé : Les algorithmes d’identification par sous-espaces ont fait leurs preuves
pour l'identification aveugle de la structure propre d’un systéme linéaire soumis a
une excitation non controlée, non mesurée et non-stationnaire. Ce type de probléme
intervient en génie mécanique, pour l'analyse modale de structures ou machines
en vibrations. Il est d’usage courant, dans ce domaine, de collecter des données
en provenance de capteurs — certains fixes, d’autres mobiles — placés a différents
endroits, afin d’imiter une situation ot un nombre de capteurs beaucoup plus impor-
tant serait disponible. Dans cet article, on étudie comment adapter 1’identification
par sous-espaces a une telle situation, de démontrer sa consistance sous excitation
non-stationnaire, et de présenter des résultats expérimentaux obtenus sur données
réelles.

Ce travail a été effectué dans le cadre du projet Eureka no 1562 SINOPSYS (Model
based Structural monitoring using in-operation system identification), qui est co-
ordonné par la société Lms, Leuven, Belgique.

Mots-clé : Identification aveugle de structure propre, excitation non-stationnaire,
algorithmes de type sous-espace, capteurs mobiles, analyse des vibrations.
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1 Introduction

Subspace-based linear system identification methods [7, 12, 13] have proven efficient
for the identification of the eigenstructure of a linear multi-variable system. An
important instance of this problem is structural vibration analysis, based on mea-
surements from accelerometers or strain gauges, where the key issue is to identify
vibrating characteristics (modes and modal shapes) of mechanical structures subject
to uncontrolled, unmeasured and nonstationary excitation. Typical examples are off-
shore structures subject to swell, buildings subject to wind or earthquake, bridges,
dams, wings subject to flutter in flight, and turbines subject to steam turbulence,
friction in bearings, and imperfect balancing. A relevant approach to structural anal-
ysis has been shown to rely on the modeling of modes and modal shapes through
state space representations [10], and the use of output-only and covariance-driven
eigenstructure identification methods |6, 1].

A common practice in vibration analysis is to collect data from varying sensor
locations, using both fixed and moving sensors, in order to mimic the availability of a
(much) larger set of sensors. Several successive data sets are recorded, with sensors
at different locations on the structure. Some of the sensors, called the reference
sensors, are kept fixed, while the others are moved. This setup, usually referred
to as polyreference setup [5] and typically based on about ten sensors, can mimic a
situation in which hundreds of sensors are available.

Processing polyreference data for structural analysis is achieved today by per-
forming eigenstructure identification for each record separately, and then merging
the results obtained for records corresponding to different sensor pools. However,
pole matching may be not easy in practice, and thus the result of eigenvector glu-
ing may not be consistent. Therefore the question arises to perform eigenstructure
identification by merging the data of the successive records, and processing them
globally, instead of merging the identification results.

The purpose of this paper is to investigate how subspace-based identification
methods can be adapted to handle a polyreference setup, in the presence of an un-
measured and nonstationary excitation. In section 2, we briefly review output-only
covariance-driven subspace identification methods. The mathematical modeling of
the polyreference setup is stated in section 3. A first merge of the data is proposed
for the stationary excitation case, and shown to fail in the nonstationary one. In sec-
tion 4, a covariance normalization prior to merge is proposed for the simplified case of
record-dependent excitation, and its implementation is given. The fully nonstation-
ary case, in which the excitation is nonstationary within the records, is addressed in
section 5, where a consistency result is proven. Numerical results obtained on a real
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4 Laurent Mevel, Albert Benveniste, Michéle Basseville, Maurice Goursat

application example are reported in section 6. Finally, some conclusions are drawn
in section 7.

2 Output-only covariance-driven subspace identification

We consider linear multi-variable systems described by a discrete-time state space
model
{ Xer1 = F X + Ve (1)
Y = H Xi

where state X and observed output Y have dimensions n and r, respectively, and
where the state noise process (Vj)x is an unmeasured Gaussian white noise sequence
with zero mean and, in the stationary case, constant covariance matrix Q:

EV,VE ¥ Qok—K)

where E(.) denotes the expectation operator. The whiteness assumption on the state
noise and the absence of measurement noise in (1) are further discussed in section 6.
Let the pairs (A, @) be the eigenvalues and eigenvectors of the state transition matrix

F, and define @) o a- We assume that the system has no multiple eigenvalues,
and thus that the A’s and ¢)’s are pairwise complex conjugate. In particular, 0
is not an eigenvalue of state transition matrix F. The collection of pairs (A, ¢))
form a canonical parameterization of the pole part of system (1), referred to as the
system eigenstructure. A canonical parameterization is a parameterization which is
invariant w.r.t. changes in the state basis.

Processing output covariance matrices is of interest for very large data sets. The
difference between the covariance-driven form of subspace algorithms which we de-
scribe now and the usual data-driven form is minor, at least for eigenstructure iden-
tification [12, 8]. Covariance-driven subspace identification of the eigenstructure
(A, ¢a)’s is based on the following steps. Let

R¥EY, VT,
and
Ry R Ry
def R1 R2 Rq def

Hpi1,q4 = = Hank(R;) (2)

INRIA



Blind eigenstructure identification using moving sensors 5

be the theoretical output-covariance and Hankel matrices, respectively. Introducing
the cross-covariance between the state and the observed outputs:

¢ ¥EX Y
direct computations of the R;’s from the model equations lead to
Ri=HF' G (3)

and to the well known [11] factorization

Hpt1,q4 = Op1(H, F) C4(F, G) (4)
where
H
0,(H,F) ¥ HF
HFr!
and

C(F,G) ¥ (G FG --- F'G)

are the observability and controllability matrices, respectively. In the sequel, we
often drop the orders of the system matrices.

The observation matrix H is then found in the first block-row of the observability
matrix O, whereas exploiting the shift invariance property of O provides us with the
state-transition matrix F', from which the eigenstructure (), ¢y) results. The key
feature in factorization (4) which will be elaborated on, is that the left factor O only
depends on the pair (H, F'), and thus on the eigenstructure of system (1), whereas the
excitation Vi only affects the right factor C through the cross-covariance matrix G.

The actual implementation of this subspace algorithm has the empirical covari-
ances

. N
5 T
=N Z Y Yy (5)

substituted for R; in Hp1,4, yielding the empirical Hankel matrix ’Hp+1 ¢- How to
select the number of lags (p+q) and thus the size of Hp+1 ¢ 1s discussed in section 6.
The SVD of ’Hp+1 g & and its truncation at the desired model order yleld in the left
factor, an estimate O for the observability matrix O, from which (H, F) and (X, &)
are recovered as sketched above.

RR n~°4024



6 Laurent Mevel, Albert Benveniste, Michéle Basseville, Maurice Goursat

3 Polyreference subspace identification: stationary exci-
tation

Instead of a single record for the output (Yj) of system (1), we now have J records

Yk(ﬂ,l) Yk(ﬂ,?) Y/g(O’J)
v v ) (6)
- L N & _ N ,
Record 1 Record 2 Record J

collected successively. Each record j contains data Yk(o’j) from a fixed reference

sensor pool, and data Yk(]) from a mowving sensor pool. The number of sensors
may be different in the fixed and the moving pools, and thus in each record j, the
measurement vectors Yk(o’j ) and Yk(J ) may have different dimensions. This is known
under the name of polyreference setup [5].

To each record j (1 < j < J) corresponds a state-space realization in the form

xP, = FxP+vY
Yk(O,J) = H, X,E’) (reference pool) (7)
Yk(a) = H, XIEJ) (sensor pool n%)

with a single state transition matrix F' - since the same system is being observed,
a fixed observation matrix Hy for the fixed sensor pool, and a specific observation
matrix H; corresponding to location j of the moving sensor pool.

The problem is to find how to adapt the output-only covariance-driven subspace
algorithm of section 2 in order to identify the eigenstructure of F in (7), on the
basis of the measurements (6) which we should merge somehow for this purpose.
At this point, two points should be stressed. First, the cornerstone in section 2 is
factorization (3) which, of course, holds for each of the J records with a different left
factor H and a different right factor G. In particular, even though we do have access

to empirical estimates of the covariances E Yk(] ) Yk(]_ )Z-T of the moving sensor pool,
they are of poor help because their factorizations (3) show up a record-dependent
state-output correlation G since the sensors location change. Second, we have no
access to cross-record covariances E Yk(j ) Yk(i )Z-T with j # 5/, since sensor pools 7 and
j' do not record data simultaneously. Thus, we cannot stack all the data sets in a
unique vector, otherwise we would have to handle incomplete covariance matrices.
A consequence of those two facts, in the perspective of building a Hankel matrix

enjoying a factorization property, is to concentrate on the covariances involving the

INRIA



Blind eigenstructure identification using moving sensors 7

reference sensors. From now on, we thus focus on the two following families of

covariances -
0,j def (0,5) 1-(0.9) j def (4) v (0.4
R7 = E Y, Y.Z5 Rg = EY Y.,

i

T
: ®)
of which we can compute empirical estimates, for lags 7 > 0.

A first merge of the data is now proposed for the stationary input excitation case.
It is shown to fail in the nonstationary case, even under the simplifying assumption
of stationary excitation within the records.

Constant excitation covariance matrix In the stationary case, the excitation
covariance matrix does not depend on record j:
@y DT '

E V"V =Qdk—-F)

and the cross-covariance between the state and the fixed sensors output
def () 0T
G = EX'Y."

does not depend on j either. Therefore, for all the records 7 = 1,...,J and lags ¢ > 0,
the covariances in (8) factorize, with a constant right factor, as

RY = HyFig ¥ RO (9)

(3

R = H; F'G

K3

Consequently, for each lag 7 > 0, we can stack the Rg 's into a block-column vector

Ry
w0 (10
r]
which factorizes as .
RF=HF' @G (11)
where H is the block-column of observation matrices
Hy
g | (12
Hy

RR n~ 4024



8 Laurent Mevel, Albert Benveniste, Michéle Basseville, Maurice Goursat

Therefore, the Hankel matrix filled with those column-stacked covariances, which
has (J + 1) times as many rows as columns, factorizes as

H™ ¥ Hank(RT) = O(H,F) C(F,G) (13)

and the algorithm described in section 2 for the standard case can be applied to
H™. In other words, when the input excitation is stationary, we can proceed as if
we had the full set of sensor data available altogether, instead of sensor pools with
varying locations. In this case, direct application of the subspace algorithm to the
column-stacked covariances (10) is a simple solution to the polyreference output-only
eigenstructure identification problem.

Record-dependent excitation covariance matrix If we assume that the input
excitation covariance matrix depends on the record index j:
. T
EVI VI =Q; 6k k)

the cross-covariance matrix

def (7) 0T
G; = E; ij Y, J
also depends on j. Hence, for j = 1,...,J and i > 0, factorizations (9) now write
with a record-dependent G
R} = H, F' G, (14)
R! = H,; F'G, (15)

and vector R} of stacked covariances defined in (10) no longer factorizes as in (11).
As a consequence, brute force application of subspace algorithm by stacking the R?’s
is not an appropriate solution to the eigenstructure identification problem in the case
of record-dependent input excitation noise. To circumvent this difficulty, the idea is
to mnormalize the covariance matrices (14)-(15) to make them looking as if they were
obtained with the same excitation.

4 Nonstationary excitation: data normalization

For finding the appropriate normalization, we perform different covariance stacking
operations for the data from the reference and moving sensors, respectively. In what
follows, we use the generic notations introduced in section 2.

INRIA
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Reference sensors Thanks to (14), all the Hankel matrices built on the data
delivered by the reference sensors of the J records factorize with the same left factor
as

def

Ho,; ¥ Hank(R"?) = O(H,, F) C(F,G;) (16)

We can thus proceed as follows. Let

ROE (R R)? ... RYY)
be the block-row vector of the entire set of reference data covariances. It factorizes

as
RO=HyFi' G, where G ¥ (G1 Gy ... G)) (17)

Thus the Hankel matrix filled with those row-stacked covariances, which has J times
as many columns as rows, also factorizes as

1o ¥ Hank(RY) = O(Hy, F) C(F,G) (18)

Note that matrix #y can be obtained by interleaving the block-columns of the J
Hankel matrices Ho ; in (16). Assume that pair (Hy, F') is observable. Then, parti-
tioning the right factor C of (18) in the same manner as G in (17), we recover the
right factors C(F,G;) of (16) for all j =1,...,J. Note that processing the reference
data Yk(o’] ) altogether, on the basis of the single Hankel matrix factorization (18), is
mandatory for making sure that we deal with the same state bases in (7).

Moving sensors Thanks to (15), the Hankel matrix built on the covariances of

the data Yk(j ) from the moving sensor pool in record j enjoys a record-dependent

factorization _
H; < Hank(R!) = O(H;,F) C(F,G;) (19)

Assume that, for all j, the pair (F,G}) is controllable. This is a reasonable assump-
tion, it just tells that, while the excitation may change, we need it to excite all the
modes of the system, for each data set. Assume also that, up to a permutation on
the record indexes, C(F, G1) is the best conditioned controllability matrix among the
C(F,G,)’s. For all j, j =1,...,J, we define the normalized matrices

ﬁj def H; (CT(F, Gj) (C(F’ Gj)CT(F7 Gj))_l C(F, Gl)) (20)

RR n-~4024



10 Laurent Mevel, Albert Benveniste, Michéle Basseville, Maurice Goursat

We note that H; coincides with the Hankel matrix Hank(Rﬁ ) built on covariances R{
which factorize as

B _ i
R; =H; F* G, (21)
Therefore, we can now proceed as in the case of constant excitation covariance matrix.

For each lag 7 > 0, we define the block-column stacked covariances

-0

R,

_ R; — :

R, " |, where R? et R =Hy F' G4 (22)
o

7

Thanks to (21), those stacked covariances R; behave as RT defined in (10): they
factorize as

R, = HF'G,

with H defined in (12). Therefore, the Hankel matrix filled with those column-
stacked covariances, which has (J + 1) times as many rows as columns, factorizes
as

H ¥ Hank(R;) = O(H,F) C(F,G) (23)
Note that matrix H can be obtained by interleaving the block-rows of

Ho def Hank(R?) = Ho,

and of the J matrices H; defined in (20). Thanks to (23), the algorithm given in
section 2 can be applied to H.

Algorithm For implementing the above reasoning, we propose the following algo-
rithm, where J is the number of records and M denotes an empirical estimate of
matrix M.

e Build the J Hankel matrices ?—Alo,j = Hank(ﬁgo’j )) from the reference sensor
data.

e Build ’}-Alo by interleaving the block-columns of the J matrices ’ﬁo,j’s (j =
1,...,J).

e SVD-decompose Ho. Keep only the right factor C(F,@G) in (18), and call it just
C.

INRIA
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e Partition C into ¢ % (C1 Co ... Cy) as G in (17). Assume C; is the best
conditioned.

e Compute the normalizing factors (CJT (Cj C]T )t Cl).
e Build the J Hankel matrices 7—Alj = Hank(f%g ) from the moving sensor data.

e Compute the J normalized matrices ﬁj o ’}-Alj (C-T (c;eh)t Cl). Define

J
5 def ;5
Ho = HO,l-

~

o Build 7 by interleaving the block-rows of the (J 4 1) matrices #H;’s (j =
0,...,J).

e Apply the algorithm of section 2 to ﬁ

The following comments are in order. First, the computational complexity of this
algorithm does not depend on the number J of records, since the smallest dimension
of the two Hankel matrices 7-70 and H to be decomposed depends only on _the number
of reference sensors. Second, the interleaving of the block-rows of the ﬁj’s can be
done even when the number of sensors in the moving pools is not constant: the
measurement vectors Yk(j ) and Yk(j’) may have different dimensions. Third, we do
not need to compute explicitly the G; matrices, since only the right factors C(F, G;)

in (19) are needed for computing ?-Alj in (20).

5 Nonstationary excitation within the records

In section 4, we have assumed stationary excitation within each record, with record-
dependent covariance matrix. This is a reasonable approximation when the environ-
mental conditions are slowly time-varying. But a more realistic assumption is that
the excitation covariance matrix:

EVOVY = Qi ok — )

is time-varying within each record. Hence the output data of the polyreference setup
(7) cannot be assumed stationary within each individual record, and we cannot apply
the argument of section 4. Nevertheless, the algorithm described in that section can
still be applied with little modification, and can be proven consistent, as we show
now using the results of [4].

RR n " 4024



12 Laurent Mevel, Albert Benveniste, Michéle Basseville, Maurice Goursat

For j =1,...,J, let Z; be the finite set of sample points in record j, let K; def |Z;]

be the number of samples, and define the following second order empirical moments
def 1 0,j j
A(K) E g 2 (1P IvR)
2 KJ kETZ;

def 1 (7) 30T
Gi(K; = XY,
J( ]) Aj(Kj) kéj k k
. 1 . T
RY (K. def y (0:3) 3(0,) 24
( .7) A](K_]) kgj k k—i ( )

. 1 F 0T
RiK) ¥ ——_ S y/yW
! 4;(K;j) kgj_ koh

Consider the following assumptions, identical to conditions C1 and C2 of section II.A
of [4].
Assumptions 1

Cl: limg; 100 Aj(Kj) = +o00 with probability 1.

C2: The excitation covariance matrix Qp is uniformly bounded from
above, in k.

Note that condition C1 is a very mild request stating that, for each individual record
j, the system is sufficiently excited. The following result is proved in the first step
of the proof of theorem 1 in [4][Sec.IIL.A]:

Theorem 1 Under conditions C1-C2, we have

0,7 i

R)(Kj) = Hy F' Gj(K;)+ o(K;)
Ri(Kj) = Hj F' Gj(K;) + o(Kj)

where matriz o(K) goes to zero when K goes to infinity.

Theorem 1 expresses that (14)-(15) hold asymptotically. Consider now the following
additional assumptions.

Assumptions 2

C3: For every j and K; large, the n-th (in decreasing order) singu-

lar value of the controllability matriz C;(K;) e Cq(F,G(Kj)) is

asymptotically uniformly bounded from below with probability 1.

INRIA



Blind eigenstructure identification using moving sensors 13

C4: For every j, the pair (Hj,F) s observable, that
is : rank Op(H;, F) = n.

Condition C3, which coincides with condition C3 of [4|[Sec.I.A|, means that the
pair (F,G;(K;)) is asymptotically uniformly controllable for every j and K; large.
Introduce the Hankel matrix

< Hank(R!(K;))

and the normalized matrix

o (cf (¢ e ) (25)

where ¢ % (C1 C2 ... Cy) is the right factor of H°, and H is built by interleaving
the block-columns of the J matrices

i def j
#H% = Hank(R)(K;))

Note that, as in (20), 7’ is an Hankel matrix built on covariances which we note R{
The following theorem holds.

Theorem 2 Under conditions C1-C4, those covariances enjoy the approzimate fac-
torization :

Rl = H; F' Gi(K1) + o(K)) (26)

where matrix o(K7) goes to zero when K; goes to infinity.
Proof For all the K; large, define

j def i
R} = H;F'G;(K;)
H; dof Hank(Rg)

and ‘
H;, ¥ Hank(H; F' G1(K,))

With these notations, theorem 1 writes

RI(K;) = R! + o(K;)

RR n -~ 4024



14 Laurent Mevel, Albert Benveniste, Michéle Basseville, Maurice Goursat

and we have the following relation for the Hankel matrices

;= H; (C](K)) (Ci(K;) CF (K;))™ Cu(Kq)) (27)
For proving (26), it is sufficient to prove that, for all j and for K; large, the following
holds: .
H' =H; + o(min K) (28)
J
To prove (28), we note that (25) and (27) result in

w-H; = w (] (¢ ¢ a) (29)

~ >

Fi
= H; () (C3(0) € (1) ™" Ca(K0)

S

7
Thanks to condition C3, controllability matrices C; and C; are uniformly bounded
from below, for K; and K large, and matrix (C; CjT)_1 is uniformly bounded from
above. This and theorem 1 together imply that, for K; large,

M =M +o(K;), F'=F;+o(minKk;) (30)
J

Equations (29) and (30) together prove (28). This concludes the proof of the theorem.

Theorems 1 and 2 ensure that the method of section 4 applies, provided that we
use the RV (K;)’s and R!(K;)’s in (24) as empirical estimates of the covariances.
Furthermore, the following consistency can be proven, as in [4].

Theorem 3 Under conditions C1-C4, the algorithm of section 4 is consistent: there
exists a sequence of matrices T, with T and T—! uniformly bounded, such that
T'FT—F, H— H with probability 1.

Since we have assumed that the system has no multiple eigenvalues and because the
eigenstructure is a continuous function of the pair LH , F'), this theorem also ensures
[4] the consistency of the eigenstructure estimate (X, @y ).

6 Structural vibration analysis example

As mentioned in the introduction, structural vibration analysis of complex mechan-
ical structures and rotating machines subject to ambient excitation is an important

INRIA



Blind eigenstructure identification using moving sensors 15

instance of eigenstructure identification. These systems are subject to fast and un-
measured variations in their environment, and thus the input excitation is typically
turbulent in nature and nonstationary. For example, offshore structures are subject
to the turbulent and highly time-varying action of the swell — shock effects due to
fluid /structure interaction — which cannot be considered as measurable. The same
holds true for wind and traffic on bridges, which result in unmeasured and nonsta-
tionary excitation. A different example concerns rotating machines such as huge
alternators in electricity power plants [10].

In this section, we describe the application of the polyreference subspace iden-
tification method proposed in section 4 to structural vibration analysis. First, we
introduce the modeling issues, and then we report some numerical results we have
obtained on a real example.

6.1 Modeling

We assume that the behavior of the mechanical system can be described by a station-
ary linear dynamical system, and that, in the frequency range of interest, the input
forces can be modeled as a nonstationary white noise. This results in the following
matrix differential equation :
{ MZ{#)+CZ@t) + KZ(t) = v(t) (31)
Y(t) LZ(t)
where t denotes continuous time, M, C, K are the mass, damping and stiffness ma-
trices respectively, (high dimensional) vector Z collects the displacements or acceler-
ations of the degrees of freedom of the structure; the external (non measured) force
v is modeled as a nonstationary white noise with time-varying covariance matrix
Q. (t), measurements are collected in the (low dimensional) vector Y, and matrix
L indicates which components of the state vector are actually measured (where the
sensors are located). Without loss of generality, we do not consider measurement
noise, which can be encompassed in subspace algorithms by shifting the lags of the
covariances used for filling the Hankel matrices [12, 2]. Sinusoidal or colored ex-
citation noise can be encompassed as well [10]. How the presence and nature of
excitation and measurement noises are handled in practice, when using an algorithm
non encompassing them, is addressed in subsection 6.2.
The parameters (M, C, K) cannot be recovered from measured outputs. Hence,
identifiable parameters are introduced. These are the modes or eigen-frequencies p,
and the modal shapes or eigenvectors 1), solutions of:

(Mp?>+Cu+K) ¥, =0, ¢,=L7T, (32)

RR n " 4024
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Sampling model (31) at rate 1/7 yields the discrete time state space model (1), where
the state and the output are :

Xy, = ( ;EZ:; ) . Y = Y(kr), (33)

the state transition and observation matrices are :

_ LT _ 0 I _
F=e ’£_<—M_1K _M—IC 1H_(L0)7

and where state noise Vi1 is zero-mean, white, with covariance matrix :

(k+1)7 -
Q= [ e Qo) £

kT

where
. 0 0
Qs) = ( 0 M Q)M T )

The modal parameters in (32) are equivalently found in the eigenstructure (A, @))
of F:
et =\ ¢M:(p)\d§f}]q>)\

Because of the structure of the state in (33), the eigenvectors are pairwise complex
conjugate. They are real if proportional damping is assumed, that is if C' = aM+6K.

Therefore, vibration analysis can be stated as the problem of identifying the
eigenstructure of the state transition matrix of a linear dynamic system with nonsta-
tionary state noise. State X and observed output Y have dimensions n = 2dim Z
and r respectively, with r (much) smaller than n in practice.

6.2 Numerical results

We now report some numerical results obtained with the polyreference subspace
algorithm proposed in section 4. Before proceeding, some comments are in order
on the practical use of the classical (monoreference and full covariance) subspace
identification algorithm of section 2.
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Blind eigenstructure identification using moving sensors 17

Some practical issues in subspace eigenstructure identification The selec-
tion of the model order, and thus of the size of the Hankel matrices on one hand,
and the handling of the presence and nature of excitation and measurement noises
on the other hand, are two major practical issues which we address now.

As stressed in [10, 3, 8], when few sensors are available, a number of modes
which is much smaller than the number of solutions of (32), but much larger than
the number of sensors, can be identified. In order to extract the modes from the
data, we have to apply the subspace method with an increasing SVD truncation
order and to look for the relevant modes in the frequency band of interest. Since
the subspace method yields a set of modes with both structural — from the structure
and the excitation — and spurious mathematical modes, we have to derive a practical
way to distinguish between the two types of modes. Hopefully, spurious modes tend
to vary from one model order to the next. That is why usage suggests to plot the
frequencies against SVD truncation order, in a so-called stabilization diagram [8].
Numerous experiments with the classical subspace method have shown that :

e It is of no practical help to select for Hp1 4 in (2) other values than ¢ = p+1.
The number of lags 2p for the data covariances should be large (typically more
than two hundreds in the experiments below),

e The number of modes should be overestimated, because modes tend to stabilize,
and even to show up, for high orders. In other words, the SVD in the algorithm
of section 2 should be truncated at an order much greater than the ‘theoretical’
order, that is 2m/r — 1, where m is the number of desired modes and r is the
number of sensors.

An excitation noise at a single constant frequency is recognized as a pole by the
algorithm of section 2, designed under the assumption of a white excitation noise.
Such a pole can be eliminated provided that an a priori information is available. This
is the case of the harmonics of the rotation speed for rotating machines with load
unbalancing. Similarly, a colored excitation noise can easily be eliminated provided
that its poles are (significantly) more damped than those of the structure. It is also
a common finding that the poles of the structure tend to stabilize when the Hankel
matrix order is increased, whereas those of the excitation mostly do not. A non-
stationary excitation is actually a favorable situation, since the averaging performed
in (24) for computing G tend to whiten the noise. This is the case of a chirp-like
nonstationary excitation.
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& 6% < darmping coelt

& % < dawmping ool <= 6%
* 2% < dowmping coelf <= 4%
@ 1% < damping ceelf <= 2%
o I = dammping ceeff <= 1%

Vo dawping ceeff <= 0.1%

Figure 1: Meaning of the symbols in Fig. 2 to 4.

Real application example The proposed method has been applied to the Swiss
724 bridge, a benchmark of the BRITE/EURAM project SIMCES on identification
and monitoring of civil engineering structures, for which EMPA (the Swiss Fed-
eral Laboratory for Materials Testing and Research) has carried out tests and data
recording. The response of the bridge to traffic excitation under the bridge has been
measured in 139 points, mainly in the vertical and transverse directions, and sampled
at 100Hz. Because at most 19 sensors were available, 9 data sets have been recorded,
each containing the measurements from 4 fixed and 15 moving sensors. However,
it is not recommended to merge data recorded under too different temperature and
traffic conditions [9], and to mix different directions [10]. Therefore, for investigating
the experimental properties of the proposed polyreference subspace algorithm. We
have selected J = 2 records from sensors in the vertical direction, with one reference
sensor, and two moving sensors in the first record, and only one moving sensor in the
second record. Each signal contains 65535 samples. As mentioned above, processing
more records would have affected the required memory size, but not the compu-
tational complexity. Also, it is of interest to investigate the practical relevance of
the conceptual capability of the proposed algorithm to handle records with different
numbers of moving sensors.

The classical subspace algorithm of section 2, based on full data covariances and
on g = 128, has been applied separately to each record, which contain 3 and 2
sensors, respectively. The results are displayed in Fig. 2 and 3, where frequencies
(ordinate) are displayed for increasing SVD truncation order (abscissa), in a stabi-
lization diagram which symbols are explained in Fig. 1. Typical values of estimated
modes which can be extracted from these diagrams are displayed in Table 1.
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Table 1: Estimated modes - Classical subspace identification.

Mode 1123 4 15
Frequency (Hz) |4 | 5.3 9.8 |10.3 | 12
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Figure 2: Classical subspace identification: first record (3 sensors).

RR n " 4024



Laurent Mevel, Albert Benveniste, Michéle Basseville, Maurice Goursat

20

oo x X ete O OO - . O
oo x X OX o O oo - - a
o O » X o0 OO - o op
0O O xo X OX X[ oo - o oo
O O Oe X ® el oo - o ob
e O x X oo O oo - +« OD>
. o X +O Xe O oo - s O
* e X +o Ce o ao - e OD>
ae x 4O e o 0 - o obp
Oe O Xo e o 0 < e O
] XO e D o0 < [mi iy
> x x o O e < <o e
[ Ce [ O e B> Oe
.. © o e > Oe
O e +O - O e > oo
- S . . 0 a

- 0 < e o0 m}

< <o . .0 a

< < . .0 a
<> < . A x
<o < . a a
> o . [m} a

< . o a

> a [m} » . X - a
4 > a

4 > a

x B x

x B a

x i a

T T T T T T T

R & 8 = v

32

26

14

second record (2 sensors).

ion

Classical subspace identificat

Figure 3

[X & ©O B x+ x x Bx xx o x X .
[X o ©O D> x+ x x Dx  xXx o x x .
X & ©O B x+ x x Dx xx o x X .
X & ©0 B x+ x x Bx xx o x X .
X & ©O B x+ x x Dx xx o x X .
[X & ©0 B x+ x x Bx xx o x X .
(X & ©O0 B x+ x x Dx  xx o x X .
[X & ©O0 B x+ x x Dx xx o x X .
X & ©0 B x+ x x Bx xx o x X .
X o BO B x+ x x Dx xx o x X .
[x & DO B xx x x BX xx o x X .
X & DO DB x+ X X DX XX o x X .
fx o DO DB oxx x x Bx  xx o x X .
0 e DO D ox+ x x DX xx o x e
& e DO > x+ x x Bx  xx o x N
1 & B D oxx x x Dx  xx o x + .
o o O B xx x x Bx  xx x0 o>
K> ODB> xxx xBx xx O X+ x >
=3 . x+ x x> O xx x x x

x ° xx x xoO XX e Oe x

x > xx x OB O xx 0O O« x

x xx xO © % O =R x
x xx xO o xx O o> x

x xx xe e x O . °

o X0 xo ¥ ° >

- XX - o 4 4

° oo ° - o °

[=3 4
o>
T T T T T

[=] © N «©
N - -

32

26

14

th the two records.

ion wi

dentificat

i

Polyreference subspace

Figure 4

INRIA



Blind eigenstructure identification using moving sensors 21

Polyreference subspace eigenstructure identification The polyreference sub-
space identification algorithm of section 4, based on partial covariances' (8) and on
g = 128, has been applied to the data from the two records. The results are displayed
in Fig. 4. Since the Hankel matrix H is built on stacked covariances (22), its SVD
truncation order should be taken no greater than 128 x 1/(1 + 2 + 1) = 32. Fig. 4
shows up several improvements over Fig. 2 and Fig. 3, on several aspects. Actually,
for large enough truncation order:

e Spurious modes disappear: around 1 Hz, for example;

e True modes appear and stabilize faster and fluctuate less in the diagrams:
around 5.3 Hz and 9.8 Hz, for example;

e The damping of the true modes is more acurately estimated, at lower orders
than before, allowing to separate true and wrong modes among the stabilized
ones: a wrong mode appears at 7 Hz with a high damping, whereas the true
mode at 4 Hz appears with a low damping;

e Some modes, not identified on Fig. 2 and 3, now show up in a stable diagram:
around 12 Hz, among others.

The polyreference method extracts 7 modes in the range 0 — 11 Hz. Five of these
modes come from the structure and tend to appear in many diagrams during the
whole year. The 5.3 Hz mode is very difficult to extract, due mainly to low exci-
tation for this frequency. In both classical identifications, it appears very late in
the diagrams and has little stability, whereas those two issues are overcome in the
polyreference trial. Fig. 4 is a remarkably clear diagram which, above a truncation
order of 15, is cleaned from all spurious poles, even those which tend to stabilize in
Fig. 2 and 3.

What the proposed algorithm is not capable of is to separate modes of the struc-
ture from the modes corresponding to the non—white excitation, but the classical
subspace identification procedure is unable to achieve that either. Nevertheless, the
new algorithm appears to perform well at extracting modes which appear only in
some diagrams, for example modes which are not very well excited all the time.
This feature is important in practice, and should hopefully be confirmed in further
numerical investigations.

!Note that these covariance matrices are column vectors, since only one reference sensor is
available in each of the two records.
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7 Conclusion

We have discussed the polyreference setup for blind eigenstructure identification.
This type of setup is popular for instance in vibration mechanics, where several
moving sensors mimic the availability of a much larger set of sensors. The pro-
posed identification method consists in merging the data first and processing them
globally using an output-only covariance-based subspace algorithm. This has to be
contrasted with classical polyreference identification, which is usually performed by
merging identification results obtained on the different records. The presence of an
unmeasured and nonstationary excitation makes the issue of output data merging
nontrivial. The key idea of the proposed method is a suitable normalization of the
output covariances. This method has been proved to provide us with consistent es-
timates of the eigenstructure, even under nonstationary excitation. Some numerical
results on one real example have been reported, which highlight the potential bene-
fits of the proposed method. First, the method efficiently merges data by smoothing
out the diagrams, rejecting spurious and instable frequencies. Second, applying the
polyreference method over time is expected to smooth out further the effect of non-
stationary excitation. Finally, the actual stability of the polyreference diagrams
makes the proposed polyreference method a good candidate for a future automated
identification procedure.
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