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Abstract: We define and analyze a random coverage process of the d-dimensional Euclidean
space which allows one to describe a continuous spectrum that ranges from the Boolean model
to the Poisson-Voronoi tessellation to the Johnson-Mehl model. Like for the Boolean model,
the minimal stochastic setting consists of a Poisson point process on this Euclidean space and
a sequence of real valued random variables considered as marks of this point process. In this
coverage process, the cell attached to a point is defined as the region of the space where the
effect of the mark of this point exceeds an affine function of the cumulated effect of all marks.
This cumulated effect is defined as the shot noise process associated with the marked point
process.

In addition to analyzing and visualizing this continuum, we study various basic properties
of the coverage process such as the probability that a point or a pair of points be covered
by a typical cell. We also determine the distribution of the number of cells which cover a
given point, and show how to provide deterministic bounds on this number. Finally, we also
analyze convergence properties of the coverage process using the framework of closed sets,
and its differentiability properties using perturbation analysis. Our results require a pathwise
continuity property for the shot noise process for which we provide sufficient conditions.

The model in question stems from wireless communications where several antennas share
the same (or different but interfering) channel(s). In this case, the area where the signal of a
given antenna can be received is the area where the signal to interference ratio is large enough.
We describe this class of problems in detail in the paper. The obtained results allow one to
compute quantities of practical interest within this setting: for instance the outage probability
is obtained as the complement of the volume fraction; the law of the number of cells covering
a point allows one to characterize handover strategies etc.
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Sur un processus de couverture contenant le modéle
booléen et la mosaique de Poisson—Voronoi

et ses applications aux communications sans fil

Résumé : Nous définissons et analysons un processus de couverture aléatoire sur 1’espace
euclidien de dimension d, qui permet de décrire un continuum allant du modéle booléen a
la mosaique de Voronoi en passant par le modéle de Johnson-Mehl. Comme pour le modéle
booléen, les données minimales pour définir un tel processus sont un processus ponctuel de
Poisson sur cet espace euclidien et une suite de variables aléatoires & valeurs réelles. La cellule
attachée a un point est définie comme la région du plan ou l'effet de la marque de ce point
dépasse une fonction affine de I'effet cumulé de toutes les marques du processus ponctuel. Cet
effet cumulé est par définition le processus de shot noise associé au processus ponctuel.

Le continuum de processus de couverture est alors obtenu en faisant varier les paramétres
des marques. En plus de I'analyse et de la visualisation de ce continuum, nous étudions plusieurs
propriétés fondamentales de ce processus de couverture, comme la probabilité de couverture
d’un point ou d’une paire de points par une cellule typique, ou encore comme la distribution
du nombre de cellules qui couvrent un point donné. Nous étudions aussi certaines propriétés
de convergence de ce processus au moyen du formalisme des fermés aléatoires, et certaines
questions de différentiabilité par I’analyse des perturbations. Ces résutats reposent sur une
propriété de continuité trajectorielle du processus de shot noise pour laquelle nous donnons des
conditions suffisantes.

Ce modéle est issu des communications sans fil o plusieurs antennes utilisent les mémes
canaux de fréquences, ou encore des canaux sujets a des interférences. Dans ce cadre, le domaine
ol une antenne donnée peut étre regue est celui ou le rapport signal sur bruit (ou signal sur
interférence) est plus grand qu’un certain seuil. Nous décrivons ces motivations en détail dans
I’article. Les analyses mathématiques permettent de calculer certaines caractéristiques d’intérét
pratique dans ce cadre, comme la probabilité de non connexion; la loi du nombre de cellules
couvrant un point donné permet quant a elle de caractériser certaines propriétés du handover.

Mots-clés :  Shot noise, Modéle booléen, mosaique de Voronoi, processus de couverture,
processus ponctuel, processus de Poisson, fermé aléatoire, analyse des perturbations, commu-
nication sans fil, rapport signal sur bruit, protocole CDMA.
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1 Introduction

Consider a marked point process ® in the d-dimensional Euclidean space R?, where marks are
real valued. Assume we have a positive, decreasing function [, called the attenuation function,
defined on R? (in the shot-noise literature it is called the response function). Consider the
effect of the mark S of some point X of ® on location z in the space, to be the product of S
and the attenuation along the path from X to x, namely Si(z — X). Define the cell associated
to point X as the region of the plane where the ratio of the effect of mark S over the sum of
the effects of all marks (sometimes referred to as the shot-noise) and of some external noise, is
larger than some threshold 6, which is another mark attached to location X.

What is then the shape of such a cell? What interactions exist between adjacent or remote
cells? Under natural stationarity and ergodicity assumptions, what is the proportion of the
space which belongs to exactly k cells? Is it possible to have coverage of x by arbitrarily many
cells? These are the main questions which will be addressed in the present paper. For compu-
tational results, we primarily concentrate on the Poisson point process case with independent
marking. Certain existence results hold true for more general point processes.

To the best of our knowledge, this model is new in the stochastic geometry setting. As
indicated in the abstract, we think it is nevertheless an important model in that it contains
several basic models of this field as particular limiting cases, including the Voronoi tessellation,
the Boolean model and the Johnson-Mehl model, and in that it also provides a parametric
continuum linking all of them.

The model in question stems from the analysis of wireless communication systems where
several antennas share the same (or different but interfering) channel(s), and where the good
reception of the signal emitted by an antenna depends on the signal to noise or signal to
interference ratio. This is for instance the case for the CDMA (Code Division Multiple Access)
technology which is one of the basic schemes of wireless communications.

Within this setting, one should interpret points of ® as describing locations of either fixed
or mobile base-transceiver-stations and marks (S, 0) as representing pilot-signal-levels and pilot-
to-noise-ratios respectively. The cell associated with an antenna is then the part of the plane
one user can extract the signal emitted by this antenna from the noise due to the interferences
with signals emitted by other antennas or other users.

The paper is structured as follows: the model is described in Section 2. We first describe the
generic stochastic geometry model and then consider several incarnations of this, all motivated
by wireless communications. The characteristics of typical cells are studied in Section 4. The
law of the coverage of a given location of the plane is considered in Section 5, where we study in
particular the so called volume fraction. Section 6 concentrates on the parametric continuum
alluded to above, and elucidates the relationship between our model and those indicated above.
We illustrate this by simulations showing the continuous transformation from a Boolean model
to a Voronoi or Johnson-Mehl model and by various convergence results and perturbation
expansions.

2 Description of the model

2.1 Notation

In what follows, B(x,r), (resp. B°(x,r)) will denote the closed (resp. open) ball centered at z
and of radius r; by will denote the volume of the unit ball in R? and v4(-) the d-dimensional

INRIA



Un a coverage process 9

Lebesgue’s measure. Moreover, we denote by B the interior of set B C R, by AOB = {y+x:
y € A,z € B} the Minkowski sum of sets A and B, and by B that set {—y € R? : y € B}.
Let also 0, be the Dirac measure at z; i.e., 0,(4) = 1, if z € A and 0 otherwise. Finally, let
Frx ={F C Réclosed : FNK # (0}. We recall that the family of sets Fg, where K ranges over
compact sets, generates a o-algebra which allows one to consider closed subsets of R¢ as random
variables (see Section 2-1, p. 27 in [12]). Moreover we will consider the compact topology on
the space of closed sets (see Section 1-2, p. 3 in [12]).

2.2 Generic stochastic geometry model

Let ® = {(X;, Z;)} be a marked point process on the d-dimensional Euclidean space R?, where

{X;} denotes the locations of points, and where the marks Z; = (S;, A;) are such that S; belong

to some metric space D and A; = (a;, b;, ¢;) € (R)3.

In addition to this marked point process, the model is based on a function L : Dx R% — R*,
which is continuous w.r.t. its second argument, and such that L(s,z) — 0 when |z| — oo (where
|z| is the Euclidean norm of z in RY).

Individual cells We define the cell Cy attached to the point X, as the following subset of R?
C() = C()((D) = {y : CloL(S(),y — X()) Z bo[q;(y) + Co} . (21)

where Ig(y) denotes the value of the shot noise process (see e.g. [18, 14, 11, 10]) of {X;, S;} at
point y for the response function L, namely :

Is(y) = ZL(SZ-, y—X;) = /Rdxm L(s,y —z) ®(d(z, s)). (2.2)

The second formula is obtained when considering ® as the random point measure ® = > . 6(x; z)
and when using the simplified notation ®(d(z, s)) = @ (d(z, s) x (R)?).

Coverage process The union of all cells

(@) ={JCu@) (2.3)

(1]

(1]

is the associated coverage process. If b; > 0 a.s. = can also be expressed as
E = {y : there exists X; € ® : a;L(S;,y — X;) > bilo(y) +¢;} ={y: Mao(y) > Is(y)},

where

May) = max ( 205y = X0 - )

is the so-called maz-shot noise process of ® (see e.g. [10]) for the response function

L'(z,y) = %L(s,y) - g, z=(s,a,b,c).

Note that this representation only holds when assuming that the max is well defined, for
example when there is an a.s. finite number of cells covering point y.

RR n’ 4019
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2.3 Conditions for the model to be well defined

We now list some desirable properties which such a model should have to be well defined. We
will give some sufficient conditions for these properties to hold under either stationarity or
Poisson type assumptions in the following section.

Individual cells Since L(-) is positive, Is(y) is well defined but can be infinite. In the sequel
we will require this random function to be a.s. finite and even more, to have finite expectation.
Moreover we will require Cy (and in fact each cell C;) to be a random closed set. Since L is
a continuous function of its last argument, Cy is a.s. a closed set provided Is(y) is also a.s.
continuous in y (lower semi-continuity is sufficient).

Coverage process We will also require = to be a random closed set (note that the countable
union of closed sets need not be closed). In fact we will require the stronger property that for
any given bounded set in R? (with compact closure) the number of cells that have non-empty
intersection with it is almost surely finite. An equivalent statement is that the collection of
cells is a.s. a Radon point measure on the space of closed sets, so that it can be treated as a
point process

> e (2.4)

on the space of closed sets. This is a typical assumption for coverage processes (in particular
for the Boolean model, see e.g. [17], eq. (3.1.1), p. 59.).

2.4 Motivating examples

Basic example Roughly speaking, a snapshot of a wireless communication network is char-
acterized by the following geometric and technological parameters:

e X;: the location of antenna i;
e S; € RT: the power of the signal emitted from X;;

e 0; € R": the signal to noise ratio threshold required for the good reception of the signal
emitted by this antenna;

e W, € R™: the external noise in the vicinity of antenna 1.
e [ :R® — R*, which gives the attenuation function or path-loss of the signal.

Within this setting, we will say that a point y of the plane can receive the signal of station 0
(or equivalently belongs to the cell attached to the antenna located at Xj) if the signal emitted
by this station is received at point y at a level Spl(y — Xo) which is at least 8y times bigger
than the total noise, which is here defined as the sum of W; and of all other signals received at
y, that is

Co={y: Sol(y — Xo) > 0o (Is(y) — Sol(y — Xo) + Wo)} .

We recognize our generic model with D = R*, L(s,z) = sl(z), ag = 1+ 6y, by = 6y and
Cyp = 00W0.

INRIA
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Signal to interference ratio Consider now the case where the signal emitted by station 0
interferes with the cumulated signals emitted from stations ¢ # 0 in such a way that only some
proportion kg of these cumulated signals should be considered as noise; in the spread spectrum
CDMA (code division multiple access) context, this interference stems from the fact that the
different codes are not perfectly orthogonal (see e.g. Ehrenberger and Leibnitz [4] or Veeravalli
et al [19]). Then one gets another instance of the generic model with

C() = {y . S()l(y — X()) 2 90 (Iio(]cp(y) — S()l(y — Xo)) + Wo)} .

Note that this signal to noise ratio principle is not bound to CDMA, and it is actually used
as a generic paradigm for wireless communications; see e.g. the physical model in Gupta and
Kumar [8].

External noise as a random field In this variant, we replace the external noise sequence
{W;} by a shot noise process created by yet another marked point process ®' with a possibly
different attenuation function [’. This is for instance the case when there are possible interfer-
ences between the signals from antennas to mobile phones (the so called down-link, which is
considered in the above models) and the signals from the phones to the antennas (the so called
up-link).

Under assumptions similar to those of the basic model, this would corresponds to the fol-
lowing cell definition:

Co={y: Solly — Xo) > o (Ia(y) — Sol(y — Xo) + 1ar(y))} ,

where

Io(y) = Z Sil'(y — X3)

is this second external noise shot noise process; in the above up-link, down-link interference
interpretation, the random variables X represent the locations of mobile phones, the S} their
powers and [’ the corresponding attenuation function.

This is in fact another incarnation of the generic model as the following reduction shows: let
¢ = {z;, z;} be the superposition of the two point processes ® and ®'. Let {t;} be the sequence
defined by ¢; = 1 if point x; belongs to ® and ¢; = 0 otherwise. Let D = R x {0,1}. Define

L((s,1),z) = sl(z), L((s,0),z) = sl'(x)

and let

I(y) = ZL((siati)ay — ;).
Then defining

Co={y: toL((s0,t0),y — o) > 0o (Is(y) — L((s0,t0),y — x0)) + (1 — o)} ,

we see that the cells of the points of ' are empty, whereas those of the points of ® are exactly
as expected. So this is a special case of the generic model indeed, with L((s,?),z) as above,
ap = to(1+ 6y), bp = 6y and ¢y = 1 — ty in order to make Cy empty when ¢y = 0).

RR n’ 4019
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More general attenuation functions Within the setting of the basic model, the attenu-
ation function is often taken of the form I(z) = |z|=®, (1 + |z[)™® or (max(R,|z|)) "), which
corresponds to the case of isotropic antennas with ideal Hertzian propagation. When antennas
are directional, a mark T; € R? should be used for describing the direction of antenna i in the d
dimensional Euclidean space; the effect of antenna 7 on point y can then for instance be defined
by a function of the type

L((S:, T3),y — Xi) = Sih(T, y — X;).

Even in the isotropic antenna case, in most practical situations, propagation is altered by
fading and/or reflections. For representing this, it is possible to use mark 7; to describe the
random component of the loss on the path from antenna ¢ to point y.

Randomness sources Besides external noise, randomness is present in such models at sev-
eral levels: the location of antennas may be a random process like for instance in ad hoc
networks, where antennas are mobile. Even in the fixed antenna case, the locations are usually
non regular, and can then be seen as a realization of a random point process (see e.g. [1]).
Similarly, the powers and ratios are determined from complex adaptive schemes, and it makes
sense to adopt a random representation for a temporal snapshot of these variables.

2.5 Special cases

Some special examples can be retrieved from our general model when assuming particular values
for a,b,c. Here are two examples.

Independent cells Suppose b = 0 a.s. Then the shape of the cell attached to a point X;
depends only on X; and its mark Z;. If in addition the underlying process ® is a Poisson p.p.,
then = is the well known Boolean model. We will say more on this in Section 6.1.

Level sets of the shot noise If ¢ = 0 a.s and bc < 0 then all cells are level sets of the
shot-noise process Is(-).

2.6 Probabilistic assumptions

Poisson case Several computational results of the paper will be derived under the following
assumptions: @ is an independently marked Poisson point process (Poisson p.p. for simplicity)
where the marks {Z;} constitute a sequence of independent identically distributed random
vectors characterized by the distribution of Z;. We sometimes use Z for a generic random
mark. The default option is that when the underlying (non marked) Poisson process is non
homogeneous; we will denote p(-) its intensity measure and assume that p is non-atomic; thus
® is a simple p.p.

Stationary ergodic case Some existence results can be proved using Palm calculus. For this
general setting, we will mainly consider the case when the marked point process ® is stationary
and ergodic, with (constant) intensity A.

In what follows, in order to avoid degeneracy and/or special cases, we make the following
general assumptions: a,b,c € R" a.s. and P(ag = ¢o = 0) = 0.

INRIA
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3 Sufficient conditions for the model to be well defined

3.1 Individual cells

A well-know necessary and sufficient condition for Is(y) to have finite expectation is

Ella(y)] = / . Loy = o) plda) H(ds) < (3.5)

where H denotes the law of Sy € D (see e.g. [15]).

As indicated above, a sufficient condition for each individual cell to be a random closed set
is the a.s. path-wise continuity of the shot noise process. Here is a simple sufficient condition
for this to hold.

Proposition 3.1 Under the Poisson p.p. assumptions, if for each y € R%, there exists a ball
B(y, €,) such that

/IR sup L(s,z —z) p(dz)H(ds) < o0, (3.6)

dxD z€B(y,ey)

then with probability 1, the function Is(y) is continuous w.r.t. y.

Proof: From (3.6) we obtain that there exists a subset Q' of probability one (of the space on
which @ is defined) such that for all w €

/R sup L(s,z —z) ®(w)(d(z, s)) < oo,

dxD z€B(y,ey)

for all y in a countable and dense subset of R? (for instance the set of rational numbers). We
prove that for each w € ' the function Ig(,(y) is continuous. Take any y € R? and y, — ¥.
For sufficiently large n, y, and y belong to B(w, €,) for some rational w. Then

Io(yn) = /R . Lot —2) 9(d(z, )

< /IR sup  L(s,z—x)®(d(z,s)) < o0

dxD z€B(w,€y)

and by the dominated convergence theorem

lim I () :/R lim L(s, y, — ) ®(d(z, s)) = Is(y) ,

n—00 d ) P00

because L is continuous in its second argument. [ |

Stationary ergodic case Analogous results to (3.5) and Proposition 3.1 hold true, with
w(dx)H (ds) replaced by Adx H(ds), with H being the Palm distribution of the mark S. Proofs
are based on Campbell’s formula (see e.g. [17], eq. (4.4.3), p. 119).

RR n’ 4019
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3.2 The coverage process

Denote by Nk the random number of cells C; that hit a given bounded set K

NK:Z][(KmCHé(z)). (3.7)

%

In the following theorem we give several instances of moment-conditions (bearing on the dis-
tribution of Zy and the intensity measure u) for E[Nk| to be finite for arbitrary large K. Note
first, that this property is always satisfied if u(R?) < oc. In the following we will assume one
of the two following conditions on the response function:

(A1) There exists a finite real number R*, such that L(s,2) = 0 for all s € D and 2z € R? with
|z| > R*.

(A2) There exist positive constants a and [ such that L(s, z) < (||s]| |z|7¢, for all (s, z), where
|Is|| denotes the norm of s € D.

Proposition 3.2 We have
E[Nk] < o0 (3.8)
for an arbitrary large K if one of the following conditions holds:
(i) Condition (A1) is satisfied and a.s. co > 0,

(ii) Condition (A2) is satisfied, co > 0 a.s., and for all R >0

E[M(B(O,R+(M)l/a>)] < oo, (3.9)

Co

(iii) Condition (A2) is satisfied, by > 0 a.s, L(S,y) > 0 a.s. for ally € R?, and for all R >0

N Baq||S1|| 1/a
(B(0,]x))
/l;d et E|:;1,<B(0,R+ (blL(SO, 7 R)) ))] p(dx) < oo, (3.10)

where Sy is independent of (S1,a1,b1), with both having the distribution of the marginals
of a typical mark, and L(s,r) = inf, , <, L(s, z).

Proof: In order to prove (3.8), we will construct various Boolean models dominating our cov-
erage process = and we will use the following standard result (see e.g. Stoyan et al [17] p. 65) :
for a Boolean with intensity measure p and generic random cell G

In particular, finiteness of the right hand side is necessary and sufficient to ensure that the
number of cells of the Boolean model which intersect K is of finite mean.

(i) Under (A1), we have C; C B(X;, R*) and the result follows from the fact that (3.11) is
obviously finite for the Boolean model with deterministic cells.

INRIA
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(ii) Under (A2) we have

G =

—N

y: a;L(S;,y— X;) > bils(y) + ci} (3.12)

y: a,L(S;,y—X;) > Ci}

N N
—

y: BailSi |y—Xz~|-azcz-}

il Sill\ /e
C Jy:ly—X;| < (W) } . (3.13)
Thus we have C; C B(Xj, pi), a.s., where
_ (/3ai||5z'||)1/“
pi=(——) .
G

There is no loss of generality in assuming that the bounded set K is the ball B(0, R) and
the result now follows from the simple observation that B(0, R) ® B(0, p;) = B(0, R+ p;).

(iii) Now we do not assume anything about ¢y (thus it may by positive or null). Instead we
will use one of the points of the process ® to guarantee a sufficient level for the variable I
and thus bound cell sizes from above. Let X, denote the point of ® which is the nearest
to the origin, and let Z; be its mark. We have

Nk = LKNCo#0)+> IKNC; #0)
i£0
< 14+) LKNC; #0). (3.14)
i£0
For any point X; # X, (i.e., | X;| > | Xo|) of the point process, with mark 7,

Ci(®) C {y : a; L(Si,y — X;) > b,L(So, y — Xo) + Ci}

- {y : Bai|Sill ly — Xi| ™% > b,L(So,y — Xo)}

Bay]| Syl 1/a
: — X;1 < .
< {y =Xl < (biL(San_XO))

Moreover, for K = B(0, R)

,Ba'i Sz 1/a
Ci(®)NK C {yt [yl < Rand |y — X;| < (b-L(So |;,|J —“XO)) }

Bail| il e
Dy — Xl <
- {y v X’|_(biinfy, |y5RL(So,Z/—X0)>
C B(Xi,p(RaZiaXO,SO)>a

RR n’ 4019
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where

a; 51 1/a

b;L(So, R+ | Xo

Using now (3.14) and the assumption that Xj is the point nearest to the origin, we get

E[Nk] < E _1 +) MK NC; # (ZJ)}
i#£0
- E /Rd 1(@(B°(0,20)) = 0) (1 +) HENCi # VD) Cb(dl"o)]

i£0

< / —H(BO, 20
<

So by (3.11) for the Boolean model with G; = B(0, p(R, Z;, zo, Sp)) conditioned on S

L K N B R 2o, 50) £ 0)] ).

i, | Xi|>zo

BN < [ e 0B L (K © B(0,(R 21 Xo,50)) ) | utd)
Rd

The proof is concluded by observing that B(0, R) & B(0,p(...)) = B(0,R+ p(...)).

Corollary 3.3 Let ® be an independently marked and homogeneous Poisson p.p. with intensity
p(dz) = Adzx. Then (3.9) is equivalent to the following condition

E[(“OHSOH)d/a] < (3.15)

Co

whereas (3.10) is equivalent to the conjunction of the following two conditions

—d/a
/ e = (BIL(So, 2| + R))) " dz < oo, (3.16)
R4

e (50) "] < o

Stationary ergodic case Conditions analogous to part (i) and (ii) of Proposition 3.2 can
be observed in the stationary ergodic case; (3.9) and (3.15) have the same form with E[...]
replaced with Eg[...], where Eq is the expectation w.r.t. the Palm distribution of the mark
(S0, ag, co)- The proof is based on Campbell’s formula. Part (iii) has no generalization due to
the lack of an explicit form of the joint distribution of X, (the point which is nearest to the
origin) and the remaining part of a general point process.
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4 Typical cell characteristics

In this section we want to analyze the cell C(z;®) attached to a point located at z of the
marked Poisson p.p. ® under the Palm distribution P,. Due to Slivnyak’s theorem, the law of
this set under P, is the same as that of the random closed set

C(x;® +(5(w7z)) (4.1)

under P, where @ is the original Poisson p.p. and Z = (S, A) = (S, (a, b, c)) is an “additional
mark” distributed like the other marks and independent of ®. We will refer to (4.1) as the
typical cell located at x. If the Poisson point process is homogeneous, the characteristics are
the same for all points x and we will speak of the typical cell.

Coverage probability Denote by p,(y) the probability that point y € R? is covered by
C(z;® + 0(3,7)). We have

p(y) =

(G =1LSy=2) =5~ Toly) 2 0p>0)P > 0). (4.2)

The distribution of the mark Z can be considered as given. Note also that the random variables
I(y) and Z involved in (4.2) are independent. Thus in order to determine the probability p,(y),
we need to know the marginal distribution of the shot-noise process Is(-) at y. This distribution
is usually not known explicitly, but only via its transforms. The characteristic functional of the
process Ig(-) is given by

er(v) = EeXp[iAdI¢(y)V(dy)]

— exp [ /R . <exp [z /R L(s,y-2) l/(dy)] - 1) p(dz) H(ds) (4.3)

where v is any measure on R? such that the outer integral in (4.3) is finite (see [14] for example).
The joint characteristic function of the vector (Is(yy),...,le(yn)) can be obtained from (4.3)
by setting v = Y ",_, &by, -

The distribution function of I4(y) is usually not known in closed form, but for special cases
(e.g. for exponential response function and exponential marks, it is gamma-distributed; cf. [13]).
For results on the approximation of its distribution function and density, we refer to [7] and
the literature cited therein.

Note however that in order to obtain p,(y), we do not need the whole distribution function of
I5(y). Knowing the transforms of I5(y) and of (a/b—1)L(S,y—x)—c/b (conditionally on b > 0),
we only have to compute the probability for a real valued random variable to be nonnegative
from the knowledge of its Fourier transform. In the Appendix we show how to reduce this to
the solution of a Riemann boundary problem on the real line. Under the additional assumption
that the random variable in question has a density (with respect to Lebesgue measure) The
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solution of this problem can be expressed as a singular integral transformation of the Fourier
transform known as Hilbert’s transform. Since in our case this random variable is the difference
(a/b—1)L(S,y — x) — ¢/b — Is(y) it suffices that one of the terms has a density for the whole
sum to have one. Some conditions for this to hold for I(y) are given in the Appendix, together
with comments on the numerical evaluation of this singular integral.

Note that the mean value of the Lebesgue measure vy (C (25 @ 4 0y, Z))) of the typical cell

located at point z, is then obtained from the p,(-) function by the relation:

E[l/d (C’(m; D+ (5(I,Z)))} = /Rd pz(y)dy. (4.4)

Example 4.1 Consider a homogeneous Poisson p.p. @ in the plane (i.e. d = 2 and pu(z) =
1). We assume L(s,z) = s(max(|z], R) ~'. The random variable S € R* is assumed to be
exponential with mean m. Then, direct computations show that the Fourier transform of
Is = Is(y) does not depend on y and is equal to

Vi (§7) = E[6_iaﬂ = exp [W\/garctan (R2 \/g> _ %H %

for £ € R, where the branch of the complex square root function is chosen with positive real
part. Moreover, we take R=1, |y —z| =1, m=1andc=1,b=¢, a =1+ € as. Using the
Fourier transform of L(S,y—1z)—1—els(y) and the integral formula (A.1) in the Appendix, we
calculated numerically p,(y) using the method described in [6] for computing singular integrals.
Obviously for € = 0 there is no shot-noise part in our model, and p,(y) can be easily calculated
without any contour integration. Some results are presented in Table 1 (see also Figure 3 (a)
in Section 6.1.2).

b

€ 1 9 .8 T .6 D A4 3 2 1 .05 | .02 0
pz(y) || -006 | .009 | .012 | .016 | .023 | .033 | .049 | .075 | .121 | .204 | .271 | .329 | .368

Table 1: Probabilities p,(y) numerically calculated using For-
mula (A.1).

Covariance The probability p,(y1,y;) that two given points y;,y, € R? are covered by the
typical cell located at = (sometimes called the covariance of the typical cell) can be expressed

Px(Y1,92) = P(yiEC(x;q)—i-(S(z,Z)); i:1,2>
= P((a—b)LS,pi—2) —blaly) —c>0, i=1,2).

Again, the pair (Is(y1), Is(y2)) is independent of other variables involved in the formula, and
the the joint characteristic function of the vector (Is(y1), Is(y2)) can be derived form (4.3).

5 The coverage process characteristics

—.

Our goal in this section is to analyze the coverage process Z(®), and more specifically, the
distribution of the number of cells covering a given point. From this, the volume fraction and
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other characteristics of Z(®) can be derived. Let N, = Ny, (cf. (3.7)) denote the number of
cells covering a given point . For all integers k, let k™ = k(k —1)...(k —n + 1)*, where
k* = max(0, k). Below we give formulas for factorial moments E[N{™] of N,. From this, the
distribution of N, can be derived using the formula

00 (n+k)
PN, =) = 5 S (-1 e (5:5)

which follows from the well-known expansion of the generating function. Of course, these
expansions usually require strong conditions (existence of all moments and convergence of the
series). We will later give some sufficient conditions for this to hold. But before we proceed along
these lines, we make a purely algebraic observation concerning the possibility of intersection of
several cells.

5.1 Intersection of cells

Suppose the following n sets are given
Ci:{yERd:aiL(sZ, — >bZLSJ’ — —{-CZ}, 1=1,...,n, (5.6)

where (z;, (S, (a;, b5, ¢;)) € R4 x (D x (RT)3) and a;,¢; > 0,i=1,...,n, are given vectors.
Lemma 5.1 The following inequality
—<1 (5.7)

a.
i=1

is a necessary condition for the set of cells C;, i = 1,... ,n, given by (5.6) to have a common
nonempty intersection. If it holds then

cifa; + bifa; Y i_, ¢ -
mC {Z/ L(si,y — x;) = 1—2?—161'/]@]' +¢GGE=1,...,n) forsomegl’“"g"zo}'

(5.8)

Remark: Note that Lemma 5.1 says that the cells (5.6) must have empty intersection if
> 1 bi/a; > 1, and this regardless of the proximity of the points z; (i = 1,...,n) and of
the values of the s;. In the CDMA literature, this kind of condition is related to the existence
of the so called pole capacity (see e.g. [19]). Note also that the condition (5.7) is not an iff
condition; i.e., it can be satisfied and the intersection (5.8) can still be empty. But it is suf-
ficient in the following sense: if it is satisfied and L(s,y — z;) — oo when ||s|| — oo for some
y and all i = 1,...n, then there exist sq,...,s, (with possibly very large norm) such that the
intersection is not empty (it contains y).

Proof of Lemma 5.1 The set of inequalities defining the intersection of the cells (5.6)

L(si,y — >—ZLSJ, — +— (5.9)

Z
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implies (by adding them up and rearranging)

n

(1 —Zz—) S Lisiy —ai) > ZZ— (5.10)
j=1 "t/ i=1 j=1 "

and for ¢; > 0, the right hand side is strictly bigger than 0, thus the necessity of Condition (5.7)
follows. Assume now it is satisfied. The set of inequalities (5.9) can be rewritten equivalently
under the matrix form

Bo > k, (5.11)

where B = 1 — 71%, o, 7, k are the column vectors with coordinates L(s;,y — x;), b;/a; and
ci/a; (i =1,...,n), respectively, I is the n-dimensional identity matrix and 1* = (1,1,...,1).
The matrix B is nonsingular, and its inverse is equal to B™t =1+ 71!/(1 —1'7). So o satisfies
the inequality (5.11) whenever it is of the form

oc=B" (n—f— diag((y, . .- ,Cn)l) for some (y,...,(, >0,

where diag(...) is the diagonal matrix with (...) on its diagonal. Calculating the entries of
Bk + diag((y, - - - ,)1), we get (5.8). u

Suppose now that the distribution of the mark Ay = (ao, by, ¢o) is such that by/ag is bounded
away from 0; i.e.,

(B) bo/ag > p a.s. for some constant p > 0,

Using the result of Lemma 5.1 we immediately have the following property of the coverage
process.

Corollary 5.2 If Condition (B) is satisfied and one of the following conditions holds: (i) ¢ > 0
a.s. or (i) u(R%) = oo and L(S,x) > 0 a.s. for all z € R, then N, < 1/p almost surely.

Proof: Assume that n = N, cells cover point z. Let ®' be the realization of the Poisson p.p.
® from which one subtracts the n points generating the cells covering z. Let ¢, = ¢; + Is(x),
where c¢; is the mark of point X;. Note that if ¢; > 0 a.s. or if u(R?%) = co and L(S,-) > 0, then
c; > 0 a.s. Note also that the a; marks of these n points are necessarily positive (otherwise the
intersection would be empty). From condition (B),

Nz

b,
Y > Nep.
T i
Since by assumption, the n cells have a nonempty intersection, it follows from Lemma 5.1
applied to these n points with the parameters a;, b; and ¢, that N, p < 1. [ |

Remark: This bound suggests an analogy with queueing theory. One can think of queueing
theory as a way of sharing time between customers arriving at a queue according to some point
process on the line, and requiring some given service times. We can also think of our coverage
process as a way of sharing space between the points of a spatial point process with given
marks. Under the condition mentioned in the last lemma, the coverage process can be seen
as a spatial analogue of the {-server queue, with £ = min{n integer : n > 1/p}, in that no
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point in space can be covered by more than £ cells; in the same way, the ¢-server queue forbids
that at any point in time, more than /-customers could be served. Note that sharing actually
means quite different things here and there: in queues, the sharing of time is implemented
by shifting customers in excess to later times, while keeping their service times unchanged.
In contrast, for this coverage process, sharing of space 1s obtained by shrinking the marks: if
one defines the space request of point zg as the set C = {y:aoL(so,y — xo) > co}, which
would be the share of space obtained by g if there were no other points, then one can see the
set Co = {y : aoL(s0,y — x9) > bols(y) + co}, as a shrunken version of C’SO) resulting from the
competition with the other points.

In the same vein, we will show later on that the Boolean model, which is a limiting case of
our coverage process, can also be seen as a spatial analogue of the infinite server queue, and
that in this case, the analogy is quite strong, with in particular the same Poisson distribution
for the number of marks (customers or cells) covering a given (time or space) point.

5.2 Factorial moments of N,

We are now in a position to prove the following result.

Proposition 5.3 The n-th factorial moment of the number N, of cells of Z(®) covering point
T 1S equal to

B[N ]—/Rd)n (a:eﬂc(xk,mZaM)) (dz1) ... p(dzy) (5.12)

where ® is the Poisson p.p. and {Z;}1, is an independent sequence of mutually independent
vectors distributed as the generic mark; this relation holds provided the integral on the right
hand side s finite.

Corollary 5.4 If ® is a homogeneous Poisson p.p. with intensity u(dz) = Adx then for each
reR?

E[N®] = E[N{] = A" /

- (OE ﬂC(zk,Q)-I—ZJ(% ))da:l...dxn , (5.13)
provided the integral is finite. In particular, forn =1

B[No] = AB[va(C(0;@ + 80,2)) )| (5.14)
where vg(C(...)) is the d-dimensional volume of the typical cell.

Proof of Proposition 5.3: for a particular realization ® = { X}, Z;}; of the marked Poisson p.p. ®,
denote by ®( its n-th factorial power, that is the following point measure on (Rd x D x (]R“L)?’)n

o = {((Xil, oo X)) (Zigs - ,Zin)> }Xil,...,XinECD .

distinct
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In other words, ™ consists of all n-tuples of distinct points of ®. Now we can write the factorial
power (Nw)(”) of the number cells covering point z as the following integral with respect to ®™
using the simplified notation ®™ (d(z1,...,z,)) = ®™(d(z,... ,2,) x (D x (RT)3)")

N = /( N ﬁ ]I(x € Oz <1>)) o™ (d(ml, . ,xn)> . (5.15)

We get (5.12) by applying the refined Campbell theorem to the expectation of this integral and
the Slivnyak’s theorem. [ |

Remark: For the finiteness of the integral that appears in Proposition 5.3 (or Corollary 5.4) in
the case ¢ > 0 a.s. it is enough to assume exactly the same conditions as for the o-finiteness of
the mean measure of ) . d¢, given in Proposition 3.2 part (i) and (ii). In the case P(c=0) > 0
however, some integrals of the negative moments of order nd/a of L(S,x — Xj) are to be finite,
where Xj is the point which is nearest to the origin. We show this in the following paragraph.

Moment conditions for N, Note first that if u(R?) < co then all moments of N, are finite.
Proposition 5.5 The integral (5.12) is finite if one of the following conditions holds:
(i) Condition (A1) is satisfied and co > 0 a.s.,

(ii) Condition (A2) is satisfied, P(co = bgle(z) = 0) =0 and

E[HM(B( (5280 )"))] < e (.10

Proof: With (A1) obviously

Pz e N ot ) < [[ 16 € B m)

k=1 k=1

and thus the integral in (5.12) is not bigger than (,u(B(x, R*))) which is finite. For (ii) observe
that similarly to (3.13) we have

][(33 € C’(xk;CD + ié(%zk))) < 1[(3: € B(xk, (ﬂ%)))
i=1

and thus, changing the order of integration [E[...] =E[[...]in (5.12), we conclude by using
the upper bound (5.16). |

Corollary 5.6 If ® is a homogeneous Poisson p.p. with intensity p(dz) = Adx and (A2) holds,
then for (5.16) to be satisfied it is enough to assume that either (3.15) holds or (3.17) and the
following condition are satisfied

/ e ba B[(L(Sy, z — )] dy < 0. (5.17)
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Remark: In order to calculate numerically the integral in (5.12), note that the probability
P(z € (), C(...)) can be expressed using the distribution function F, ;) (-) of the shot-noise
process at z in the following way (we assume for simplicity that b > 0 a.s.)

. Q; i -
P(z € ﬂ C(. [qu,(z) (1@@‘12&(3[/(8“ T —x;) — Z—) - Z L(S,z — xk))] ) (5.18)
—7—= 7 (] ]Czl

Knowing the distribution function Fj, () (or its approximation) in a closed form, one can use
a numerical integration procedure (for instance a monte-carlo method) to get (5.12). We remark
that an effective method for the approximation of the shot-noise distribution (in dimension one
and for a finite measure ) is presented in [7]; see also the references cited therein. Another
possibility is to apply the contour integration technique suggested in the appendix.

5.3 Volume fraction

Volume fraction p = P(0 € Z) is a basic characteristic of a stationary coverage process. Strictly
speaking, it can be defined and calculated for any coverage process, but then the notion might
be misleading, since it is only when we assume that the probability P(z € =) does not depend
on x, that we can say that the expected fraction of the d-dimensional volume of = per unit ball
is equal to p. Thus for the remaining part of this section we assume that & is a homogeneous
Poisson p.p. with intensity A and that the function L(s,z) is motion invariant in its second
argument (i.e. it depends only on (s, |z])). Using expansion (5.5) we can write

k—|—1

p= 3 v, (5.19)

k=1

where the coefficients are given in Proposition 5.3, provided all moments are finite and the
series is convergent. Note however, that if we assume condition (B) (that by/ag > p > 0 a.s.)
then the expansion has finitely many non-zero terms only.

Remark: One can also try to calculate volume fraction via the following approach which is
typical for the Boolean model:

p = 1—E[1:[11(0¢0,~))}
- 1—E[exp</Rdlog(][(0¢C(m;¢)))@(dm))]. (5.20)

However, the cell C(z, ®) depends on the whole realization of the Poisson p.p., and not only on
(z,Z). Thus the expression in (5.20) does not have the form of the Laplace transform of the
point process (as in the case of the Boolean model).

Nevertheless using the factorial moment expansion technique for a general class of function-

als of spatial p.p. presented in [2] (see also papers cited there), the first order approximation
of the volume fraction can be represented as

p = A/de(o c C(x;(s(o,z))) dz + O(\2)
= ME [I/d (C(O; (5(072))” +0(N\?),
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The first term in the last formula differs from the formula (5.14) for E[Ny] only in that ® is
replaced by the null measure (without points). More general polynomial (in \) approximation
formulas can be obtained from this expansion technique; note that the expansion formula
proposed in (5.19) is not a polynomial in A.

6 From the Boolean model to the Poisson-Voronoi tessel-
lation

The aim of this section is to present the variety of patterns that one can obtain when playing
with the model parameters. In particular, we investigate convergence results towards two limit-
ing cases: the Boolean model and the Poisson Voronoi tessellation of the space. The convergence
results are stated on the space of closed sets. They are complemented by differentiability results
which lead to expansions for some key characteristics of the coverage process.

6.1 Towards the Boolean model

Note that the cells of = given by (2.1) are not mutually independent because of the presence
of the shot-noise variable Is. However, if we assume b = 0 a.s. (b = 0 for short), the cells are
independent, and = is a Boolean model. In what follows, we study the following continuity
problem: assume that b — 0 in some sense. In what sense and under what conditions, does
the typical cell C(z,® + §(x, Z)) and the whole process =(®) tend to their counterparts in the
Boolean model obtained by assuming b = 07 This is only a first step in the direction of the
following more interesting differentiability question: assume the above continuity holds, and
take b small in some sense. What first order perturbation should one apply to the characteristics
of the Boolean cells to get the characteristics of the dependent cells?

In the following we address this continuity question in two cases: (1) almost sure convergence
of the model with b scaled down by a constant € N\, 0 and (2) weak convergence when b = 0 in
distribution, before addressing the differentiability question.

6.1.1 Convergence results

Convergence of random sets For e > 0 let
cl) =cl(@) = {y b aiL(Si,y — Xi) > ebils(y) + Ci} - (6.1)

and 2 = Z9(®) = |, CZ-(G)(@). Note that Ci(o) does not depend on the whole ® but Ci(o)(cb) =
c© (8(x.,2)) is the cell of a Boolean model Z(©).
In order to be able to prove an almost sure convergence theorem, we need the following

technical condition for L:

(C) for each z € R? and s € D, there exists a sequence z,, such that L(s,z,) > L(s,z) and
lim,, z,, = .

Proposition 6.1 Assume that the conditions of Proposition 3.2 part (ii) and Condition (C)
are satisfied. For each point X; € ®, the following almost sure convergence holds on the space of
closed sets lim,_,q Ci(e) = Cl-(o). Moreover, a.s. and on the space of closed sets lim,_,o gl = =),
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Proof: For fixed i, the set C’i(e) is increasing in € — 0. Thus its limit is equal to J, Ci(e), where
F is the closure of F' (see e.g. [12] Cor. 3, p. 7). Obviously

e cc®,

€

because CZ-(E) C C’Z-(O) and Ci(o) is closed.

It remains to show that CZ-(O) c U, C’z-(e). For this, (for each fixed i) take any y € CZ-(O). This
means a;L(S;,y — X;) > ¢;. Note that if a; = 0 then the result trivially holds because by the

assumption ¢; > 0 and thus Cz-(e) = CZ-(O) = (. So we now assume a; > 0. Condition (C) then
guarantees the existence of a sequence y,, — y such that for all n, a;L(S;, y, — X;) > ¢;, which

implies that v, € C’Z-(ﬁ") for some €, > 0. So
Yy = thbn Yn € UCZ(fn)
For the second part of the theorem, observe that
—(e) _ €) __ €) __ 0
J=0=UUc” =JUar =Uer,
€ € 1 i€ %

because, under the conditions of Proposition 3.2, the union is closed. [ |

Example 6.2 We now illustrate Proposition 6.1 by showing some patterns of our coverage
process = “conforming” to a Boolean model pattern. We simulated a Poisson p.p. with 60
points on the square [—5,15]? (so that u = 0.15). While observing only the square [0, 10]%, we
take all 60 points of the larger square into account for evaluating Is. The response function
is L(s,y) = s(1+ |y|)73; S is uniformly distributed on [0,2], a = 1 and ¢ = 0.1. The various
patterns result from taking various deterministic values for b. Figure 1 presents the coverage
process = “on its way” to a Boolean model. We have: a) b = 0.4; note that 2b < 1 < 3b; thus
at most 2 cells could cover any given point, although this is not observed; b) b = 0.2; since
4b < 1 = 5b, at most 4 cells could cover any given point; ¢) b = 0.1; cells occupy more and more
of the final space that they occupy under the Boolean model regime; d) b = 0.0001; almost the
limiting case where each cell is a disk with independent radius distributed as (105)/3 —1 (with
mean 20'/%-3/4 —1 ~ 1.035). On Figure 2 we have the same process but the limiting Boolean
model has much larger grains, with radius (50005)'/% — 1 (with mean ~ 16.15). In the very
“nested” pattern of b), some cells have “holes” around certain generating points.

Convergence of characteristics We can also prove the convergence of some characteristics
of our scaled process to those of the Boolean model, including the probability for a point to be
covered (volume fraction), the capacity functional, and the volume of the typical cell. This can
only be done under some additional conditions, because these characteristics are not continuous
functions on the space of closed sets. We first state an auxiliary lemma providing continuity
conditions for certain indicator functions. For any fixed compact K C R?, z € R?, s € D,
a,be R, ¢>0,Z=(S,(a,b,c)) and a function f: R — Rt denote

COz, Z) = {yeR:al(s,y—xz)>ebf(y)+c}, (6.2)
D(z,7) = {yeR:al(s,y—1)=c}. (6.3)
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Figure 1: The first coverage process of Example 6.2 “on its way” to a
Boolean model.

Note that D(z, Z) does not depend on b, whereas C(z, Z) depends implicitly on the function f.
We prefer however to keep this notation in order to have the following consistency between (6.1)
for the typical cell located at z and (6.2):

C(e) (.’E, ¢ + 6(z,Z)) = C(e) (‘Ta Z)a

with f(z) = Is(y) + L(s,y — x).

Lemma 6.3 If

then

lim 1(K 1 C(z,7) £ 0) = 1(K N CO(z,7) £0) .

v ¢ ((D(o, 7) @ K) \ (D(O,Z) @ K))

(6.4)

(6.5)
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Figure 2: The second coverage process of Example 6.2 “on its way” to
a Boolean model.

Proof: (6.5) follows from the following inequalities

1(K N0, 2) £0) - 1(K 0 Dz, 2) 40, K 1 D(z, 7) = 0)

< lim ][(K NCO(z,Z) £ @) (6.6)

< ]I(K NCO(z, Z) # (z)) . (6.7)

Inequality (6.7) is immediate from the fact that C©)(x, Z) c C©(z, Z) for € > 0.

In order to prove (6.6), it is enough to show that if K N C©)(z,Z) # @ and if in addition,
for all € > 0, KNC©(x, Z) = (), then the second indicator in the left hand side of (6.6) is equal
to 1. But under these two assumptions, there exists z € K such that aL(s,z — z) > ¢ and
aL(z — z) < ¢+ € for any positive €1, and so aL(s,z — z) = ¢. This means K N D(x, Z) # 0.
Assume now that also K N D(z,Z) # 0 and let y € K N D(z, Z). Assume a > 0; otherwise
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the result of the lemma is trivial, since ¢ > 0. By Condition (C) we can find 3 € K in the
neighborhood of y, such that aL(s,y’ — 2) > c. This gives K N C©)(z, Z) # () for some € > 0,
contradicting our assumption and concluding the proof of (6.6).

In order to complete the whole proof note that for any set D C R¢ DN D(z,Z) # 0 iff

xz € (D(0,Z) ® D). [ |
Capacity functional of the typical cell The following result is a straightforward conse-

quence of Lemma 6.3.

Proposition 6.4 Suppose the conditions of Proposition 3.2 part (ii) and Condition (C) are
satisfied. Let K be a compact set and x be a point of R? such that

P(are ((D(o,Z)@K) \ (D(O,Z)@f{))) ~0, (6.8)

where Z = (S, (a,b,c)) is a generic mark. Then we have convergence of the capacity functional
of the typical cell on the set K

lim P (K NCY(z;® + 5y 2) # (2)) =P (K NCO(2;84.2) # 0) : (6.9)

Remark: By considering the simple example of a singleton K = {y}, one can see that Proposi-
tion 6.4 cannot be a straightforward application of the relationships between weak convergence
and pointwise convergence of probability measures on continuity sets. Condition (6.8) reads

P<aL(S,y —z) = c) =0 (6.10)

and it guarantees convergence of the probabilities on the set Fy,; = {Fclosed : y € F}.
The boundary of this set 0Fy, is equal to Fy,); thus for it to be a continuity set for the
limiting Palm distribution of the typical cell of our Boolean model located at = (i.e. the cell
{y : aL(S,y —x) > c}), we need P(aL(S,y —x) > ¢) = 0, which is more restrictive than (6.10).

Volume of the typical cell

Proposition 6.5 If the conditions of Proposition 3.2 part (ii), condition (C) and (6.10) are sat-
isfied for Lebesque-a.s. all y € RY, then the d-dimensional volume of the typical cell C(9)(x; ® +
0(z,2)) converges in distribution to the volume of C'O(z; 8, 7)).

Proof: We can express the volume of a cell as the following integral with respect to Lebesgue
measure:

Vg (C(E)(.’IJ; ¢+ 5($,Z))> = /]Rd ]I(y € C(z;®+ (5(%2))) dy
= /]Rd ][(y e (x,®+ 5(,5,2))) ]I(aL(S,y —x) # c) dy

where the second equality is a consequence of the assumption that (6.10) is satisfied for
Lebesgue-a.s. all y € RY. Lemma 6.3 and the monotone convergence theorem complete the
proof. [ |
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Number of cells hitting a set

Proposition 6.6 Suppose the conditions of Proposition 3.2 part (ii) and Condition (C) are
satisfied. If for a given compact K € RY

E[,u((D(O,Z) @ K) \ (D(o, 7) @ K))] ~0, (6.11)

where Z = (S, (a,b,c)) is a generic mark, then the number of cells Ng(Z©) hitting set K
converges almost surely and in expectation to thg number of cells of 2 hitting K, that is to a
Poisson random variable with ezpectation E[pn(C®(0;6(0 7)) & K)].

Proof:

lm Ny (E9) = lim 3 1(Knc #0) = ) 1(knc® £0). (6.12)

1

This follows from Lemma 6.3 under Assumption (6.11), which guarantees that the expected
number of points X; of ® not satisfying (6.4) is equal to 0. |

Corollary 6.7 Under the assumptions of Proposition 6.6, we have convergence of the capacity
functional

lim P (K NE@ 2 (2)) —1—exp [—E [u (é<°> (0:6(0.2)) ® K)H . (6.13)

Convergence in distribution Assume now a different scenario. Let us denote G(d(a, b, ¢)|s)
the conditional distributions of A = (a, b, c) given S = s, where Z = (S, A) is the generic mark.
Suppose moreover that for each s there is given a family G, (e > 0) of distributions satisfying
G = Gy weakly, and that under Gy, we have b = 0 a.s. Let P be the probability referring
to the model with the independently marked Poisson p.p. and where the distribution of the
generic mark Z is G (d(a, b, c)|s)H(ds).

Proposition 6.8 Suppose the conditions of Proposition 3.2 part (ii) and Condition (C) are
satisfied for all models with sufficiently small €. Let K be a compact set and = be a point of R?
such that condition (6.8) is satisfied with P replaced by PO, Then we have convergence of the
capacity functional of the typical cell on the set K

lim p(© (K NC(z;D + 0y z)) # (Z)) =PO (K N C(7;6(z,2)) # Q)) : (6.14)
Proof:
PO (K N C(5; @ +60.2)) #0)

- / / / 1(K 0 C(:® + 6o o apen) # 0) Geld(a, b,0)[5) H(ds)P(d®),
D J(R+)3

where the outer integral is taken over the space of point processes with respect to the distri-
bution of the marked Poison p.p. with S distributed according to H. Now, by dominated
convergence it is enough to prove that

e—0

lim (Rﬂs][(zmo(...);é@) Ge(d(a,b,cns):/(R+)311(Km0(...))#w) Go(d(a, b, c)|s)
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for H x P almost all (s,®). This will hold if the set {(a,b,c) : aL(s,y —x) > bls(y) + ¢
for some y € K} is a continuity set for Gy. The boundary of this set is included in {(a,b,c) :
aL(s,y —z) = blg(y) + c for some y € K and aL(s,y — z) < blg(y) + cfor ally € K}. Asin
the proof of Lemma 6.3, one can show under Condition (C), that the restriction of this last set
to b =0 (and a > 0) is contained in {(a,0,¢) : aL(s,y — z) = ¢ for some y € K and for no
y € K}. This set is equal to

{(a,0,¢) : x ¢ ((D(o, Z) & K) \ (D(o, Z)® K)) ,

where Z = (a,0,c¢). Under the assumptions of our proposition, this set has G, measure 0 for
H x P almost all (s, ®). This completes the proof. [ |

Corollary 6.9 If the conditions of Proposition 6.8 are satisfied for all compact K, then the
typical cell converges in distribution on the space of closed sets.

6.1.2 Perturbation formulas

Coverage probability The setting is that of Section 6.1.1. Note that Proposition 6.4 with
K = {y} gives the following approximation of the probability P (y) that the typical cell
CO(z;® + d(z,z)) covers point y:

pg(f) (y) = P(aL(S, y—1x)> c) +o(1), €—0,

provided P(aL(S,y —z) = ¢) = 0. Now we briefly show how to derive the first and higher order
expansions of this functional.

For simplicity, we restrict ourselves to the signal-to-interference-ratio model of Section 2.4
(although this approach can be generalized to other cases). Within this setting, taking x; = €
for all 4, where € is a constant, we can give a direct physical interpretation of these expansion
formulas as the first and higher order corrections to be made on the coverage probability of the
typical Boolean cell in order to take into account small interferences. In this case, let

7O(y) = P(aL(S,y — 2) > ebla(y) +c). (6.15)

Let F, denote the left-continuous version of the conditional distribution function of the random
variable (aL(S,y —x) — ¢)/b given b > 0; i.e.,
aL(S,y—z) —c

F*(u):P< 2 <u

b > 0) . (6.16)

We suppose that F, admits the following approximation at 0

i 0 = F2(0)

m , = f, forsomen >0, f, < oo. (6.17)
U u

Proposition 6.10 Assume that (6.17) holds for some n > 0 and f, < co. Then
BO(y) = P(aL(S,y = 7) > ¢) = @£, P(b > 0| (Io(4))"(La(y) > 0)] +o(e"),  (6.18)
provided E[(Is(y))" < o0].
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Remark: Note that if (aL(S,y — x) — ¢)/b has an atom at 0; i.e., if P(sL(S,y —z) =¢) > 0
(which is not possible under (6.10)), then (6.17) holds for n = 0, f. = P(sL(S,y—z) = ¢|b > 0),
and thus (6.18) yields

#Oy) = P(al(S,y—2)>c) = P(ak(S,y—2) =c, Laly) > 0) +o(1)

= P(aL(S,y —z) > c) + P(aL(S,y —z)=c¢, Is(y) = 0) +o(1).

Another typical case would be when F(u) admits the density f,(u) that is finite at the origin;
then n =1 and f, = f.(0).
Proof or Proposition 6.10: We have

FO(y) = P<aL(S,y —z) > c) - P(o < aL(S’yb_ v e dq,(y)‘b > 0>P(b >0). (6.19)

Since Z = (S, (a,b,c)) and I are independent

P(O < aL(S,yb—m) —c

< qu,(y)‘b > o) - E[F*(dq,(y)) - F*(o)]

If E[(Zs(y))"] < oo and (6.17) holds then

Fu(elo(y)) - F.(0)
E[ (La())"

for some constant M < oo and all € > 0, and thus by the dominated convergence theorem

1 L(S,y — z) —
lim—P<0§a (S’yb z) c<d¢(y)‘b>0)

e—0 €7

e Blela(w) - ()
- E[LO (La(y))"

= £.P(b> 0B[(Ls(y)"1(Ls(y) > 0)] .

L (y) > o><f¢<y>>"] <E[(f+ M)(Is(w))"] < o0

(o (y) > oxf@(y))"} P(b > 0)

which completes the proof. [ |
If the distribution function F, admits a higher order approximation then we can give a
higher order approximation of P (y). Here we briefly state the result assuming that F, has h

derivatives F® (0),k=1,...,h,at 0; ie.,

F.(u)=F.0)+) o uf +R(u) and R(u) = o(u") ™\, 0. (6.20)

Proposition 6.11 Assume that (6.20) holds for some h > 1. Then

h (k)
70 (y) = P(aL(S,y —2) > c) = P(b>0) 2 ¢ d k!(O)E[u@(y))’“] +o(e"),  (621)

provided E[(I3(y))"] < oc.

The proof goes along the same lines as the proof of Proposition 6.10.
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Mean volume of the typical cell From (4.4) we see that, in principle, any approximation
of the coverage probability also yields an approximation of the mean volume of the typical
cell, simply by integration of the terms of the latter expansion with respect to y. In what
follows we show how to justify the interchange of the integral and the expansion for the case of
formula (6.21), assuming for simplicity that the Poisson p.p. is homogeneous and that L(s, z)
depends only on s and |z|. In this case, we have the same distribution of Is(y) for all y and
pz(y) only depends on z — y.
Let z = 0 and

7 = 17(()6) = E[Vd({y : aL(S,y) > eblp(y) + c})] ) (6.22)

In order to express the dependence on y, we will write Fi(u;y) and Jaik (u;y) to denote F,
defined in (6.16) and its derivatives with respect to u. Similarly, we will denote the remainder
term in (6.20) by R(u;y). Assume now that (6.20) holds for all y € R? and moreover

[R(u, y)| < Ha(u)Ha(y) (6.23)
where H;(u) is a nondecreasing function satisfying
. Hy (U) -
i{‘r(l) = 0 (6.24)
and
/ Ha(y) dy < 0. (6.25)
0
Proposition 6.12 Assume that (6.20) and (6.23)—(6.25) hold for some h > 1. Then
h 00
79 =@ —P(b > 0) Zekg / F®)(0;y) dy E[(I15(0))*] + o(e"), (6.26)
*Jo

provided [;° F®(0;y)dy < oo fork=1,...,h and

E[H1(1a(0)) (1(0))"] < oo (6.27)
Proof: By (4.4), (6.19) and (6.20) it suffices to show that

lim e_h/ E[’R(dq,(y); y)] dy=0.
e—0 0

For fixed v, by Proposition 6.21 we have pointwise convergence ¢ "E[...] — 0. We will establish
the conditions of the dominated convergence theorem for lim | ¢ "E[...]dy. For this, thanks
to (6.24), take any A > 0 and wug such that H;(u) < A for u < uy. Now, by monotonicity of
Hq(u), for e <1

¢t /OOOE‘R(qu,(y);y)‘ dy

< /Ooo Ha(y) dy (E [A(Iq,(o))h]l(e[@(o) < uo)] + E[’Hl(Iq,(O)) (I¢(0)>h]1(d¢(o) > uo)]) :

Ug

which is finite by (6.25) and the assumption (6.27); this completes the proof. [ |
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Example 6.13 Consider the case where ® is homogeneous Poisson p.p. on R?, L(s, z) = sl(z)
and assume S € RT admits a density fg, and is independent of a, b, c. Then the conditions of
Proposition 6.10 are satisfied if

g = B[ofs (g =y ) o > 0] < oo

Assume in addition that a, b and c¢ are strictly positive a.s. and that [(z) = (1 + |z|)~%, with
a > d. Direct computations give the following first order expansion for the mean volume of
the typical cell (provided we have finiteness of the moments which show up in the following
expression):

i = E[((C‘CS)W - 1)‘1 (6.28)

O (4 Yo e(e) Pl o

where s, is the d — 1 dimensional area of the unit sphere in R? and (w),; = max(0,w). Note
that the existence of the negative moment E[S~!*1/9] is guaranteed by Condition (6.17).

Example 6.14 We continue with the model described in Example 4.1. Note that under the
parameterization a = 1 — € and b = ¢, we have p,(y) = ﬁ;(f)(y). The case ¢ = 0 refers
to the Boolean model. We assume S exponential with parameter m and thus the cover-
age probability for the Boolean model (i.e. the constant in the expansion (6.21)) is equal
to E[e~me/(ally=2)] = ¢=m/ly=%) for ¢ = ¢ = 1. The distribution function F, for v > 0 is
F,(u) = 1 — E[e-m(but)/(ally=2))] = | — ¢~m(u+)/ly=2) (when b = 1). Its first derivative at 0
is m/l(y — x) e"™/'@=%) Moreover, the first moment of the shot noise with response function
I(y) = (max(R,|y|)) * is E[ls(y)] = 27/(R?>m) = 2n/m (for R = 1). Thus the first order
perturbation formula for py(y) is

Po(y) = e 4 eop T o=m/itw)
i(y)
On Figure 3 (a) we compare the exact values of py(1) calculated (for various €) using for-
mula (A.1), with the first, second, 14-th and 15-th order approximation of §(9(1) = pi(1)
given by (6.21) with h = 1,2,14,15. Plot (b) shows the same order approximations of #(®
given by (6.26). We remark that the remainder term in (6.20) can be expressed in La-
grange’s form as R(u;y) = thﬂ)(@yu;y)uh“/(h + 1)!, with 0 < 6, < 1, and we can take
Hi(u) = mM /(b + D™ and Hy(y) = (I(y)) P te ™/ ®) satisfying (6.23)—(6.25).

Mean number of cells covering a point In the homogeneous case, we can use the expan-
sion for the mean volume of the typical cell and Relation (5.14) to derive expansions for the
mean number of cells covering a point.

6.2 Towards the Poisson-Voronoi tessellation

The Voronoi tessellation generated by an (unmarked) Poisson p.p. ® = {X;} with u(R?) = oo
(thus having infinite number of points) is the collection of cells V(X;) = V(X;; ®), where

VIX)={yeR:y- X< inf [y X},

Xk:XkECD_JXi
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16]
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1.25

1.1
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Figure 3: a) Exact values of p,(y) (dashed line, obtained from the singular integral repre-

sentation) and the first, second, 14-th and 15-th order approximation of s (y). b) Similar
approximation for the mean area of the typical cell 7(¢) given by (6.26) (see Example 6.14)

From the above formula we see that the form of the cell attached to point X; is determined
by some “neighboring” points of X; only. It is quite reasonable to expect that if we let the
attenuation function L(s, z) decrease fast in z, we will get the same effect. We will formalize
this observation assuming L(s, z) = sl(z) and taking appropriate families of [-functions (we will
mainly concentrate on the class of functions which are used to represent Hertzian propagation,
although more general cases can be handled in the same way).

Proposition 6.15 Let [,(z) = (1 + [2])™", ¢ = 0 almost surely and let the conditions in
Proposition 3.2 part (iii) be satisfied. Suppose moreover that u(R?) = oo. Then for each point
X; € ® the following almost sure convergence of its cell holds on the space of closed sets

lim C™(X;;®) = V(X;; ®), (6.29)

n—0o0
where C™(...) is the cell associated with the attenuation function l,.
Proof: Fix a point of ®, without loss of generality call it X,. Let C" = C™(Xy, ®) and denote
I%(y) the shot-noise process with the attenuation function /,,(z) = (1+ |z|)~™. Note that under

the assumption u(R¢) = oo we have IZ(y) > 0 for all n. Moreover, since we have assumed
S > 0 almost surely (implied by part (iii) of Proposition 3.2), then

(6w) "= (2 sk<1+|y—xk|>-")l/n 2 sup (1+ |y — X))

X,€P XLed
-1
= (1 + nin ly — Xk|) (6.30)

(this property differs form the standard calculus exercise in that the number of terms in the sum
is infinite; it uses the property that a.s. the above supremum is reached by a unique point of ®).

INRIA



Un a coverage process

Moreover the convergence is locally uniform in y. Note now that C" = {y : |y — Xo| < fu(y)},
where

_ CL()S() 1/n
fnly) = (bolq,(y)) -
By (6.30)
Jim fu(y) = min Jy — X (6.31)

locally uniformly in y. We now prove that lim,, C" = {y : |y — Xo| < minx,cq |y — Xi|}. It is
equivalent to proving that the following two conditions hold (see [12], Th. 1-2-2, p. 6).

(i) For any y s.t. |y — Xo| < minx,co |y — Xk, there exists a sequence of points y, — y such
that |y, — Xo| < fn(yn) for all sufficiently large n.

(ii) If a sequence of points yy, , such that |yx, — Xo| < fx, (yk,) for all n, converges to y, then
ly — Xo| < minxeo [y — Xil.

In fact:

e ad (i) Suppose y is in the interior of the Voronoi cell; i.e., |y — Xo| < minx, e |y — Xi|.
Then |y — Xo| < fn(y) for all sufficiently large n because f,(y) — miny, cq |y — Xg|. So
Condition (i) is satisfied with the constant sequence y, = y. If y is on the boundary of
the Voronoi cell; i.e., |y — Xo| = miny, co |y — Xi|, then there exists a sequence of points
yn converging to y and such that for all n, |y, — Xo| < miny,ce |yn — Xi|- One can use
this sequence to construct the one required in (i).

e ad (ii) Let yx, be as mentioned there. For all n

Yk, — Xo| < fren Yk )-

Letting with n — oo the left hand side tends to |y—X,| and the right hand side (because of
the uniform convergence of f,,) to miny, c¢ |y—Xj| and we get |y—Xo| < miny, co |y— X

Remark: Obviously lim, Z(®) — R?. Moreover, if ¢ > 0 then almost surely

lim C(X;;®) ={X;} (asingle point).

n—oo

We remark also that a result similar to (6.15) could be proven for any family of attenuation
functions [, satisfying

. 71 . . . )
alggo ly (Z Szla(yl)) — min y;

for any (positive) coefficients s;. For example for l,(y;) = exp[—ay;] and ap = oc.

As previously, one can prove the convergence of various functionals. We consider here only
the volume of the typical cell.

Proposition 6.16 The volume of the typical cell C™(x; ® + 0(5.)) converges in distribution to
the volume of the typical cell V(x;® 4 (5, z)) of the Voronoi tessellation.
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Proof: This can be done using the following inequalities

][(z € V(x)) — ]I(|z —z| = )I(rkue% |z — Xk\) < liminf ]I(z e C"(z,® +(5($7z)))

n—oo

< limsup ][(z eC™(z,®+ 5(95,2)))

n—oo

< ]I(z € V(:E)) ,

which hold for all z € R?. Then, representing volumes as integrals with respect to Lebesgue
measure, using Fatou lemmas for lim inf and lim sup, we get the conclusion provided that

/ ][(|z — z| = min |z—Xk|> dz=0
R4 Xk.EQ
almost surely. This is true for the Poisson p.p. ® with a diffuse intensity measure p. [ |

Example 6.17 We now illustrate Proposition 6.15 by showing some patterns of our coverage
process = “conforming” to the Voronoi tessellation of the plane (see Figure 4). The Poisson p.p.,
the observation and the simulation windows are as in Example 6.2. S is uniformly distributed
on [0,2], a =1, ¢ = 0, b = 0.2 thus allowing for overlapping of at most 4 cells for a given
point. The various patterns result from taking the attenuation function I(y) = (14 |y|) ® with
various a. We have: a) a =3, b) a =5, ¢) a = 12, d) a = 100. The effect of overlapping is
still visible. A more accurate tessellation can be obtained inhibiting overlapping, e.g. by taking
b= 0.5 (see Figure 5d).

Relation to the Johnson-Mehl model We also have convergence to intermediate states
of the Johnson-Mehl grain growth model (see e.g. [17], s. 10.7, p. 333-334).

Corollary 6.18 Under the assumptions of Proposition 6.15, if, instead of ¢ = 0, we take
c=b(R+1)"" for some fized or random variable R, then

lim C"(X;,®) =V (X;;®) N B(X;, R). (6.32)

n—0o0
Example 6.19 We now illustrate Corollary 6.18 by showing some patterns of our coverage
process = “growing” to the Voronoi tessellation as in the Johnson-Mehl model (see Figure 5).
The observation and simulation windows and the Poisson p.p. are as in the previous examples.
S is uniformly distributed on [0,2] and we take a = 1 and b = 0.5, thus inhibiting any inter-
sections. The attenuation function I(y) = (1 + |y|)™3° is strong enough to give a tessellation
covering almost the whole plane when ¢ = 0. If we assume however ¢ = b(1 + R)™® and take:
a) R=04,b) R=12,¢c) R=2,d) R =00 (¢ =0). As the result we get a sequence of
sub- tessellations, with each of its cells constrained to a disk of radius R (wherever a cell has
diameter less than R it has its final shape). All cells start growing at the same time. But
the effect of a “late-comer” can also be modeled. On Figure 6 an extra point is added at the
location X = (5, 3) at the time when the original tessellation has already “age” (size) R = 1.2.

The mark S is taken to be 20
g_ (1+R-12
N 1+ R '

Note that for a point y to be covered by this new cell, it has to have a distance from X less
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Figure 4: The first coverage process of Example 6.17 tending to the
Voronoi tessellation of the plane .

than

g 1/30
v = ()"
bls(y) +c

1/30
(2) -
c

_ o, ltR-12
N (1+ R)(c/b)1/30
= v'/R-02) -1~ R-12,

IN

that is, the new cell is always “younger” (its maximal diameter is less) than others. Note
however that, unlike in the original Johnson-Mehl model, the younger cell can conquer the
space already taken by an older cell. Thus in d) we have almost the Voronoi tessellation, where
no effect of coming late can be detected.
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Figure 5: The coverage process of Example 6.19 growing as in the
Johnson-Mehl model to the Voronoi tessellation of the plane.

Appendix

In the following proposition we show how to find the probability for an absolutely continuous
real valued random variable Y to be nonnegative knowing its Fourier transform. We explain
how to reduce this to the solution of a Reimann boundary problem (see [6]) on the real line
and show that the solution of this problem given in terms of a singular integral on the real line.

Proposition A.1 Suppose that the real valued random variable Y has a density and denote by
Y(€) = Elexp(—i€Y)], £ € R, its Fourier transform. Then

P(Y>0) =+ — L 40

>0)= 5 -5 | Telde (A1)

where the singular contour integral in the right hand side is understood in the principal value
sense.
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Figure 6: The late comer of Example 6.19.

Proof: Denote the density of Y by f(x). If we define f*(z) = f(z)1s50 and f~ (z) = f(z)1z<o0,
then

f)=f*z)+ f (z), forzeR (A.2)

and the probability of interest, P(Y" > 0), is the integral of f*(z) over R.

Let us define the function W(z) from the imaginary axis to the complez plane by ¥(if) =
P(€), &€ € R. Because ¢(€) is the Fourier transform of an absolutely continuous random variable
the following two properties hold:

1. the function ¥(z) satisfies Holder condition on the imaginary axis (cf. e.g. [5], Lemma 3,
p. 513);

2. U(z) is integrable on the imaginary axis (cf. e.g. [5], the corollary of Theorem 3, p. 510),
which implies that ¥(z) — 0 when |z| = oo and |¥(z)| < A/|z| for some A and for large
|2].
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Let us define the two functions ¥ (z) = [% e ** f*(z) dx for Re(z) > 0 (Re(z) denotes the
real part of the complex number z) and ¥~ (z2) = [* e **f () dz for Re(z) < 0. Note that
they are continuous in their domains and analytic in Re(z) > 0 and Re(z) < 0, respectively,
and that both vanish at infinity. From (A.2) we see that they satisfy

U(z) =0t (2) + ¥ (2)

for z on the imaginary axis. This means the pair ¥*(z), ¥~ (z) is a solution of a so called
Riemann boundary value problem posed on the imaginary axis (see [6], Chapter 2). Under the
conditions 1 and 2 mentioned above, the solution of this boundary value problem is unique
and can be obtained via Sokhotski’s formulas, in particular, when ¢(0) = 1, ¥*(0) is equal to
the right hand side of (A.1) (see §4.6, §14.2 and following in [6]). On the other hand, by our
definition, U+ (0) = P(Y > 0). |

Remark: Note that the function to be integrated in (A.1) has a pole at £ =0. In order to
calculate this so called singular integral in the principal value sense, one has to calculate the
integral over the domain (—o0, —€] U [¢, 00) and then let ¢ decrease to 0 (see [6]).

In the following proposition we give simple conditions for the Poisson shot-noise random
variable Is(y) to be absolutely continuous with respect to Lebesgue measure.

Proposition A.2 For any y € R, the random wvariable I(y) is absolutely continuous with
respect to the Lebesque measure (has a density) if n(R) = oo and for each A C RT of Lebesgue
measure 0,

/R | M(L(s,3) € 4) u(d) (ds) = 0. (A.3)

Proof: Fix y, without loss of generality let y = 0. Take A C R, of Lebesgue measure 0. Then
for any r > 0
P(Is(0) € A) =P(I, + I} € A),

where I, = [p . L(s,—2) (d(z,s)) and I} = [ga g«

Poisson assumption I, and I¢ are independent. Moreover

L(s,—z) ®(d(z,s)). By the

P(I5(0) € A) = ip([r +1¢ € A|®(B(0,r) x D) = n)P((I)(B((),r) x D) = n)

n=0

Note that conditioned on CIJ(B(O, r) X ]D)) = n, with n > 0, the random variable I, can be rep-
resented as the sum on n independent random variables, distributed as L(S, —X) where S and
X are independent, with distributions H(ds) and u(dx)/u(B(0,7))1(xz € B(0,7)) respectively.
By (A.3) P(I, + It € A|®(B(0,7) x Ry) =n) = 0. Thus

P(I5(0) € A) < P((I)(B((),r) xR,) = o) 50 when r — co.
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