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Représentation des formes par l’intersection de n — k
hypersurfaces.

Résumé : Nous étudions la possibilité de représenter implicitement une variété de di-
mension k plongée dans ’espace Euclidien R® comme l’intersection de k hypersurfaces. Du
point de vue analytique, cela revient & définir la variété plongée comme 'image réciproque
d’une valeur réguliére d’une fonction vectorielle. Cette approche est a priori séduisante car,
dans ce cas, la fonction vectorielle en question est différentiable en tout point de la variété
d’intérét. Nous nous intéressons plus particuliérement aux variétés se déformant au cours
du temps et mettons en évidence une Equation aux Dérivées Partielles vérifice par ladite
fonction vectorielle.

Mots-clés :  Représentations implicites des formes, Mouvement de courbure moyenne en
co-dimension arbitraire.
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1 Introduction

The important question of designing practical implicit representations of evolving manifolds
for computer simulation purposes has been widely investigated by the Computational Physics
[20, 24, 25, 28] and Computer Vision [4, 19, 27, 6, 3, 5, 7, 12, 18, 21| communities but also
by the mathematicians [13, 14, 11, 16, 17]. Very satisfactory solutions have been proposed
for the case of planar curves and even for general hypersurfaces (nevertheless, the strongest
theoretical results apply only to planar curves). The case of manifolds of higher codimension
has been less explored. Two recent contributions in this direction are the following.

Ambrosio and Soner [1] propose to evolve an e-neighbourhood of the manifold (i.e.
an hypersurface). For instance, in the case of a curve in R3, it consists in evolving a
tubular neighbourhood of the initial curve which has a small radius . The relation between
the motion of this hypersurface and the one of the curve is established. This scheme was
successfully adopted by Lorigo et al. [18] to the problem of detecting blood vessels in
volumetric medical images. A drawback of this approach is that the manifold of interest
(i.e. the curve) is somewhat “lost” in the middle of the evolving hypersurface (i.e. the tubular
neighbourhood) and is not as accurately positioned as it would be, for instance, by the zero-
crossing of a smooth function.

Alternatively, Ruuth et al. [22] propose to represent a curve in R® by means of a (two-
dimensional) complex function of unit magnitude defined on R® whose phase angle “winds”
around the curve. This function is not defined at points of the curve of interest. The time
evolution is “diffusion-generated”, i.e. it is the consequence of a diffusion-renormalisation
loop. Very convincing results are shown demonstrating in particular the possibility for the
curve to have its topology altered during the evolution. Nevertheless, in this approach, the
curve of interest is defined as the set of singularities of a function and it is a drawback when
dealing with sampled functions.

In the context of computer simulations where the sampling side-effects cannot be ne-
glected, we believe it is an important advantage to define manifolds as the zero-crossings of
smooth functions, and it is not the case of these two propositions. This naturally suggests
to consider a manifold of dimension k as the intersection of n — k hypersurfaces S;, each one
being described implicitly by a smooth scalar function, i.e. S; = u; *(0). The intersection of
the hypersurfaces M = S; N---NS,_ is then equal to u=1(0), where u = (ug, - ,Un—k)-
We present some ideas for realising this program and start by pointing out difficulties that
must be faced:

i) According to the Theory of Submanifolds, the intersection of hypersurfaces is not nec-
essarily a submanifold. The adequate notion is that of the transversality condition [9]:
the tangent spaces TS, should be linearly independent at each point @ € M. Geo-
metrically speaking, it means the hypersurfaces S; represent n — k non-degenerated
constrains and we shall only consider the ideal case where the S;’s intersect orthogo-
nally at each time instant.

it) A priori, infinitely many sets of n — k hypersurfaces can share the same intersection.

INRIA
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ii1) A single hypersurface can be described implicitly by infinitely many different scalar
functions.

The remainder of the paper is organised as follows. Section 2 is a preliminary discussion
of the equivalence between the geometrical point of view (i.e. an evolving curve is seen as
the intersection of two evolving transverse surfaces S; and S;) and the analytical point
of view (i.e. the same evolving curve is seen as the inverse image of a regular value of
a time-dependant vector function, M = u~1(0)). In section 3, we apply some Differential
Geometry results exposed in [26] in order to build, in an intrinsic way, a set of n—k evolving
hypersurfaces intersecting orthogonally at the manifold of interest. Then, in section 4, we
consider the interesting case of arbitrary transverse hypersurfaces intersecting at the manifold
of interest M. Given a certain desired motion of this manifold, we establish a PDE that must
be satisfied by the describing function u. The motions of the corresponding hypersurfaces
are discussed at the same time.

2 Notations and preliminaries

In this paper, the terms “curve” and “surface” have their classical sense, i.e. submanifolds of
R3 with dimensions 1 and 2. A curve is embedded in R® by p — C(p), p € R and a surface
by p — S(p), p € R. For the sake of simplicity, the ideas shall be presented for differentiable
curves of R® evolving according to the mean curvature motion. Nevertheless, it is under-
stood that the objective of the authors is to design a scheme which can be generalised to
any dimension and codimension and other motions as well. Guidelines are given each time
this generalisation is not trivial.

We begin by making the notion of a manifold deforming precise. Then we recall the
notion of the inverse image of a regular value and discuss its geometrical interpretation.

2.1 Evolution of a manifold

An “evolution of a curve” will denote a smooth one-parameter family of curves t — C(p, t)
where t € Rt is the time parameter. This can be modelled as the solution to the following
PDE with Dirichlet boundary condition:

Cli=o s given (a)
aC 1)
ot = BN, (b)

where 8 : C — R is a smooth scalar velocity function and N is a smooth normal vector field
of C. An “evolution of a surface” can be defined similarly and a geometrical interpretation
of (1) is then given in Fig. 1. The fundamental curve evolution we are most interested in
is the curve shortening flow for which 8 = k, the Euclidean curvature and N is the unit

RR n° 4011



6 José Gomes and Olivier Faugeras

S(t + dt)
BN

S(t) S(t)

Figure 1: If a family of surfaces ¢ — S(p,t) satisfies %—? = BN, then at time t, the velocity

of a point over the surface S(t) is 3 times the normal vector N to S(¢) at this point.

normal vector field of the curve. This particular motion has been studied in great detail for
planar curves by the mathematicians mentioned in the introduction.

2.2 Inverse image of a regular value

This notion, introduced by the Theory of Isometric Immersions (cf [8, 10] for example)
motivated a lot this work. We shall only need a definition and a lemma.

Definition 1 Let u: R* — R*, with k < n, be a differentiable function and yo € R*. yq is
3

said to be a regular value of u if Du = 3% is surjective at all points x° € u™'(yo).
Lemma 1 Let u : R* — RF q differentiable function and yo € R* a reqular value of u.
Then the set u=t(y°) is a (n — k)-dimensional submanifold of R™.

Proof : This is a particular case of the implicit function theorem. Let (x°,y°) € R* x RF
such that u(x?) = y° and y° is a regular value of u. Since D ou is surjective, we can without
loss of generality give a privileged role to the k*” first coordinates of x° and suppose

I(u1(x), -+, uk(x))
. 2
8@l 2l 7 )
Now, we define the function
:R™ R™
[ 3)
(xla' o 7$n) i (’Lbl(X)," : ,Uk(X),$k+1," ‘ 7xn)'

It follows easily from (2) that the Jacobian matrix of f verifies det(%(xo)) # 0. By the
inverse function theorem, f is a diffeomorphism between certain neighbourhoods Vo C R”

INRIA
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and Wy, C R” of xo and o = [0, , 40, yp 1,200, 2] 7.

Hence, we can consider the function C(zki1,--- ,%n) = f 1y, - 90, Try1,- - ,2n) de-
fined from a (n — k)-dimensional subset of Wy, onto Vyo.

The function C is the embedding of a manifold of dimension n — k in R, i.e. a (n — k)-
dimensional submanifold of R® such that u(C) = y°. This result is true for all points in
u~!(y%) which concludes the proof.

O

2.3 Link between the inverse image of a regular value and the in-
tersection of hypersurfaces

The transversality of the hypersurfaces is obviously related to the surjectivity condition of
the lemma. More precisely, let u : R® — R? such that 0 € R? is a regular value of u.
Then, according to the lemma, u=1(0) is a curve. Indeed, denoting by (u1,us) the two
components of u, the sets S; = u; (0) and Sy = u, *(0) are oriented isosurfaces of the two
functions x — w1 (x) and x — us(x) if and only if 0 is a regular value of u; and us (i.e. if
Vuy and Vus are not null on S; and S, respectively). If , in addition, Vu; x Vus # 0 on
M = S; N S, then the two surfaces are transverse (indeed Vu,; is normal to S;) and their
intersection is a curve. The condition Vu; X Vug # 0 means exactly that Du is surjective
at M or equivalently that 0 is a regular value of u.

Although these considerations show the u;’s are not independent from one another, the
way they should be constructed is still unclear. This is in particular a consequence of iii),
namely of the non-uniqueness of the implicit representation of an hypersurface. In order to
simplify considerably our study, it is desirable to be allowed to identify an hypersurface and
its implicit representation. This uniqueness can elegantly be achieved by the following choice:
each coordinate of u is chosen to be the oriented distance function to the corresponding
surface, namely:

ui(, t) = + of llz —yll,

where the sign + is chosen according to the orientation of S,.

Remark 1 This can be generalised to higher dimensions since an hypersurface is always
orientable [10].

A good understanding of the properties of the distance functions shows that this choice is
appropriate. Indeed, it is important to have at our disposal the relation between a desired
motion of the surface S; and an associated parabolic PDE satisfied by u;. Thanks to this
relation, not only S; and u; can be identified but also their time evolution. This relation is
known for the oriented distance functions [28, 15] and will be used in the section 4.

It remains to design a pair of proper evolving transverse hypersurfaces.

RR n° 4011
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g

S Sy S; US2 C=SNn8S,

Figure 2: In this figure, a segment of an circular helix C is shown to be the intersection
of two transverse surfaces S; and S, which are ruled surfaces respectively spanned by the
normal and the binormal vectors of C.

3 Intrinsic transverse hypersurfaces

This section is an attempt to design, in an intrinsic manner, a set of n — k hypersurfaces
of R™ intersecting properly at a given (n — k)-dimensional submanifold of R™. The natural
idea that is developed is the following: in the case of a space curve, one can construct two
ruled surfaces whose generatrix is the curve and rulings are respectively the normal and the
binormal vector field of the Frenet frame (c¢f Fig.2). The two surfaces intersect orthogonally,
which is the ideal situation. Then, if the curve initiates a motion, one can calculate the evo-
lutions of the two corresponding ruled surfaces by studying how the Frenet frame is affected
by the motion of the curve.

The question we address here is the pros and cons of this intrinsic approach in arbitrary
dimension. As a first step in the direction of general submanifolds of R”, we begin with
space curves, then we give guidelines for generalising.

Given a curve C(p,t) evolving through the equation

aC
Y _ kN
ot

we are looking for a pair of surfaces S;(p, A;,t), i = 1,2 such that C(p,t) is on S; at each
time instant and the normal vectors to the two surfaces are orthogonal along C. We call
such a pair a transverse pair of surfaces for the curve C.

INRIA
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We recall the Frenet formula

T, = kN
N, =—-«T+ pB
s — _pN7

where k is the curvature, p is the torsion of the curve and s is the arc-length.

3.1 Finding transverse pairs

We write
S(p, A\, t) = C(p,t) + A(uT + vN + wB),

where u,v and w are unknown functions of p, hence of s, to be determined.

In general, such ruled surfaces are only regular in a neighbourhood of their generatrix
but it is enough for our purpose. Indeed, the differentiability of the describing functions u;’s
in the vicinity of the embedded manifold is sufficient for positioning it with a good degree
of accuracy and for computing its differential properties.

Let us compute two tangent vectors of S:

S:=Cs + \u'T+uT, + v N +oN, +w'B+wB,) =
1+ Au' = k)T + A" + uk —wp)N + AN(w' + vp)B,
Sy, =uT +vN + wB.
Let us compute the cross-product of these two vectors, yielding the normal to the surface
Sx X S5 = Av(w' +vp) —w' + Kk —wp)T+
(w(1 4+ XMu' — kv)) — du(w' +vp))N+
Au(v' +uk —wp) —v(1l + A’ — kv))B.

Additional constrains on the ruled surfaces have to be chosen in order to find some proper
u,v and w functions. We propose two solutions, the first one being the more natural.

First solution

We begin by dropping the tangential component (i.e. u = 0) arguing that the rulings should
not be parallel to the tangent vector of the generatrix otherwise the surfaces would be
singular. Next, we observe that v and w are only defined up to a scale factor so that one
can add the constrain v/v2 +w? = 1. Finally, we impose that the two surfaces intersect
orthogonally (i.e. we expand (S1, X S1,)-(S2, X S2,) =0 for A = 0) and obtain the solution

Si1(p, A\, t) = C(p,t) + A (cosON + sin 6B)
Sa(p, A\, t) = C(p,t) — A (sin ON + cos6B),

RR n°® 4011



10 José Gomes and Olivier Faugeras

where 6 is an arbitrary angle.
This solution is weakly constrained in the sense that the ruled surfaces are not orthogonal
to the curve along the whole rulings but only at the intersection, ¢.e. for A = 0.

Second solution

We also propose a more constrained solution by imposing that the cross-product Sy x S;
of the two normal vectors is in the normal plane of the curve C for all A. This yields one
equation in the three unknown functions u,v and w:

w'v —wv' + p(v? + w?) — uwk = 0.
We can conveniently express this as an expression in the ratios V = 2 and U = =, if w # 0:
V' —p(14+V?) + kU =0. (4)
We want this to be true for the two surfaces:
V= p(l+VH+kU;=0 w; 0, i=1,2. (5)
We also want the two normals to be orthogonal along C:

wiws + v1v2 =0,

or
iva+1=0.
This last equation implies
Vl
V=2
2 ‘/'12
By comparing the two equations (5) we obtain, if x # 0,
Uy = U V2. (6)
A possible choice is
Uy =U,=0.
In that case one can integrate (5) and obtain
Vi=tan [ =0, 7
and therefore V5 = —1. We have found the equations of two surfaces containing the curve

C, intersecting at a right angle along C and such that their normals along C are in the
normal plane:

S1(p, Al,t) = C(p, t) + /\111)1(N — L,QB)

B
Sa(p, A2, t) = C(p, t) + Aawa(N + ;)

INRIA
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Figure 3: A circle is shown to be the intersection of two ruled surfaces: the plane containing
the binormal vectors (and the circle itself) and the cylinder generated by the circle and ruled
by the binormal vectors.

A natural choice is to take w; = 1 and wy = ¢:

Sl(p, )\1, t) = C(p, t) + /\1(N - QDB) (8)
S2(p, A2,t) = C(p, t) + A2(¢N + B) 9)

Note that in the case where the curve is planar, ¢ = 0 and one obtains the “natural”
equations (cf Fig.3)

Sl(p, )\1,t) = C(p, t) + )\1N
Sa(p, A2,t) = C(p, t) + A2B

3.2 Evolution of the transverse pair

We now want to compute the time evolution of the transverse pair of surfaces. In order to
do this, we need to compute the time evolution ¢; of ¢, i.e. the time evolution of the torsion
p, and the time evolution of the normal N and the binormal B. It turns out that we will
also need the time evolution of the tangent T and the curvature. We do it for the surface
S; and drop for convenience the index 1:

St = Ct =+ )\(Nt - thB - (th)
We can do this systematically using a combination of the following well-known formula [23]

o? 0 92

atos ~ “as T Bsot (10)

RR n® 4011



12 José Gomes and Olivier Faugeras

and the Frenet formulae. We assume a more general time evolution for C than mean curve
motion, i.e.

oC
— =aN B.
5 = @ + 5

Evolution of the tangent
Equation (10) yields

62
Otds

C=T;=axT+ %(QN +6B) = (a/ = pB)N + (' + pa)B=aN+bB, (11)
where a = o/ — pf and b= ' + pa.

Evolution of the normal

Let us compute the evolution of the normal. The first Frenet equation and (10) yield

o2 o
515 T = N + 5N, = ar(—#T + pB) + T

We combine this result with equation (11):
kN + kN; = ak(—&T + pB) + a'N + 0'B + a(—kT + pB) — bpN =
—k(a+ak)T + (@' —bp)N + (V' + p(ax + a))B.
From which we obtain the evolution of the curvature and of the normal:
ke =a —bp (12)
kN; = —k(a+ ak)T + (b' + p(ak + a))B = ¢N + dB. (13)

Evolution of the binormal

Once again we use equation (10) and combine it with the second Frenet equation

0? o
%N = —K'/tT - KTt + ptB + th = CYK/(—K?T + pB) + gNt
We reorganise this equation as
15]
piB + pB; = (ki — ak®)T + kaN + k(b + pa)B + —N. (14)

Js
Equation (13) yields

k' N; + K%Nt =N+ c(—&T + pB) +d'B — dpN = —ckT + (¢’ — pd)N + (d' + pc)B.

INRIA
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We will not pursue the calculation. It is clear that this equation combined with (13) yields
the term 2N, that is needed in (14) from which we will immediately obtain the time
derivative of the torsion, p;, and the time derivative of the binormal B;. Equation (7)
implies that ¢; = tan [ p;.

In the end, using also (13), we have a complete definition of S;(p, A, t) in the coordinate
system (T, N, B) (p,t). But the previous calculations show that the orders of the derivatives
of the curve C that have to be evaluated are too high for an implementation of this method.
This is confirmed by the analysis in the next section.

3.3 One-dimensional manifolds embedded in R"

The previous results can be extended by means of a generalisation of the Frenet frame ([26],
IV, p.29). Unfortunately, the determination of an intrinsic basis of the normal space requires
high order differentiation of the involved functions. Indeed, let s — C(s) be an arc-length
parameterisation of a one-dimensional submanifold of R” and v; = C; its unit tangent
vector. Then

V1 -V = 1

implies

d
g(vl-vl):0:2v1-v15. (15)

The function k; = |v1s| is the “first” curvature of C (it is the same definition as for space
curves) and, if it does not vanish, it allows to define

1
V2 = —Vis,
K1
which is orthogonal to v; and of unit norm
vy -v2 =0,
Vg - Vg = 1.

By differentiation of these last two equations with respect to s, we obtain
Vg - V9os = 0

and
K1+ v1 vy, =0,

which prove the vector vss has a component along v1 equal to —k1 and another component
orthogonal to both v; and v2. In consequence, it is of the form

Vs = —K1V1 + Kav3,

where
Ko = |vas + K101 |

RR n°® 4011
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and
1
v3 = —(va2s + K1v1),
K2

provided that the “second” curvature function ko of C does not vanish.

By induction, it is thus possible to define the iy, curvature
Ki = |Vis + Kic1041|

and the (i + 1)y, vector of the generalised Frenet frame

1
Vit1 = ;(’Uis + Ki1vi1).

7

The corresponding Frenet formula, needed in our computation would be
Vis = —Ki—1Vi-1 + KiV;.

These last results discouraged us to pursue in this interesting direction for two reasons.
First, the computation of an intrinsic basis of the normal space requires high order differ-
entiation (n — 1 order) of the describing functions which, from the numerical standpoint, is
reasonable for space curves but is not for greater dimensions. Second, this basis is defined
only for “nicely” curved manifolds, i.e. when none of the curvatures vanishes. For example.
it is simply undefined for a straight line in R® and this is too limiting for real applications.

Nevertheless, using an intrinsic set of transverse hypersurfaces is not the only possible
solution to the problem we are considering. An alternative approach is to consider we are
given “out of the blue” a set of initial transverse hypersurfaces whose intersections define a
manifold of lower dimension (in applications, initial manifolds are often very simple analyt-
ical manifolds for which it is possible to guess such tranverse hypersurfaces). The problem
is then to study how to evolve properly these initial hypersurfaces.

4 Arbitrary transverse hypersurfaces

4.1 The case of space curves

Alternatively then, we suppose (any) two orthogonal surfaces S; and S, are given implicitly
in the form of their oriented distance functions w; and us. Their intersection is a curve.
These two surfaces are not intrinsic to this curve since another pair of surfaces (S}, S%)
possibly intersect at the same curve. The question is then to find any evolution of these two
surfaces which meets the following two requirements: (i) The surfaces stay orthogonal (ii)
Their intersection is a curve evolving under mean curvature flow.

INRIA



Shape representation as the intersection of n — k hypersurfaces. 15

As explained in section 2, by “finding an evolution of S;”, we mean the design of a
velocity function 8; : S; — R. In [28, 15], it is shown that if S;(¢) is modelled implicitly by
its oriented distance function u;(.,t), then the relation
% = Bi(z —u;Vu;), 1=1,2, (16)
ot
holds. It is the relation between the evolutions of S; and u;. The two scalar velocity
functions f;, @ = 1,2 are the unknowns of our problem since, once known, the two equations
(16) define what we called the u evolution. The scalar function x — 3;(x — u;Vu;) will be
denoted by b;. The functions 3; and b; are of different nature (5; is defined over S; whether
b; is defined in R?®) but are closely related since b; is a continuation of 3; in R3.

We formalise these ideas by writing the following set of equations

' aa_(t: = kN (i)
u(C(p,t),t) =0, Vt (ii) an
(Vi Vug) o =0, Vi£5 (i)

\ aas;- = AN, (iv)

where S; = u;(0), C = S; N Sy and initial conditions are given (i.e. u(.,t = 0) is known).
The interpretation of these equations follows easily from the previous discussion and the
unknowns are the velocity functions 3; : S; — R.

We find necessary conditions by calculating

- the first order derivative of (17ii) with respect to ¢: it provides a relation between f3; ¢
and the curvature of C.

- the second order derivative of (17ii) with respect to p: it provides relations between
the curvature of C and the spatial derivatives of u up to the second order.

- the first order derivative of (17iii) with respect to t: it provides a relation between

V3, and V.
In detail, we obtain for points of C
8’Lbi
= kN - Vu; 1
5 = F Vu (18)
and ac acC
—~D2¢—— N - i:07 1
o u o kN - Vu (19)

which yields the coordinates of the mean curvature vector kN in the orthonormal basis
(Vuq, Vuz). This, along with (17iv), gives 3; over C C S, (¢f. Fig. 4) by the formula

RR n°® 4011
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Figure 4: The equation (22) gives the value of §; over the curve C which is traced on S;.
The questions marks remind us that 3; is not only defined over C but over S;.

oC oC
5:(C) = (— - D3, —) 20
© =3 D), (20)
= (Aul - Vu1 - Dzui Vu1 - VUQ - Dzui VUQ) Ic (21)
= (Auz - VUj . Dzui Vu]')‘c 7j 75 1 (22)
since u; is a distance function and consequently Vu; - D2u; Vu; = 0.
Next, the third differentiation yields the linear equation
Vﬁz . VU]‘ + Vﬂj -Vu; + ﬂiVui . D2Uj Vu,; + ﬁjvu]‘ . Dzu,- VUJ' =0, 1 ;é 7, (23)

which is a relation between Vj3; and V3, at points of C, and therefore informs us on the
way (3; and 3; should be extended from C to the whole surfaces S; and S;. The existence
of such a relation is a consequence of the fact that the two surfaces need coupled motions
in order to remain tranverse.

We propose an interpretation of the terms of this equation.

Since, at points of C, the normal vector Vu; is orthogonal to C and tangent to S;, the
quantity Vu; - D?u; Vu; is the normal curvature of S; in the direction orthogonal to C. In
particular, if the surface S; is ruled orthogonally to C, then this quantity is null.

More over, notice that, at points of C, V; is a tangent vector of S; which can be
decomposed in a component tangent to the curve and another one normal to the curve.
Besides, since the value of ; is known along C by (22), so is the component Vj; - T of V;
tangent to C. So, only the component of V/3; normal to the curve is unknown and the true
unknowns of the system are the two scalars V3, - Vu; and Vj; - Vu,. We interpret these
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Shape representation as the intersection of n — k hypersurfaces. 17

two quantities as the velocities of the “rotations” of S; and S; around C. Indeed, consider
a point € C and a curve v, of S; tangent to Vu; and passing through = (any such curve
will do but the most natural choice is the corresponding geodesic curve of S; (c¢f Fig.5)). We
parameterise =, by arc length, starting at x.

The motion of this curve is given by

Figure 5: This figure depicts the rotation of the curve ~, around C (i.e. around Vuj X Vus),
see text.

7it = aini7

where a;(0) = 8;(x) and n; = Vu;.
Next, we differentiate this last relation with respect to s and use once again (10) in order
to obtain
n;; = Oé;ti,
where t; = Vu,; and o}(0) = Vf;(z) - Vu;(x), which quantifies the rotation velocity of v,
around the tangent to C, n; X t;.
Hence, if we consider also the curve v, of S;, the equation (23) can be written

! !
o; + ok + o+ ok = 0,

where «; is the velocity of the curve v, ; is its curvature (and similar definitions for the
index j). The two scalar unknowns are a; and o). This equation means that the two
surfaces should turn around C with rotation velocities which are related to one another but
also depend upon the curvatures of v, and «,: this will maintain the transversality (even
well, the orthogonality) of the surfaces. Notice that if k; = k; = 0, i.e. if S; and S; are
ruled orthogonally to C, the equation just says that the surfaces should turn with the same
rotation velocity. There is a one-parameter family of solutions to this affine equation

r_
o, =r—c

I
a; =-r—g,
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where ¢ = % andr € R
We choose the trivial and symmetric solution 7 = 0 because it is simple (this choice
corresponds to the “laziest” possible motion of the two surfaces).

Setting
Vi -Vu; =VB;-Vu; = —¢, i#j, (24)
we extend 3;(x) along v, with slope ¢, c¢f Fig.6.

Figure 6: The equation (24) expresses how to extend the value of 3; from C to the whole
surface.

Putting it all together, §; is first estimated over C by (22), then over the whole surface
S; by (24), and finally it is propagated from S, to the whole embedding space in order to

obtain b; by
bi(z) = Bi(z — u(z)).

A practical way to construct the scalar field b; is to solve the following first order system
(at each time instant ¢ and for 4 = 1,2) until it reaches a stationary solution

b; = Au — Vu; - D?u; Vu, ,if u; = 0 and u; =0, (a)
% = sgn(u;) (—¢ — Vb; - Vu;) ,if u; =0 and u; #0, (b) (25)
gb" = —Vb; - Vu, Jifui #0and u; #0, (¢

-

where 7 is an auxiliary “time” variable and

1
c= 5 (ﬂiVui - D2Uj VUZ' + ﬂjVuj - Dzui Vu]-) .
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The interpretation of this system is as follows. The purpose of equation (a) is to compute
b; over the curve C (i.e. u; = 0 and u; = 0). The equation! (b) propagates the values of b;
from C to the whole surface S; (i.e. u; = 0 and u; # 0) by varying these values with a slope
equal to —c. The transport equation (c) propagates the values of b; to the whole space (i.e.
u; # 0 and u; # 0). Remark (a) is the initial condition for (b), which is itself the initial
condition for (c).

4.2 Generalisation to any dimension

We shall finish this section by a discussion on some aspects of the generalisation of the
previous equations to the case of a manifold M of dimension k& embedded in R*. We focus
on a particular hypersurface among the n — k ones, for instance the 8.

The equation (22) is generalised trivially by subtracting from Aw,; all the normal com-
ponents Vu; - D?u; Vu;,Vj # i. Indeed, the component of the mean curvature vector H of
M along Vu; is related to the Hessian of u; by

H-Vu; = Z T, D?u; Ty,
£=1 k

where the T'y’s form an orthonormal basis of the tangent plane of M.
Besides, since the matrix D?u; is symmetric we have

Au; = Z T, -D?u; T, + Z N,, -D?u; N,,,
£=1,--- ,k m=1,--- ,n—k

where the IN,,,’s form any orthonormal basis of the orthogonal complement of the tangent
plane of M. By choosing the n — k vectors Vu,,’s for this purpose and remembering that
Vu; - D2u; Vu; = 0, one proves that

bz(C) = Aui - Z V’Lbj . Dzui VUj.
J#i

As depicted in Fig.4, this last equation defines the value of §; only over a k-dimensional
submanifold of the hypersurface S; and it remains to extended this values in n — k — 1

directions to “fill” S;. As far as equation (23) is concerned, it is replaced by the system of

% equations (it is the number of pairs of hypersurfaces) and (n — k)(n — k — 1)

unknowns

VBi-Vu; + VB, - Vu; + 3iVu, - Dz”LLj Vau; + B;Vu; - D?u; Vu; =0, Vi # 3, (26)

1This equation plays the same role as the classic equation % = sgn(v) (1 — |Vv|) in the reinitialisation

of the oriented distance functions. Here it is not used for this purpose but for building a function with slope
—c instead of 1.
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which correspond to the fact that each one of the 3;’s has to be extended inits n — k — 1
tangential directions Vu;,Vj # ¢ so that each pair of the hypersurfaces remains orthogonal.
There are % degrees of freedom (one can choose the more symmetric solution
as in the case of the curve) and it can be given a geometric interpretation by means of a
generalisation of the “rotation” introduced in the previous study of curves. In the first place
we have to understand what it means for a (n — 1)-dimensional vector space to turn around
a k-dimensional subspace of it. Such a notion is developed in [2] where general rotations in
Euclidean spaces are considered.

In order to interpret it, we first define what is a simple rotation in R® by considering two
orthogonal unit vectors n; and n,. The simple rotation corresponding to this bivector leaves
invariant the (n — 2)-dimensional space which is orthonormal to the bivector and performs
a “regular” rotation in the two-dimensional plane (1;,m,). In an orthonormal basis of R"
whose first two vectors are 1, and m,, this simple rotation can be represented by the n x n
matrix

cosa —sina
sina  cosa (0)
1 , (27)
(0) '
1

where « is the angle of rotation.

It is demonstrated in [2] that a general rotation in R” is the product of a certain number
< 3 of simple rotations whose bivectors are orthogonal to one another. Returning to the
case of a (n — k)-dimensional manifold turning around a k-dimensional subspace of it, this
fact implies the existence of an orthonormal basis of R* whose k first vectors are in T, M
and remaining ones are in N, M such that the local rotation of T,.S; around T, M can be

expressed by a n X n matrix of the form

1

cosay; —Ssinog

sin oq COs Q1 (28)

(0) COS Qg (n—t) —sinaE(nT_k)
sinaE(n%k) COS QU (noky

Thus, this rotation is a product of E(“5%) simple rotations leaving invariant T M (cf Fig.7).
Besides, simple rotations corresponding to bivectors belonging entirely to T S; do not count
since they describe a motion of S; within itself (i.e. an alteration of the parameterisation)
and do not change its geometry. Consequently, we consider only simple rotations which
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involve the normal vector Vu; in their bivector. A rotation of S; which does not leave T, S;
invariant is thus exactly equal to one simple rotation whose bivector is formed by Vu; and
another unit vector orthogonal to C and T;; M. Indeed, if this rotation were the composition
of several simple rotations then all of them would need to have Vu; involved in their bivector
which contradicts the orthogonal requirement of the bivectors. The description of such a
rotation requires the choice of the second vector of the bivector (n — k — 2 parameters are
necessary to choose a unit vector in a n —k— 1 dimensional space) and the choice of the angle
(1 parameter) which makes n — k — 1 parameters. To complete the geometric interpretation,
each hypersurface has to remain orthogonal to the other n — k — 1 hypersurfaces (we have
n—k —1 constrains and n — k — 1 degrees of freedom by hypersurface) and each constrain on
a pair of hypersurfaces adds 1 parameter like in the case of the curve which makes a total
of % degrees of freedom.

Returning to our natural choice (4.e. the more symmetric solution which we note Vb;-u; =
Vb; - u; = —c4;), it remains to generalise the equation (25b). The principle is to extend the
values of §; from C to the whole hypersurface S; by changing these values with the slopes
cij- A straightforward generalisation is to solve the equation

ob;
o = ngn(uj) (—c¢ij — Vb; - Vuy) . (29)
J#i

To complete, the equation (25¢c) is already valid regardless of the dimension but n — k
such equations (one per hypersurface) have to be solved.

5 Conclusion

This paper has investigated a scheme to represent and evolve a k-dimensional manifold
embedded in R™ as the intersection of n — k transverse hypersurfaces. We have enlightened
the difficulties of this approach and proposed a methodology to deal with them.

Nevertheless, a posteriori, this method appears to be unappropriated to deal in practice
with general situations. Indeed, the construction and evolution of hypersurfaces in an in-
trinsic way requires high order differentiation of the involved functions which is, numerically
speaking, not reasonable. A natural fix to this problem was to consider arbitrary transverse
hypersurfaces (involving only second order differentiations). But, the presented results are
local and would have to be implemented in a narrow band of the evolving manifold. This
very last consideration discouraged us to pursue in this interesting direction because of the
issue of topological changes. Indeed, if two initially disconnected manifolds are to be merged
(which occurs quite often in practice) then the corresponding implicit descriptions have no
reason to be smooth across the two narrow bands at the time they touch one another (since
in each narrow band, the hypersurfaces are initially arbitrary!).

In addition, we believe it is also an important feature for a practical implicit represen-
tation to deal, in an homogeneous way, with embedded manifold of any dimension. It is
not the case of the presented method since, for instance, the intersection of two tranverse
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T2S;

Figure 7: This figure depicts the general situation of a manifold M of dimension k defined
as the intersection of n — k hypersurfaces S; of R*. We consider a point & of M. A
privileged role is given in the figure to the i*" hypersurface whose tangent linear space
T.S; is represented as an “horizontal” hyperplane. The manifold M is traced over S; and is
consequently tangent to T, S;: M is represented as a curve tangent to the “horizontal” plane.
The vector Vu; is the unit normal vector to S; and also to 75S;. The remaining Vu;’s, j # 1
are both normal to M and to Vu;: the linear space spanned by these Vu;’s is represented
as a (n — k — 1)-dimensional multivector of T,,S; orthogonal to M. The k-dimensional linear
space T M is represented as a k-dimensional multivector of T,S;. The represented vector
and multivectors form an orthonormal basis of R™.
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surfaces of R® would never be a single point. For this simple reason, two immersed curves
intersecting at a point cannot be represented as the intersection of 2 surfaces when it is
possible in the approach of Ruuth et al. [22] (thanks to the fact their describing function
is not smooth). For the same reason, it is not possible to represent manifolds which have
borders since the borders are (k — 1)-dimensional manifolds.

It appears the moral of this story is that some important features of an ideal practical
implicit representation should be

i) Smooth in the vicinity of the embedded manifold.
#) Intrinsic to the manifold.
ii1) Able to represent, in an homogeneous way, any manifold of dimension 1,---,n — 1.

Future work in this direction should be to design a n-dimensional smooth vector function
related (intrinsically) to the distance function of the embedded manifold.
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