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Abstract: This report describes an original approach for content-based video
indexing and retrieval. We provide a global interpretation of the dynamic content of
video shots without any prior motion segmentation and without any use of dense op-
tic flow fields. To this end, we exploit the spatio-temporal distribution within a shot
of appropriate local motion-related measurements issued from the spatio-temporal
derivatives of the intensity function. These distributions are then represented by
causal Gibbs models. The considered statistical modeling framework makes possible
the exact computation of the conditional likelihood function of a video shot to belong
to a given motion or more generally activity class. This property allows us to de-
velop a general statistical framework for video indexing and retrieval with query by
example. We build a hierarchical structure of the processed video base according to
motion content similarity. We consider a similarity measure inspired from Kullback-
Leibler divergence. Then, retrieval with query by example is performed through this
binary tree using the MAP criterion. We have obtained promising results on a set
of various real image sequences.
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indexing - Query by example - Causal Gibbs models - Maximum likelihood estimation
- Temporal cooccurrence
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Caractérisation statistique non paramétrique du
mouvement pour I'indexation et la recherche de vidéos
par le contenu

Résumé : Ce rapport décrit une approche originale pour l'indexation de vidéos
par le contenu. Nous cherchons & fournir une analyse globale du contenu dynamique
des plans vidéo sans segmentation préalable au sens du mouvement, ni utilisation de
techniques d’estimation de champs denses de vitesses. Pour ce faire, nous exploiton-
s des distributions spatio-temporelles de mesures locales de mouvement calculées a
partir des gradients spatio-temporelles de la fonction intensité dans 'image. Ces dis-
tributions sont alors représentées par des modéles de Gibbs causaux. De plus, afin
d’effectuer une caractérisation du mouvement liée & la scéne observée, les mesures
de mouvement sont calculées dans la séquence d’images obtenue aprés compensation
du mouvement dominant entre images supposé dii au mouvement de la caméra. La
modélisation statistique proposée permet d’effectuer le calcul exact de la vraisem-
blance conditionnelle des mesures de mouvement conditionnellement & une classe de
mouvement ou plus généralement d’activité. Cette propriété nous permet de définir
un cadre statistique général pour 'indexation de vidéos par le contenu et la recherche
de vidéos par ’exemple. Ainsi, nous pouvons construire une structuration hiérar-
chique d’une base de vidéos relativement aux contenus de mouvement. Elle consiste
en la détermination d’un arbre binaire pour lequel chaque noeud est associé & un des
modéles causaux de Gibbs préalablement appris sur chaque vidéo de la base. Cette
classification hiérarchique exploite une mesure de similarité s’appuyant sur des dis-
tances de Kullback-Leibler. La recherche d’exemples vidéo similaires & une vidéo
proposée comme requéte peut alors étre effectuée a travers la représentation hiérar-
chique de la base de vidéos et un critére bayésien du type MAP. Nous avons obtenu
des résultats prometteurs sur un ensemble significatif de séquences vidéo réelles.

Mots-clé : Analyse non-paramétrique du mouvement - Indexation vidéo - Recherche
par I’exemple - Modéles de Gibbs causaux - Maximum de vraisemblance - Cooccur-
rence temporelle
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1 Introduction and related work

Image sequence archives are at the core of various application fields such as meteo-
rology (satellite image sequences), road traffic surveillance, medical imaging, or TV
broadcasting (audio-visual archives including movies, documentaries, news, ...). An
entirely manual annotation of visual documents is no more able to cope with the
rapidly increasing amount of video data. Besides, the efficient use of these databases
requires to offer reliable and relevant access to visual information. As a consequence,
this implies to index and retrieve visual documents by their content. A great deal
of research is currently devoted to image and video database management [1, 6].
Nevertheless, it remains hard to easily identify the relevant information for a given
query, due to the complexity of image and scene interpretation.

Furthermore, new needs appear for tools and functionalities concerned with effi-
cient video navigation and browsing, with the classification of video sequences into
different genres (sports, news, movies, commercials, documentaries, ... ) [36], with
the retrieval of examples similar to a given video query [11, 14, 24], or with high-level
video structuring such as macro-segmentation [37, 31|. Such applications require to
combine content-based video description with the definition of an appropriate mea-
sure of video similarity.

As far as content-based video indexing is concerned, the primary task generally
consists in segmenting the video into elementary shots [5, 39]'. This stage is usu-
ally associated to the recognition of typical forms of video shooting such as static
shot, panning , traveling or zooming [5]. At a second stage, it appears necessary to
provide an interpretation and a representation of the shot content. In that context,
dynamic content analysis is of particular interest. Mainly, two kinds of approaches
are considered to characterize dynamic content in video sequences. A first class of
approaches, based on parametric or dense motion field estimation, includes image
mosaicing [16, 21|, segmentation, tracking and characterization of moving elements
in order to determine a spatio-temporal representation of the video shot [16, 8, 15].
The description of the motion content may then rely on the extraction of pertinent
qualitative features for the extracted entities of interest, such as the direction of the
displacement [16], or on the analysis of the trajectories of the center of gravity of the
tracked objects [9]. However, these techniques turn out to be unadapted to certain
classes of sequences with complex dynamic contents such as motion of rivers, flames,
foliages in the wind, crowds, etc. Furthermore, as far as video indexing is concerned,

'Tn the sequel, we will also use for convenience the term of sequence to designate an elementary
shot.

RR n° 4005



4 Ronan Fablet, Patrick Bouthemy and Partick Pérez

the entities of interest may not be single objects but rather groups of objects, in
particular when dealing with sport videos. No tool currently exists to automatically
extract this kind of entities. Therefore, in the context of video indexing, it seems
relevant to adopt a global point of view that avoids any explicit motion segmentation
step.

This leads to consider a second category of methods for motion-based video in-
dexing and retrieval. Our goal is to interpret dynamic contents without any prior
motion segmentation and without any complete motion estimation in terms of para-
metric motion models or optical flow fields. Preliminary work in that direction has
proposed the extraction of “temporal texture” features, [11, 4, 27, 30, 34]. Motions of
rivers, foliages, flames, or crowds, for instance, can indeed be regarded as temporal
textures. In [30], temporal texture features are extracted from the description of
surfaces related to spatio-temporal trajectories. In [27], features issued from spatial
cooccurrences of the normal flow field are exploited to classify sequences either as
simple motions (rotation, translation, divergence) or as temporal textures. In our
previous work concerned with motion-based video classification and retrieval [11, 4],
we have considered global features extracted from temporal cooccurrence distribu-
tions of local motion-related measurements which were proved more reliable than
normal velocities. In this paper, we introduce a non parametric probabilistic model-
ing of the dynamic content of video shots evaluated by these temporal cooccurrences.
It allows us to design an original, coherent and efficient framework for both motion-
based video indexing and retrieval.

The remainder of the paper is organized as follows. Section 2 outlines the general
ideas underlying our work. Section 3 describes the local non parametric motion-
related measurements that we use. In Section 4, we introduce the statistical modeling
of the spatio-temporal distribution of the motion-related quantities computed from
a video sequence and the associated estimation scheme. Section 5 deals with the
application to content-based video indexing. This involves the design of a hierarchical
video classification scheme and of an appropriate video similarity measure based
on the Kullback-Leibler divergence. Both are then exploited to satisfy queries by
example with a statistical framework. In Section 6, we report experimental results
of video classification and retrieval examples over a set of video sequences. Section
7 contains concluding remarks.

INRIA
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2 Problem statement

As previously pointed out, the description of shot content must be combined with
the definition of an appropriate measure of shot similarity to handle video navi-
gation, browsing or retrieval. Usually, shot content characterization relies on the
extraction of a set of numerical features or descriptors, and the comparison of shot
contents is performed in the feature space according to a given distance such as the
Euclidean distance or more elaborated measures [32]. As a consequence, to cope
with video databases involving various dynamic contents, it is necessary to deter-
mine an optimal set of features and the associated similarity measure. These issues
can be tackled using Principal Component Analysis [25] or some other feature selec-
tion techniques [23]. Nevertheless, feature space is usually of high dimension, and
the considered distance is likely not to capture properly the uncertainty attached to
feature measurements.

Statistical methods appear more suited in that context. In addition, they also
provide a unified view for learning and classification. Furthermore, a Bayesian scheme
can then be adopted to properly formalize the retrieval process. In [35], modeling
of DCT coefficients by Gaussian distribution mixture is exploited for image texture
indexing and the retrieval operation is formulated in a Bayesian framework w.r.t.
MAP criterion. This statistical approach is shown to outperform classical techniques
using distances in the feature space.

We follow such a statistical approach in the context of motion-based video index-
ing. Our goal is to define a direct and general characterization of motion information
allowing us to provide within the same framework efficient statistical tools for video
database classification and video retrieval with query by example. To this end, we
have designed a motion classification (or, more generally, scene activity classification)
method relying on a statistical analysis of the spatio-temporal distribution of local
non-parametric motion-related measurements. We aim at identifying probabilistic
models corresponding to different dynamic content types. Indeed, in recent work
[18, 40], a correspondence has been established between cooccurrence distribution-
s and Markov random field models in the context of spatial texture analysis. We
propose an extension to temporal textures while introducing only causal statistical
models. More precisely, we consider causal Gibbs models. Since the exact condi-
tional likelihood function can be straightforwardly computed in that context, this
allows us to develop a general and efficient statistical framework for video indexing
and retrieval with query by example.

RR n° 4005



6 Ronan Fablet, Patrick Bouthemy and Partick Pérez

3 Local motion-related measurements

We have to define appropriate local motion-related measurements to be used for
classification. Since our goal is to characterize the actual dynamic content of the
scene, we have first to cancel camera motion. As a consequence, we estimate the
dominant image motion between two successive images which is assumed to be due
to camera motion. Then, to cancel it, we warp the successive images to the first
image of the video shot by combining the elementary dominant motions successively
estimated over consecutive image pairs.

3.1 Dominant motion estimation

To model the transformation between two successive images, we consider a 2D affine
motion model. A 2D quadratic model involving eight parameters, i.e. correspond-
ing to the 3D rigid motion of a planar surface, could be alternatively considered.
However, it is computationally more demanding while not significantly offering more
adequacy in most situations. The displacement wg(p), at pixel p, related to the
affine motion model parameterized by © is given by:

B a1 + azx + azy
wo(p) = < a4+ asx + agy ) S

with p = (z,y) and © = [a; a2 a3 a4 a5 ag]. The computation is achieved with
the gradient-based multi-resolution incremental estimation method described in [28].
The following minimization problem is solved:

© = argmin > p(DFD(p,©)) (2)
PER

where DFD(p,©) = Ii11(p + wo(p)) — It(p) with I the intensity function in the
image, R denotes the image grid, and p is robust M-estimator, here Tukey biweight
function. The use of a robust estimator ensures the dominant image motion esti-
mation not to be sensitive to secondary motions due to mobile objects in the scene.
Criterion (2) is minimized by means of an iterative reweighted least-square technique
embedded in a multiresolution framework and involving appropriate successive lin-
earizations of the DFD expression [28].

3.2 Local motion-related measurements

To characterize the nature of residual motion in the motion compensated image se-
quence, we need to specify appropriate local motion-related measurements. A dense

INRIA



Scene Activity Analysis for Motion-Based Video Indexing and Retrieval 7

optic flow field provides such local information [24, 2]. Nevertheless, as stressed previ-
ously, the accuracy and the relevance of the estimation cannot always be guaranteed
in case of complex motion situations and the required computational load remains
prohibitive in the context of video indexing involving large databases. Hence, we
prefer to consider local motion-related measurements directly computed from the
spatio-temporal derivatives of the intensity function in the image.

By assuming intensity constancy along 2D motion trajectories, the image motion
constraint relating the 2D residual motion and the spatio-temporal derivatives of the
intensity function can be expressed as follows [20]:

*
wip) - vri(p) + 2L g )
where w(p) is the 2D residual motion vector at pixel p, and I'* the intensity function
in the warped image. We can infer the residual normal velocity v} (p) in the motion
compensated sequence at pixel p:

* _ _I:
") = TG @)

a OI*(p)

where I} (p) is the temporal derivative of the intensity function I'*. I} (p)

is approximated by a simple finite difference. Although this expression is explicitly
related to apparent motion, it can be null whatever the motion magnitude, if the
residual motion direction is perpendicular to the spatial intensity gradient. More-
over, the normal velocity estimate is also very sensitive to noise attached to the
computation of the intensity derivatives.

As pointed out in [29], the norm of the spatial image gradient |[VI*(s)|| can rep-
resent, to a certain extent, a pertinent measure of the reliability of the computed
normal velocity. Furthermore, if the spatial intensity gradient is sufficiently distribut-
ed in terms of direction in the vicinity of pixel p, an appropriately weighted average
of v} (p) in a local neighborhood appears as a relevant motion-related quantity. More
precisely, we consider the following expression :

Y IVIF@IP - vn ()l

q€F (p)
max (G, 3, ) IVI* () 2)

()

Vobs (p) =

where F(p) is a small window centered on p and G? a predetermined constant related
to the noise level in uniform areas. This motion-related measurement forms a more

RR n°4005



8 Ronan Fablet, Patrick Bouthemy and Partick Pérez

reliable quantity than the normal flow, yet simply computed from the intensity func-
tion and its derivatives. This local motion information was successfully exploited for
the detection of mobile objects in motion compensated sequences [29, 22, 13].

Besides, we have to cope with the limitations of the gradient-based image motion
constraint (3). As a matter of fact, this relation is no longer valid in occluded regions,
over motion discontinuities, and even on sharp intensity discontinuities. In addition,
it cannot handle large displacement magnitude. Therefore, we adopt a multiscale
strategy to compute vps(p) at a reliable scale and we exploit an appropriate test
to validate its use. More precisely, we build a Gaussian pyramid of the considered
image and the next one. At each pixel p, we determine the lowest scale for which the
image motion constraint (3) is valid using the statistical test designed in [19]. Then,
Vops(p) 1s computed at the selected scale. If for a given pixel p the image motion
constraint remains invalid at all scales, no motion quantity is computed at p.

Obviously, the information relative to motion direction has been lost, which pre-
vents us from discriminating for instance two opposed translations with the same
magnitude. However, this is not a real shortcoming, since we are interested in i-
dentifying and classifying the type of dynamic situations observed in the considered
video shot and not a specific motion value.

The computation of the temporal cooccurrences of the motion-related measure-
ments {veps(p) }per requires to quantize these continuous variables. By definition,
these quantities are positive and, for a given pixel p, vops(p) is theoretically inferior to
the greatest actual displacement magnitude in the window F(p). We could merely
apply a linear quantization within [0, v7;%*] with v/}%* = maxper Vobs(p). In that
case, we would face two main problems. First, since we aim at evaluating content
similarity between video shots, a common range of quantized motion-related quan-
tities to all image sequences has to be selected. As illustrated in Fig.1, it does not
make sense to directly compare the histograms of basketball and anchor shots if a
linear quantization over [0, v[}%*] is retained, whereas maximum values v[}%* greatly
differ between these two shots. Secondly, although we consider a multiscale strategy
combined with a validity test of the image motion constraint, we may still get spu-
rious motion quantities of usually irrelevant high magnitude of displacement in the
scene since the validity test may fail in some specific situations. The range of quan-
tities {vops(p) }per is indeed within [0.0,15.4] in the first example of Fig.1. Thus, a
linear quantization within [0, v/7%*] would result in the loss of the main part of in-
formation contained in the empirical distribution {veps(p)}per as illustrated in Fig.1
for the basketball shot. Therefore, we prefer to consider a linear quantization within
a predefined interval [0, Viu42]. Applying this quantization scheme, the direct com-

INRIA
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basketball shot

first image of the shot  linear quantization linear quantization
within [0, 15.4] within [0, 4]
anchor shot

first image of the shot linear quantization linear quantization
within [0, 0.91] within [0, 4]

Figure 1: Quantization of motion-related measurements {vops(p)}per. We display
two examples of quantization of the motion-related quantities for a basketball shot
and an anchor shot. The first column depicts the first image of the processed shot;
the middle one the histogram resulting from a linear quantization on 16 levels within
the interval [0, v3%%], v9% = 15.4 in the first ezample and v73%* = 0.91 in the second
one; the last one contains the histogram resulting from a linear quantization within
[0,4] over 16 levels.

RR n°4005



10 Ronan Fablet, Patrick Bouthemy and Partick Pérez

parison of the quantized versions of motion-related measurements becomes relevant.
For instance in Fig.1, the motion activity is greater in the basketball shot compared
to the anchor shot as confirmed by the histograms of quantized motion-related values
obtained with V4 = 4.

Let denote A the discretized range of variations for {veps(p)}per. In the sequel,
we note zp these quantized motion-related measurements for the kth image of the
video sequence.

4 Temporal Gibbs models

4.1 Causal Gibbs random fields

We now present our statistical modeling framework for the characterization of motion
information within a video shot. Our goal is to associate a probabilistic model to a
sequence of quantized motion-related quantities. As mentioned in Section 2, we con-
sider Gibbs models since they offer a direct correspondence with cooccurrence mea-
surements which we previously exploited for video indexing in [11, 4]. Furthermore,
we have investigated a purely causal modeling for two main reasons. First, we are
concerned with the temporal evolution of the distribution of motion-related quanti-
ties. Besides, such a causal approach allows us to handle temporal non-stationarities
while being sufficient to discriminate motion classes of interest. Secondly, from a the-
oretical point of view, it is quite beneficial to be able to compute the exact likelihood
function attached to a model to properly establish a content-based video similarity
measure. Whereas this is generally not possible with classical spatial Markov ran-
dom fields [17] due to the unknown partition function, this becomes easily feasible
with our causal Gibbs models. Thus, this attractive property allows us to design a
general statistical framework for video classification and retrieval based on likelihood
computation.

We assume that the sequence of the motion-related quantities along a given video
shot = (zf)k=0,.k is the realization of a random field X = (Xo,... ,Xk), and
that X is a first-order Markov chain:

K

Py(X =z) = Py(Xo = z0) H Py(Xy, = 2| Xj—1 = mp_1) (6)
k=1

where U refers to the underlying interaction potentials to be defined later. In ad-
dition, we assume that the random variables (Xj(p))per at time k are independent
conditionally to Xj 1. Thus, we assume that conditional probabilities Py (zk|zk_ 1)

INRIA
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A »
6. 7
- bl ./
q
image k — 1 image k image k — 1 image k

) . Parameterization of the temporal pair (p,q)
Causal temporal neighborhood of pizel p . )
using polar coordinates a = (d,0)

Figure 2: Causal temporal neighborhood comprising up to 9 pairs. We denote 77;
the temporal neighborhood formed by one single site p with symbol e, 772 the set of 5
neighbors of p represented by symbols e and o, and 773 the complete set of 9 neighbors
of p (symbols e, o and O).

factorize as:

Py(zplzp-1) = ][] P (wx(p)lor-1)

PER
= ]I Pe (@(p)lzr 1(np)) ™

PER

where R is the image grid, and 7, designates the set of sites in image k — 1 which
interact with site p in image k. 7, will be called the temporal neighborhood of site
p and is specified in Fig.2. We consider a small set of temporal interactions. Each
pair (p, q), with g € n,, can be characterized by the polar coordinates a = (d, ) (see
Fig.2). Let us denote A the set of polar coordinates a corresponding to the temporal
pairs defined in Fig.2. In the sequel, we will use the term clique to designate a
temporal pair. In practice, we consider three different neighborhoods 7', n® and
n° (Fig.2). The simplest case n! includes the temporal clique defined by a = (0,0)
whereas 7° and 7° respectively refer to the cases with 5 cliques and 9 cliques.
Let us introduce a Gibbs model to express the conditional probability Py (zg|zg—1)-

This comes to write:

exp Z Uy (zx(p), T—1(Pa))

. acA
Py (zx(p)|zr—1(np)) = ATETECS) (8)

RR n° 4005



12 Ronan Fablet, Patrick Bouthemy and Partick Pérez

where {W,(v,v)}(,,1)en2,0c4 denote the potentials attached to the Gibbs model
U for each label pair (v,v') and temporal clique a. Thus, model ¥ is defined by
|A| - |A|? potentials. p, is the temporal neighbor of p for clique a for the considered
neighborhood 7, and Zi(p) the local normalization constant. Z(p) is given by:

Zi(p, w—1(np)) = ) _ exp [Z Yo (v, xk—l(pa))] (9)

veA acA

Let us point out that Py is not uniquely defined (see Appendix A for further
details). More precisely, for a given pair (a,v') € AXA, the potentials {¥,(v,v)},en
are defined up to an additive constant. To guarantee the uniqueness of the potentials
of the causal Gibbs model, we add the following normalization constraint:

V(a,V') € AX A, Z exp ¥, (v,/) =1 (10)
veEA
For convenience, we fix the constant potential defined by V(v,v') € A2, U,(v,v') =
—In|A| as ¥, =0, and ¥ = 0 as the constant model for all clique types.

Contrary to Markov random fields [17], this causal modeling leads to an expres-
sion of the global likelihood function Pg(z) as a simple product of local transitions:

X exp Z‘I’a (z(p), 2k 1(Pa))
Py(z) = Py (z0) [ ] —24 (11)

Pl Zk(ps Th—1(1p))

Thus, for given Py (zo) and potentials ¥, Py is entirely known, which provides us with
a general statistical framework for motion-based video classification and retrieval as
described in Section 5. Following [18, 40|, we can now rewrite the causal expression
of relation (6) using the temporal cooccurrence measurements attached to the clique
a as follows:

exp [Z U, e Fa(m)]

Py(z) = Py(z0) “EAZW ® , (12)

where Zy(z) is the global normalization factor given by:

K

Zu(z) = [ 11 Zr(e: 2x-1(mp)), (13)

k=1peR

INRIA
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La(z) = {Ta(¥,V'[7) }(,01)ea2 is the cooccurrence matrix for the clique type a defined
as:

k=K
La(v,/|2) = ) Y 8(v — zk(p)8(V — zp-1(pa)) (14)

k=1 (p,pa)

0() denotes the Kronecker symbol, and e is the dot product between cooccurrence
matrix [', and prior interaction potential ¥, defined as follows:

U, e (7) = Z qja(”a’/) 'Fa(VaVI|x) (15)
(vv)eA?

Our statistical framework for motion information modeling in image sequences
can be claimed as non parametric in two ways. First, the probabilistic model ¥
is quite general, in particular it does not refer to a 2D parametric motion model.
We can even assess that our description of motion information can be viewed as a
general characterization of scene activity. Secondly, from a statistical point of view,
our approach is also non parametric in the sense that the conditional likelihood
Py (z,(p)|zr—1(np)) is not assumed to follow a known parametric law (Gaussian,...).

4.2 Maximum likelihood estimation

Given a realization = of X, the causal temporal Gibbs model defined by its potentials
{Uu(v,v"), a € A, (v,V') € A?} can be estimated using the Maximum Likelihood
(ML) criterion:

T = arg max LFy(z) with LFy(z) = In(Py(z)) (16)

We hereafter assume that Py (z¢) follows a uniform law. Using the formulation given
in relation (12), we get:

Tp = arg mgxz;l\lla oe'y(z) —log Zy(z) (17)
ac

Contrary to the difficult issue of ML estimation of Markov model potentials where
the partition function is unknown, we do not need to use time-consuming stochastic
techniques [38]. Since we can here directly compute the partial derivatives of the log-
likelihood function, solving the issue expressed in (16) can then be achieved using

RR n~°4005



14 Ronan Fablet, Patrick Bouthemy and Partick Pérez

usual optimization techniques. The derivatives of LFW(x) w.r.t. ¥, potentials are
given by:

OLFy(x

Vo), SOy i)~ S P (s) = vies b)) (19)
0V, (v, ")
(k,p)ES, 1
with Sgr = {(k,p) € {1,.,K} xR / z_1(pa) = v'}. Let us point out that the com-
OLF,
W\I’(Jj,)) is independent of the normalization supplying the uniqueness
NUA%Z

of the representati,on of the model. Setting to 0 the partial derivatives expressed in
(18), we get the equations to be simultaneously verified by ¥z

> Py (zk(p) = v|zk-1(np)) = Ta(v,V/|7) (19)
(k,p)ES, 1

putation of

This naturally confirms that informative potentials of model T correspond to high
cooccurrence values. We will exploit this property to reduce the model complexity
as explained in subsection 4.5. In practice, the maximization in (16) is carried out
using a classical conjugate gradient algorithm as outlined in Fig.3. Let us mention
that, since the computation of the partial derivatives of LFWU(z) is independent of
the normalization constraint, this ensures the descent direction of the optimization
algorithm to be independent of the normalization constraint (10)too. In addition, the
log-likelihood function LFy(z) may have several local minima w.r.t. ¥, whereas the
existence of a unique global minimum is guaranteed in case of Markov models [18].
Hence, it is important to define an appropriate optimization scheme. As described
later in subsection 4.4, we have adopted an incremental strategy which has proven
robust and accurate enough.

4.3 Estimation of the simple temporal model

For the simplest model including only one clique, i.e. A = {ap} = {(0,0)}, parameter
estimation is readily performed. The considered model is indeed equivalent to a
product of |R| independent Markov chains with:

Py (z(p)|er-1(p)) o< exp [V (zx(p), zx-1(p))] (20)

Normalizing ¥ according to (10), we get the following ML estimate for a given
sequence z of local motion-related quantities:

Tars (v, ) = log (rao (v, /12)/3" Tao (v, u'|z>) (21)

vEA
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e initialization of the Gibbs model U°
o initialization of the descent direction dg = 0
e jteration [:

— computation of the gradient VLFyi(z) (according to relation
(18))

— update of the descent direction dj :

IVLF 1 (x)[|?
IVLF y1-1) 12

d; = VLF i (x) + di_,

— search for the coefficient \; which verifies:
A = arg m/\in LFyi)q,()
— update of the model estimate:
Pl = gl + A\idg

o stopping criterion : ||VLFyi(z)|c < v where 7y is a predefined
constant.

Figure 3: Mazimum likelihood estimation of model ¥ = (U, (v,V'))aca wp)er> by
applying a conjugate gradient technique to criterion (16)
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Since the potentials of the model verify relation (10), the likelihood function is simply
given by:

Py(z) = exp [xp oy, (x)] (22)

4.4 Estimation of the extended temporal models

Let us now consider the case of an extended temporal neighborhood 1 or 7° (see
Fig.2). To perform the ML estimation, we adopt an incremental strategy. First,
we determine a ranking of the different cliques according to their relevance in the
model. For each a € A, we evaluate the ML estimate of the specific model ¥¢ with
potentials set as constant for all cliques b other than a:

T = LF 23
arg\l/a:v}&%f(\pbzo v () (23)

As developed in subsection 4.3, the ML estimated potentials :I\Jg defined on the clique
a are given by:

V(v,)) € A2, T(v,V') =log (ra(y, Vz) /) Talv, wm) (24)

veEA

We can rank cliques a € A according to the values of the conditional likelihoods of
the processed sequence of motion-related quantities ¢ w.r.t. ¥ and form the set A
of ranked cliques:

A= {ai,.,a 4} with LF5,, (z) > LF;

Ta1 Tao (.T) > > LF\/I}GIA\ (.’I?) (25)

The incremental ML estimation of the Gibbs model ¥ is then carried out in as follows.
At iteration I € {1,].A|}, it consists in estimating the model W/ which satisfies the
maximization criterion (16) under the constraint:

Vb € {al+1, ...,a|A|}, U, =0 (26)

This minimization is achieved using an iterative conjugate gradient procedure which
exploits the computation of the derivatives of the log-likelihood function (see Fig.3).
For the initialization at each minimization step, we take ¥ = i1, Finally, at
iteration |A|, we obtain the ML estimate \/I\IML defined on the whole considered
temporal neighborhood structure.
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4.5 Model complexity reduction and model structure selection

When considering n cliques (i.e., |A| = n) with N levels of quantization (i.e., |A| =
N) for the local motion-related measurements, nx N? potentials {W, (v, V) }aea, () EA?
have to be estimated. Typically, N = 16 and n = 1,5, or 9. The number of potentials
rapidly increases with the number of considered cliques. As far as video indexing is
concerned, it is crucial to supply parsimonious content representations while keeping
the characterization of the video content accurate enough. To this end, we aim at
reducing the global model complexity while keeping the most pertinent information
in the selected model. Two aspects are considered.

4.5.1 modification of the range of A

Some quantization levels may seldom appear in the sequence of local motion-related
quantities z. In that case, the potentials associated to these quantization levels are
of weak importance as stressed by relation (19). To select the relevant quantization
levels, we compute the number of occurrences of each level v € A in the sequence
z. For each level v° with an occurrence number lower than a given threshold, po-
tentials {Ws(10,v), Ya(V,v0)}(a)cAxa are set to —oo (a very low value in practice),
which corresponds to a null probability. These potentials are let unchanged in the
estimation process.

4.5.2 Selection of informative ML potentials

The second phase of complexity reduction intervenes after ML parameter estimates
are computed and is two-fold. First, for each clique, we store only pertinent poten-
tials of the global estimated model T m L while setting the other ones to a constant
value (determined using the normalization constraint (10)). Second, we eliminate
cliques which bring negligible information. This model complexity reduction can be
regarded as a pruning procedure applied to the set of potentials of the ML estimate
of the causal Gibbs model ¥ mL- To achieve this, we resort to likelihood ratio tests
which enable to specify the amount of information to be kept. For both aspects of
complexity reduction, we compute the ratio of the conditional likelihood of sequence
z w.r.t a proposed reduced model ¥* over the conditional likelihood of x w.r.t. T ML:

() (27)

This ratio is compared to a user-specified threshold Apgr. It indeed allows us to
specify the tolerated error between the ML estimate of the Gibbs model and the

LR, (V*, Wpp) = Py (2)/Pg

ML
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reduced model actually stored. LR(¥*, T ML) can be viewed as an evaluation of
the loss of information occurring if we substitute ¥* for T ML-

Let us describe in more details how the incremental complexity reduction strategy
is performed. As shown in equation (19), for each clique type a the informative
potentials of ML estimate \/I\!a correspond to high cooccurrence values. For a given
clique a, potentials (I\Ja(y, V') are one by one introduced in a model ¥* (initially,
U, =0and Vb # a, U= {I\lb), according to their corresponding value ', (v, V'|z)
in the cooccurrence matrix, the highest values being introduced first. At each step,
we compute the likelihood ratio (27). As soon as this ratio exceeds Ag, R, We consider
the selected potentials as the representative potentials of ML estimate ¥, associated
to the sequence z. Let us note ¥ the reduced model consisting of the potentials
selected as above mentioned for each clique a.

Then, to select the representative cliques, we exploit the ranking over cliques
(a1,..,a)4)) defined in subsection 4.4. We consider the different reduced models

(\I’k)ke{L__,‘A‘} such that:

@g = \i/a, Ya € {al, ..,ak}
) (28)
\I/’; =0, Ya € {ak_H, ..,a|A|}

We compute the likelihood ratios LRm(i’k,\TIML) and stop at step k* where the
ratio LR (¥*", Wprr) exceeds Apr. The corresponding reduced model U*" is finally
selected as the model attached to the sequence z.

5 Motion-based video classification and retrieval

We now discuss the application of our modeling framework to motion-based video
classification and retrieval issues. Considering a set of video sequences, we are in-
terested in retrieving in this database examples similar to a video query in terms of
motion content or more generally of scene activity. The general idea is to define an
appropriate similarity measure between image sequences and to determine the clos-
est matches according to this similarity measure. As far as feature-based techniques
are concerned, the retrieval process generally makes use of classical distances in the
feature space such as the Euclidean or Mahanolabis distances, [24, 25].

In our case, we first benefit from our statistical modeling of scene activity to
define an appropriate similarity measure w.r.t. motion content. We then exploit
this similarity measure to achieve a hierarchical classification over a video set. In a
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third step, we tackle video retrieval with query by example formulated as a Bayesian
inference issue.

5.1 Statistical similarity measure related to scene activity

Given video shots characterized by a statistical model of scene activity, we have to
evaluate the degree of similarity of their content. We define a similarity measure
inspired from Kullback-Leibler divergence [3]. Considering two distributions p and
', the Kullback-Leibler (KL) divergence K L(u|p') is defined by:

KEGul) = [0 Ky (29)

It can be viewed as the expectation of the log-likelihood ratio In (u/p') w.r.t. dis-
tribution u. This expectation can be approximated using a Monte-Carlo procedure.
In our case, if we consider an element n of the database, the sequence of motion-
related quantities ™ represents a sample associated to the distribution modeled by
U™ More precisely, for each (k,p) € [1,K] x R, the transition from z}_,(n,) to
z}(p) is a sample of the causal Gibbs model W". If we consider two elements of the
video base mq1 and ns, their associated models ¥™ and ¥™2, and the sequences of
computed motion-related quantities ™ and z"2, the KL divergence K L(¥™!||¥"2) is
approximated as the empirical average of the log-ratio of the conditional likelihoods
of the transitions from z}_(n,) to z}(p) computed respectively w.r.t. ¥"! and ¥"2:

KL (qﬂn”qfnz NK‘R|ZZ ( rn1 'Tk (p)|$l;11§ZZ;;> (30)

imiacr  \Dum (3  (p) |32,

Due to the causal nature of our modeling framework, this comes to approximate the
KL divergence K L(¥™ ||\IJ"2) by the log-ratios of the likelihoods of the sequence of
motion-related quantities ™ computed respectively for the Gibbs models U™ and
\VAH

1 P\pnl (l‘nl)
KL(9™||Pm2) =~ In 31
L e e (31)
It indeed quantifies the loss of information occurring when considering ™2 instead
of U™ to model the motion distribution attached to n'. Finally, in order to deal
with a symmetric similarity measure, we consider the similarity measure D(n1,n2)

between elements 1 and ngy given by:

D(ny,ng) = % [KL(U™ [[U"2) + KLY || ™)) (32)
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It should be noticed that this similarity measure is not a metric since it does not
verify the triangular inequality. However, it can be easily computed and interpreted,
since it is expressed as a logarithm of a likelihood ratio.

5.2 Hierarchical motion-based indexing and retrieval

In case of large databases, it is obviously relevant to appropriately structure the
considered video set. We focus here on hierarchical representations which have been
successfully exploited for still image bases with a view to tackling browsing or re-
trieval issues [37, 25, 33, 7]. Such indexing structures rely on binary trees. The tree
nodes will correspond to subsets of shots of the processed video base. To achieve
this hierarchical structuring, either top-down [33| or bottom-up [25] strategies can
be adopted. As pointed out in 7], bottom-up techniques seem to offer better perfor-
mance in terms of classification accuracy. In fact, since top-down methods consist
in successively splitting the nodes of the tree from the root to the leaves, an element
misclassified at the top of the hierarchy will appear in an undesirable branch of the
final binary tree. Therefore, we retain bottom-up clustering and more particularly,
we consider an ascendant hierarchical classification procedure, [10].

We also need to define the similarity measure D between clusters of videos. For
two clusters C' and C?, D is defined by:

D 1 2 — D
(C,C%) (nl,n;?gglxcz (n1,n2) (33)

We can now construct an ascendant hierarchical classification based on D. It pro-
ceeds incrementally as follows. At a given iteration, a pair is formed by merging
the closest clusters according to D. If a cluster C is too far from all the others, i.e.
mingrxc D(C, C") > Dpag, it is kept alone to form a single cluster. Dy,q is a given
threshold. For two clusters C7 and Cy, exp [-D(Ci,C2)] can be expressed as the
average of two likelihood ratios comprised in [0, 1] (relation 33). Therefore, we set as
Dyyar = — In7 where 7 is a threshold in [0, 1]. Threshold 7 quantifies the information
loss we tolerate in terms of accuracy of description of motion distributions when sub-
stituting models attached to Cs for those attached to C1, and conversely (Typically,
7 = 0.1). The merging procedure is performed from the leaves and iterated until
no new cluster can be built. A leave of the tree is created for each element of the
considered video base.

For retrieval purpose, a scene activity model has to be attached to each creat-
ed cluster. In the case of the simple temporal model, since the model is directly
determined from temporal cooccurrence measurements, the model associated to the
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merging of two clusters can be straightforwardly estimated using relation (21). In-
deed, when considering the set of sequences comprised in th newly created cluster, the
corresponding cooccurrence measurements are directly determined as the sum of the
cooccurrence measurements computed for each individual sequence of the considered
cluster. When merging two clusters C; and C?, we first compute the cooccurrence
matrix T'(C!,C?) as the sum of the cooccurrence matrices I'(C') and T'(C?), and
second, exploiting relation (21), we estimate the potentials of the Gibbs model as-
sociated to the new cluster formed by the union of C; and C3. Otherwise, when
coping with the extended temporal Gibbs models, such a straightforward updating
is no more available. We do not estimate the model associated with the union of
the = sequences to save computation, and we prefer to select either W€ or <2 as
the model representative of the new cluster resulting from the merging of nodes C}
and C2. We keep the model which maximizes the conditional likelihood computed
for the motion-related quantity sequence issued from the union of all the elements
of the two clusters.

5.3 Bayesian retrieval

As in [35], the retrieval process is formulated as a Bayesian inference issue. Given a
video query g, we aim at determining the best match d* in the stored set D of video
sequences according to the MAP criterion:

arg max P(d|q) = arg max P(q|d) P(d) (34)

The distribution P(d) allows us to formulate a priori knowledge on the video content
relevance over the database. It can be inferred from semantical descriptions attached
to each type of video sequences. It could also exploit relevance feedback during the
retrieval process [26]. Indeed, the likelihood of the different possible replies could be
weighted according to some evaluation of former retrieval operations performed by
the user. In the remainder, we will in fact incorporate no a priori (P(d) distribution
is taken uniform).

Furthermore, criterion (34) also supplies a ranking of the elements {d}4cp ac-
cording to P(q|d)P(d), which quantifies how relevant is the selection of d w.r.t. the
motion content of query ¢. In our case, to each element d of the database is attached
a causal Gibbsian model ¥?. We compute the sequence of motion-related measure-
ments 27 for video query ¢ and the conditional likelihood P(g|d) is expressed using
Pya. Then, we can infer:

n* = arg max Pya(z9) (35)
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Let us stress that we do not need to estimate a model for the query.

In addition, we can take advantage from an hierarchical representation of the
video base described in the previous section to satisfy a video query. When dealing
with large databases, solving criterion (35) in an exhaustive way reveals quite time
consuming. Therefore, we exploit the constructed binary tree to obtain a suboptimal
but efficient solution of criterion (35). If the convergence to the best match is not
guaranteed, this can be viewed as a trade-off between reply accuracy and search
complexity. The retrieval process is carried out through the binary tree from the
root to the leaves as follows. As initialization, we select the best node C? at the root
Troot Of the search tree according to:

C° = arg max Pyc(q) (36)

Ceﬁoot

At each step k, given a parent cluster C*, we select the best child node C**1 ac-
cording to the MAP criterion:

C*+! = arg max Pyc(z9) (37)
CeCk
This procedure is iterated until a given maximal number of answers or a given pre-
cision is reached.

6 Results

We have evaluated the whole proposed framework for scene activity modeling, content-
based video indexing and retrieval, on a database containing samples of real videos.
We have paid a particular attention to choose examples representative of various
motion situations. The database includes temporal textures (samples of fire and
sequences of river), video shots exhibiting an important scene activity such as sport
video (basket, horse riding,...), rigid motion situations (cars, train, ...), and sequences
with a low motion activity. We have built a database of 150 sequences of 10 images
issued from 70 video shots. In addition, elements issued from the same video shot
are not temporally adjacent.

The experiments reported in this Section have been performed using values of
parameters set as follows. In the stage concerned with motion-related measurements,
we fix Viyer = 4.0 and |A| = 16. This appears relevant and accurate enough in
previous work [11, 14, 4]. For model complexity reduction, we set Arg = 0.99. At
last, Dz = 2.3 (7 = 0.1), in the hierarchical classification stage.
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6.1 Model complexity reduction

In a first step, we have estimated the causal Gibbs model attached to each element of
the database for the neighborhood n° (see Section 4). For the considered database,
we finally kept from only 5% to 20% of the 1280 potentials (here, |A| =16, |A| =5
and 162 x 5 = 1280) of each ML model attached to each video shot after the model
complexity reduction phase. We report two examples of model complexity reduction
respectively for shot anchory and shot basket; with the temporal neighborhood 775.
The median images of these two sequences are displayed in Fig.4. Video anchor is
a static of an anchor in a news program. The scene activity is very weak and only
Gibbs potentials related to low values of motion magnitude are kept. This leads to
select 5% of the estimated ML Gibbs potentials and one clique over the five initial
ones. The second example basketballs involves important scene activity. The stored
Gibbs model is more complex with two selected cliques and 10% of the estimated
potentials kept.

6.2 Statistical hierarchical motion-based classification

To provide a comprehensive visualization of the statistical hierarchical motion-based
classification described in Section 5, we have performed a classification on a subset of
20 sequences displayed in Fig.4. It contains two static shots of anchors, anchor; and
anchore, from news program involving a very weak scene activity. Two other exam-
ples of low motion activity, hall and Concorde, are included. Four examples of rigid
motion situations are introduced corresponding to road traffic sequences, highway
and highway,, and to airport sequences, landing and take — of f. Ten sport video
sequences are added involving shots of rugby game, rugby; and rugby2s, hockey
game, hockeyi, hockeys, and hockeys, basketball game, basketball;, basketbally and
basketballs, and windsurfing, windsur fing; and windsur fings. At last, two samples
of temporal textures with high scene activity, fire and river, are also considered.
For this experiment, we exploit extended temporal models corresponding to n°.
The obtained unsupervised hierarchical classification, shown in Fig.5, correctly sep-
arates the different kinds of dynamic contents. Traffic sequences, road; and roadas,
airport videos, landing and take—of f, and low motion activity situations, anchory,
anchorg, hall and Concorde, constitute a separate cluster in which relevant subclus-
ters have been created associated to these two types of motion content. In addition,
all sport video shots are properly grouped. In this last group, pertinent subgroups
have also been identified such as the one comprising the three basketball sequences
displaying very high motion activity, and the one with the three hockey shots.
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number of I 11 I v
samples
I 19 100 % 0% 0% 0%
11 18 0% 89 % 0% 1 %
111 71 0% 1% 94 % 5%
v 6 0% 0% 0% 100 %

Table 1: Tab. 1. FEwaluation of the performance of the retrieval system w.r.t. an
a priori classification of the video base of 150 elements. Class (I) refers to weak
scene actwity, class (II) to rigid motion situations, class (III) to wide-angle shots
and close shots of sport videos, class (IV) to temporal texture samples. We supply
the classification rates for the second retrieved answer obtained when considering in
turn each element of the base as a query.

6.3 Statistical motion-based retrieval with query by example

For the retrieval experiments performed over the base of 150 videos, we have consid-
ered simple temporal models with neighborhood n'. Fig.6 reports four experiments
of retrieval operations with query by video example. The first query is a news pro-
gram which consists in a static shot on an anchor. A rigid motion situation (plane
take-off) is proposed as the second query. The third and fourth retrieval operations
concern sport videos. The third query is a close shot on a basketball player tracked
by the camera during the shot, whereas the camera delivers a global view of the
game field in the last example. We deliver the three best replies according to the
computed log-likelihood values Pyc(z?) (as given in relation (37)). For all the con-
sidered queries, the retrieval process supplies quite relevant replies. In particular,
when considering the two examples involving sport videos with an important mo-
tion activity, the close-up situation is well discriminated from the other ones. To
a posteriori evaluate the relevance of the replies, we have also estimated the model
U? associated to the query ¢ and we report the values of the distance D(g,n) given
by relation (32) between ¥? and the different retrieved models ¥”. The ranking
supplied by log-likelihood values is confirmed by the values of distance D for each
reply.

To carry out a more quantitative evaluation of our motion-based retrieval sys-
tem, we have analyzed the relevance of the replies retrieved when considering in turn
each element of the video base as a query. To this end, we need to define a priori
classes w.r.t. motion content. We consider four classes which seemed to be relevant
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as illustrated by the classification experiment reported in Fig.5. More precisely, class
(I) refers to weak scene activity contents, class (II) to rigid motion situations, class
(ITT) to wide-angle shots and close shots of sport games, class (IV) to temporal tex-
ture samples. It should be stressed that quantitatively evaluating a system devoted
to query by example according to semantic classes necessarily remains partial and
somewhat subjective. For evaluation purpose, we consider two measures. First we
count how many times the query shot appears as the best answer. Let us note that
this is not guaranteed a prior:i since the retrieval process is conducted through the
hierarchical representation of the base and not according to an exhaustive search.
For the processed video base, the first retrieved answer is indeed the query shot
with a rate of 76% (within the remaining 24%, i.e. 36 video samples, the best reply
belongs to the same a priori class for 30 queries). Secondly, we have evaluated the
relevance of the second retrieved answer in terms of correct classification w.r.t. the
a priori scene activity classes described above. The obtained results with simple
temporal Gibbs models are given in Table 1. Mainly, for classes (I), (II), (III) and
(IV), the rate of correct classification is within [89%,100%)], which appears as quite
promising. These results also reveal the limitations of the evaluation of our retrieval
system involving query by example w.r.t. semantic a priori classes. For instance,
we obtain a misclassification rate of 16% for the class (II) related to rigid motion
situations. The corresponding video shots indeed involve rigid objects close to the
camera and undergoing large displacements. Thus, they could appear as more similar
to the close shots of sport games than to rigid motion situations such as the traffic
sequences involved in the classification experiments reported in Fig.5. However, this
evaluation should be considered as a first validation of our approach> We plan to
evaluate it on a larger database.

7 Conclusion

We have described an original method for the global characterization of motion con-
tent in video sequences able to handle a very large range of dynamic scene contents.
We have proposed a general statistical framework for video classification, indexing
and retrieval with query by example. It relies on a statistical modeling of the distri-
bution of local motion-related measurements using causal Gibbs models estimated
using the ML criterion. Besides, we have designed an efficient model complexity
reduction scheme based on likelihood ratios. This statistical modeling leads to a
general statistical framework for motion-based hierarchical classification of a video
database and motion-based retrieval with query by example according to the MAP

RR n° 4005



26 Ronan Fablet, Patrick Bouthemy and Partick Pérez

criterion. We have obtained promising results both for the classification stage and
the retrieval process on a video database involving various types of motion content
and scene activity.

In future work, we plan to validate our approach on a still larger video base. In
that context, as pointed out in [7], the hierarchical indexing structure can be regarded
as a relevant alternative to retrieval with query by example, since it allows users to
navigate the database according to their interest. Multiscale causal Gibbs model
will be also investigated. Ongoing work aims at exploiting this novel approach for
motion modeling and characterization to automatically segment entities of interest
in the shot and to satisfy partial queries [12]. It could be also useful to extract shots
of interest in video sequences with a view to creating video summaries.
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A Uniqueness of the causal Gibbs random field modeling

We will demonstrate that the constraint defined by relation (10) guarantees the
uniqueness of the potentials associated to a model. We indeed show that the consid-
ered causal Gibbs model is defined up to additive constants and that criterion (10)
leads to fix these constants. In addition to the notation defined in Section 4, let us
denote X the space of the sequences of motion-related quantities. Let us consider
two causal Gibbs models ¥! and U2 verifying: Vo € X, Pyi(z) = Py2(z) (A).

We want to show that: I\ € RMI'AL V(a,v,0') € AxA2, Tl(v,v)) = U2(v,0)+
A(ay)- From statement (A), given (o, ) € A X AN it is obvious that V(k,7) €
[1,K] x R:

Py1 (Xi(p) = a|Xp-1(np) = B) = Py2 (Xi(p) = | Xg—1(1p) = B) (38)
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Using expression (8), we obtain that V(a, 8) € A x A, 3¢(8) € R such that:

exp | Y U (a, ) — ¥ (a,ﬂa)] = lz exp » ¥} (v, ﬁa)] / [Z exp Y V3 (v, Ba)

acA veA acA veEA acA

=¢(8)
(39)
where £(B) = {€.(8)}aca. Let us define AU = Ul — U2  o* a particular value
in A, and, for (o, 8) € A x A%, flap) = {0(v — @) - 6(v" — Ba) Hawp')eaxa2, and
Afap) = fap) — f(a,p)- From relation (39), we infer that V(a, 8) € A x AMI:

(AY, Afp) = Z AV, (v,0) - (frap (@, v, V) = flar ) (a0, 0"))
(a,w')EAXA?

=In¢(B) —Ing(B) =0
(40)

where (-,-) is a dot product. As a consequence, AV is in the subspace of dimen-
sion |A| - |A| orthogonal to the space spanned by {A f(a,ﬁ)} ( The set

defined by:

a,B)EAXAA"
(g(ao,u(’])> (ao,vp)EAXA
V(a,v,1") € AX A%, gagup(a,v,v") = d(a — ag) - (v — 1) (41)

is a base of this subspace. Then, AU can be expressed as a linear combination of
, i.e. 3x € RAAl such that:
(g(ao,l/o)) (CLO,I/(’])EAXA

Vav ) e Ax A2, A%a@r) = 3 Maowp) aom)(@0V) = Naw)
(ao,vp)EAXA

(42)

Therefore, considering the normalization constraint (10) comes to fix quantities
()\(a’,,,)) (' )eAXA and guarantees to uniquely define the potentials { ¥, (v, ) Haw ) eAx A
associated to model YH
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Concorde

anchory anchor,

landing take-off

windsurfing,

Figure 4: Set of the 20 video shots used to supply an example of motion-based hier-
archical classification given in Fig.5. For each video, we display the median image

of the shot.

INRIA



Scene Activity Analysis for Motion-Based Video Indexing and Retrieval

29

basketball2
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Figure 5: Motion-based statistical classification: obtained motion-based hierar-
chical classification for the set of 20 video sequences presented in Fig.4 with Dy.e = 2.3
(t =0.1). At each leave of the tree, we report the name of the video sequence. For the other
nodes of the tree, we display the mazimum intra-cluster distance evaluated using expression
D of relation (33).
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Video query 1

Video query 2

L

Video query 3

Video query 4
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27dreply

374 reply
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Figure 6: Results of retrieval operations involving three replies. For each
reply n, we give the value LF of the log-likelihood In (Py~ (x?)) corresponding to video query

q- To a posteriori evaluate the relevance of the replies, we have also estimated the model U?

associated to the query q and we report the values of the distance D(n,q), given by relation
(32) between V9 and the different retrieved models ™.
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