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Abstract: One of the main strengths of computer algebra is being able to solve a family
of problems with one computation. In order to express not only one problem but a family
of problems, one introduces some symbols which are in fact the parameters common to all
the problems of the family.

The user must be able to understand in which way these parameters affect the result when
he looks at the answer. Otherwise it may lead to completely wrong calculations, which when
used for numerical applications bring nonsensical answers. This is the case in most current
Computer Algebra Systems we know because the form of the answer is never explicitly
conditioned by the values of the parameters. The user is not even informed that the given
answer may be wrong in some cases then computer algebra systems can not be entirely
trustworthy. We have introduced multi-valued expressions called conditional expressions,
in which each potential value is associated with a condition on some parameters. This is
used, in particular, to capture the situation in integration, where the form of the answer
can depend on whether certain quantities are positive, negative or zero. We show that it
is also necessary when solving modular linear equations or deducing congruence conditions
from complex expressions.
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Calcul Formel multi-valué

Résumé : La force principale du Calcul Formel est 'obtention de familles d’expressions
en un seul calcul. Pour exprimer la notion de famille d’expressions, des symboles sont in-
troduits. Ces symboles font office de paramétres et en changeant leur valeur toutes les
expressions de la famille peuvent étre atteints.

A la lecture de la solution, Iutilisateur doit pouvoir comprendre I'influence des parameétres
sur les calculs effectués. En particulier, les incohérences de calculs dues & des valeurs par-
ticuliéres des paramétres doivent étre détectées. Si aucune détection de cohérence n’est
effectues, les calculs n’ont plus de sens. C’est ce qui se produit dans les systémes de Calcul
Formel courants. L’utilisateur n’est pas prévenu que la solution générique calculée n’est pas
valide pour certaines valeurs des paramétres.

Pour résoudre ce probléme, nous proposons la notion de calcul conditionnel multivalué.
Nous avons suivi cette approche pour implémenter un intégrateur formel fiable ainsi qu’un
meécanisme de résolution d’équations linéaire modulaires et de déduction de conditions de
congruence sur des expressions complexes.

Mots-clés :  Calcul Formel, calcul formel fiable, arithmétique modulaire, intégration
formelle, simplification.
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Multi-valued Computer Algebra 5

Chapter 1

Description of the problem

1.1 Introduction

Very often, it is necessary to perform an algebraic operation on data containing not just
the variables involved in the operation, but also some other variables which are meant to
be parameters affecting the solution. Indeed, this is one of the main strengths of computer
algebra — to be able to handle not just one problem, but a whole family of problems with
a single computation. Clearly, if the parameter is in the input, we would expect to see
the parameter in the output. This paper is not concerned with this issue, but rather the
case when the form of the answer can depend on the parameter, or, more precisely, on the
potential values that the parameter can take.

A classic example of this is in the area of integration.

Petit Bois in [16] gives the following example.

/ dx _ 1 o 2ax + b —V/b?% — 4ac
ar? +bx+c /b2 —dac g2a$+b+\/b2—4ac
(b? > 4dac)
2 2ax + b
= atan b? < 4dac
vdac — b? Vdac — b2 ( )
_2 9
= =4
2ax + b ® ac)

The two answers for b2 > 4ac and b® < 4ac are symbolically! equivalent, under the
definitions for logarithms and arc tangents of complex numbers, but, if the wrong one is used,

1We carefully do not say mathematically equivalent, since nasty questions of complex analysis can inter-
vene. If the first answer is used for real a,b, ¢,z and b? < 4ac, then under today’s usual conventions for the
branch cut of log [2], there is a sudden jump at = —b/2a, of magnitude ——=2= Put another way, the

V4ac—b2 ’

two formulae are equivalent except of a set of measure zero [8].

RR n° 4001



6 Christéle Faure, James Davenport, Hanane Naciri

a real number is computed via two complex numbers. This may be a minor confusion for the
direct human user, but it has potentially serious implications, in particular in numerical use
of the answers such as evaluation for some values of parameters, automatic code generation
etc.

The answer for b2 = 4ac is qualitatively different: to begin with it involves no transcen-
dental functions. It would be tempting to think that it could be obtained as a limit from the
other solutions, but in fact computer algebra system find this impossible in general (since,
for the atan form, there is a hidden constant of integration that tends to infinity as a — 0).

This problem has been highlighted in previous papers, for example in [1, 9].

1.2 Existing systems

Let us first analyse how existing computer algebra systems deal with this question of answers
which differ for different ranges of parameter values, or for special values of the parameter.

They mix several ways to treat multi-valued expressions, depending on the kind of op-
eration they deal with (integration, limit, solve ...). But one can recognise four different
strategies :

Minimal strategy Under this approach, the system gives the answer that “looks better”,
as in Reduce :

1: int(1/(x**2+a) ,x);

2: int(1/(x**2-a),x);

(sqrt(a)*( - log( - sqrt(a) - x) + log(sqrt(a) - x)))/(2+*a)

This strategy is a little crude: the answer may be wrong in some cases, but the user
cannot do anything about that. In this example, it uses an atan formulation unless
this would involve taking the square root of a negative constant or a negative variable

power. For example, the following answer is not particularly helpful if we are thinking
of b as a small quantity.

3: int (1/ (x**2-(1-b**2)) ,x);

2 X
SQRT(B - 1)*ATAN(---------=-=—= )

INRIA



Multi-valued Computer Algebra 7

2
SQRT(B - 1)

Proviso strategy Under this approach, the user may guide the system. Before the start of
the computation he may assert [17] some informations (about the sign or the type of a
symbol ...) asin Maple, Mathematica, Macsyma. But if he doesn’t, the system makes
some choices stored in a proviso accessible after computation: Maple, Mathematica
and the last version of Macsyma. In previous versions of Macsyma the user was asked
some questions by the system.

(C1) integrate (1/(x**2+a),x);
Is A positive or negative?

neg;
2 X - 2 SQRT(- A)

2 SQRT(- A4)
(C2) assume (a>0);
(D2) [a > 0]
(C3) integrate (1/(x**2+a),x);

(p3) e
SQRT(A)

Using this strategy makes the answer fit what is needed by the user. The main draw-
back of this approach is that when such a calculation is involved in a complicated
computation, the user may not know how to guide the system.

Implicit strategy Maple and Derive in some cases produce conditional answers using the
signum or the Heaviside function such as for a limit :

> limit (a*x,x=infinity);
signum(a) infinity

In this way a multiple result is encoded in a mono-shaped expression, that’s why we
call this strategy implicit. The drawback of this strategy is that the result may be
really complicated and then intractable for the user. It is also hard to do, or at least
express the results, in general, as in

RR n° 4001



8 Christéle Faure, James Davenport, Hanane Naciri

> limit(exp(a*x),x=infinity);

limit exp(a x)
x -> infinity

oo a>0
where the answer should be { 1 a0 , which does not easily fit the signum para-
0 a<0

digm.

Explicit strategy We describe as “explicit” the strategy that consists of explicitly return-
ing multiple results.

Axiom may return a list of solutions :

(1) -> integrate(1/(x**2+a),x)

€D
2 bt 2
log((x - a)\l- a + 2a x) - log(x + a)
[-—————— - s
S
2\|- a
x
atan(----)
+—+
\la
—————————— ]
+-+
\la

Type: Union(List Expression Integer,...)

The user may not be able to handle the result directly, but it reminds him that multiple
results are possible.

Mathematica may answer with an If expression to some requests :
In[2] := Integrate[Cos[c*x]*x™n, {x,0,Infinity}]

Out [2]= If[Im[c] == O,

2 (-1 - n)/2 1+nmn
(c) Sqrt[Pi] Gamma[----- ]
2
1 n/2 -n
) Gamma [--]
4 2
ComplexInfinity]

INRIA



Multi-valued Computer Algebra 9

But when working with If expressions, one can notice that Mathematica doesn’t
treat them in a uniform way: just a few operations (like D) deal with them, those
operations do not do systematic evaluations or simplifications, the Map operator applies
the function even to the test ...

In[2]:= D [If[x >= 0, x, -x],x]
Qut[2]= If[x >= 0, 1, -1 1]
In[3]:= Simplify [%]

Qut[3]= If[x >= 0, 1, -1 1]
In[4]:= Map [Evaluate,%]
Qut[4]= If[x >= 0, 1, -1]
In[6]:= % + x

Out[5]= x + If[x >= 0, 1, -1]
In[6]:= Map [f,0ut[3]]

Out[6]= If[f[x >= 0], £[1], f£[-1 1]]

Those If expressions are unevaluated control structures, and are not piecewise func-
tions.

This strategy seems to us the best one to give right answers fitting the mathematical
definition of operators, but the two existing implementations of multi-valued expres-
sions are not powerful enough.

None of those general systems give the mathematically exact solution of the integral
example, nor do they implement the form of expressions quoted from Petit Bois.

The application of theorem proving to computer algebra is also beeing studied: [10]
presents a general deductive database for mathematical formulas, whereas [3] presents ver-
ified table look-up applied to symbolic definite integral. We do not take this data base
approach where the solutions are recorded within a table, to be extracted on demand.

1.3 Our approach
The last strategy seems the right one to us, because the user may be given the mathematically

right solutions, but the existing implementations of this strategy are not powerful enough.
We therefore choose to implement an explicit strategy. But using this strategy by itself

RR n° 4001



10 Christéle Faure, James Davenport, Hanane Naciri

leads to computing with large (in terms of the number of cases) expressions. In order to
diminish the size of multi-valued expressions, the system must allow the user to choose
some solutions if he knows something about the parameter involved in the corresponding
conditions. Therefore we have implemented a mixed strategy: an explicit strategy using the
functionalities of a proviso-like strategy.

In order to treat multi-valued expressions as piecewise functions we define a new kind
of expressions called conditional expressions. Each conditional expression consists in a list
of constrained values, which may be written as IFF ((condl,vall), (cond2,val2) ...).
We choose not to take into account values such as Undefined, Error, but rather to produce
a solution that gives generic (but correct) answers. For example, 1/a will not be computed
as IFF (a=/=0,1/a,Error).

One wants to involve such objects in computations such that (in a fictitious system) :

IFF ((x>0,x),(x=0,0),(x<0,-x)) + ¥y
--> IFF ((x>0,x+y), (x=0,y), (x<0,y-x))

Abs (x+y)
--> IFF ((x+y>0,x+y), (x+y=0,0), (x+y<0,-x-y))

Map (f,Abs (x+y))
--> IFF ((x+y>0,f (x+y)), (x+y=0,f (0)),
(x+y<0,f (-x-y)))

Assert (x+y<0)
--> x+y<0

Abs (x+y)
--> -x-y

INRIA



Multi-valued Computer Algebra 11

Chapter 2

Generic Conditional Expressions

2.1 General expressions

General expressions are implemented as trees. This is the most general representation and
has been chosen for our study. The root of the tree is the main operator and the sub-trees
are operands. For example, the expressions 22 + 3 *z + 1 and z * y — 2 are represented by
the trees shown in Figure 2.1.

The canonical form of these expressions make both expressions  + y and y + z to be
the same. More generally, if F is associative then F(x1,%s,..,2Z,) is flatten and if F' is
commutative, F'(opi,ops,..,0p,) is rewritten so that opi,ops, ..,op, are ordered. It is the
case for + and * in algebraic expressions or V and A in boolean expressions. A generic
simplification algorithm can be written using some operators associated to F': neutreg?,
absorbantz?, combiner and <p.

/\/\ /\

( x"2+3*x+1 ) ( y*x-2 )

Figure 2.1: Tree representation of expressions

RR n° 4001



12 Christéle Faure, James Davenport, Hanane Naciri

Algorithm 1 Simplification of F [opl,0p2]

Require: opl et op2 are simplified expressions
if F? opl and F? op2 then
1 « append( operand op1, operand op2)
else
if F? opl then
1 « insert( op2, operand opl)
else
if F? op2 then
1 « insert( opl, operand op2)

else
1 « insert( opl, [op2])
end if
end if
end if
{Construction of F [el,..., en]}
return F [el, ..., en]

Algorithm 2 Insertion of e in the ordered list [
neutrer? e = return [
absorbantz? e = return [e]
vide? | = return [e]
e < first | = return append(first [ , insert(e, rest 1))
e >p first | = return append(e, [)
{ e and first 1 can be combined}
2 + combiner(e, first 1))
neutreg? z = return rest [
absorbantp? z = return [z]
return append(z, rest 1)

INRIA



Multi-valued Computer Algebra 13

2.2 Algebraic Expressions

Algebraic expressions are implemented as general expressions. Formal simplifications are

performed as described above. For example, if F' is the product *, the operator neutrep?

tests if its argument is 1 and absorbant? tests if its arguments is 0. The operator combiner

applied on z3 and x computes z*. The operator <z uses the general lexicographic order.
Some simplification due to integer arithmetic are applied: 2 +3 — 5.

2.3 Boolean expressions

Boolean expressions are built from atomic boolean expressions and general boolean operators
A, V and not. They are implemented as boolean expressions where the leaves are basic
conditions. Boolean expressions are simplified using Algorithm 1 and Algorithm 2 with the
correct parameters. For example, for operator V, neutrey tests if the expression is False
and absorbanty tests if the expression is True.

We add one general simplification using distributivity of A with respect to V:

(61 \Y 62) A €3 — (6]_ A 63) V (62 A 63). (21)

The not operator applied to conditions follows standard rules:

not(False) — True (2.2)
not(T'rue) — False (2.3)
not(not(C)) — C (2.4)
not(aVb) — mnot(a) A not(b) (2.5)
not(a Ab) — not(a) V not(b). (2.6)

For each atomic condition type, some more simplifications can be added. For congruence
conditions, two supplementary simplifications are added:

1. use of the Chinese remainder theorem,

2. solving of modular linear equations.

2.4 Conditional expressions

Mono-valued conditional expressions are defined as pairs (V,C) =IFF(C,V) where V is
a value of type general expression and C' is a condition of type boolean expression. For
example (k+ 1,k = 15 (mod 45)) is a conditional expression and (z + 1,z > 0) is also a
conditional expression. The difference between these two examples comes from the type of
atomic boolean expression.

This definition is extended to multi-valued conditional expressions {(V;,C;)} where V;
is a value of type general expression and C; is a condition of type boolean expression. For

RR n° 4001
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example, {(z,x > 0)(—z,2 < 0)} is a conditional expression that means IFF (x,x> 0)
(-x,x<0).

The simplification of conditional expression consists first in the simplification of all ex-
pressions and all conditions. Some more simplifications can be performed on multi-valued
conditional expressions depending on the application. For example, if a pair (V, False)
appears in a multi-valued conditional expression it may be discarded. The coherency, com-
pleteness can be verified to stop the computation.

INRIA
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Chapter 3

Formal integration

This chapter presents formal integration using conditional computation. The VSDITLUJ3]
system, a verifiable symbolic definite integral table look-up, has been developed to solve
equivalent problems. It is theorem proving applied to computer algebra whereas our ap-
proach is conditional computer algebra.

3.1 Conditional expressions with comparison conditions

We have augmented Axiom (see [7, 15]) with a new data type known as Conditional
Expression (abbreviated as CEX), together with various supporting structures and cate-
gories, notably EXC (short for ExpressionCondition) which is the type of the sign conditions
allowed on (real-valued) expressions.

Those conditions are boolean expressions that compare real-valued expressions with zero
(for example (¢ > 0 and a +b < 0) or a < 0 ...). Those boolean expressions may be
arbitrarily complex so we try to diminish their size.

We evaluate the conditions, using the standard Axiom package PolynomialFunctionSign
to compute the sign of the involved expressions. For example —(a? + b?) > 0 and z < 0
evaluates to False.

Moreover some simplifications, based on the Robinson algorithm to detect tautologies, are
computed on conditions. The simplifications may be classified in three classes :

e redundancy (@ >0anda >0=a > 0),

e coherency (a > 0 and a < 0 & False)

e completeness (a < 0 and a =0 and a > 0 & True).

This mechanism for conditions is taken from [12] and the general principles from [14].

(2) -> Or [positive (a*(b-1)),negative (a*(b-1)),_

RR n° 4001



16 Christéle Faure, James Davenport, Hanane Naciri

positive (a*(b-1)),null a,null (b-1)]$EXC Integer

(2) Or (a=0)

(b - 1=0)
(a b - a<0)
(a b - a>0)

Type: ExpressionCondition Integer

In order to improve this mechanism, we have added an assert function that enables
the user or another Axiom program to assert tautologies. All the assertions are stored in a
“context”, and the conditions are then simplified modulo this context.

(3) -> assert (Equi (null (a*(b-1)),0r (null a,null (b-1))))$EXC Integer

(3) [lhs= (a b - a=0),rhs= Or (a=0) 1]
(b - 1=0)
Type: Equivalence
(4) -> simplify %% 2

(4) True
Type: ExpressionCondition Integer

The type ConditionalExpression represents expressions of the form quoted from Petit
Bois. One can compute the conditional expression if C then V1 else V2 where C is an
ExpressionCondition and V1,V2 are two expressions, using conditionalValue(C,V1,V2).
One must notice that the ConditionalExpressions only contain simplified conditions. To
give an explicit example:

(56) -> conditionalValue(%,first %% 1, second %’} 1)$CEX INT

(5)
2 +—-—-+ 2
log((x - a)\l- a + 2a x) - log(x + a)
((8<0) =3 —mm oo oo )
N
2\[- a
x
atan(----)
4o+
\la
(0r (a=0) -> ——ccoomeen )
(a>0) +—+
\la

Type: ExpressionCondition Integer

Each computation valid on Expression is also valid on ConditionalExpression. For
example the particular domain ConditionalExpressionover Integer actually forms a field,
with the operator abs added, as shown in figure 3.1. We have chosen not to deal with Error

INRIA
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values in our conditional objects, the only operator defined in CEX to split an expression into
a conditional one is abs.

3.2 Conditional Integration

We have augmented the Axiom integrator, so that, instead of returning a list of alterna-
tives containing atan and log expressions, it returns a ConditionalExpression, with the
appropriate conditions.

The shape of [(1/(az?® + bz + ¢)) depends on the sign of § = b? — 4ac. Axiom tries to
compute the sign 4, if it is constant it returns the answer, otherwise it computes the values
for 6 > 0 and 6 < 0.

Those tests appear clearly in the code of the function quadratic from IR2F!, then we
just had to collect those two solutions and their associated conditions to create the new
package IR2CF2. This expression (with two solutions for @ > 0 or @ < 0) is similar to the
example given in the previous section. But such an answer is not sufficient because the case
a = 0 cannot be computed as the limit of one of those two solutions: hence the requirement
to place a conditional analysis of critical cases in the integrator, rather than after it.

We had a little more work to do, to get the solutions for the critical cases. For each
critical case (a result of solve(P * Q = 0) where § = P/Q), a new integral has to be
computed. Then a complete integration of 1/(az? + bz + ¢) is performed. In fact, to make
the integrator answer a conditional expression instead of a list of expressions, we just had
to rewrite a piece of code in IR2F and then in CFSINT.

In order to help the system simplify conditions thereafter, the integral function asserts

null(P x Q) & /\ null(v).
v € solve(P x Q = 0)

Hence we get answers such as in Figure 3.2. The requirement to coerce into EXPR INT,
i.e. Expressions of Integers, is caused by the fact that we have currently only modified the
Expression integrator, and not the special-purpose one that works for rational functions.

The facility for assertions described above is used in the equality case, to decide what
simpler cases the equality case reduces to. Figure 3.3 shows the behaviour of our new
integrator on a simple example.

3.3 Limitations of this implementation

It is worth-while noting what this modification does not do.

xn+1
n+1?

1. Tt does not deal with spurious divisions, so that the integral of ™ is returned as
or, to be precise,

LIR2F is the abbreviation of IntegrationResultToFunction
2IR2CF is the abbreviation of IntegrationResultToConditionalFunction

RR n° 4001



18 Christéle Faure, James Davenport, Hanane Naciri

(6 > %h 5 +x

2 S S 2
log((x - a)\l-a + 2ax) + 2x\|- a - log(x + a)
(6)  ((A<0) => ~mmmmmmm oo )
S
2\|- a
X +-+
atan(----) + x\|a
ot
\la
(0r (a=0) -> ———-——mmmmmm - )
(a>0) +-+
\la

Type: ConditionalExpression Integer
(7) -> (1/x)::CEX INT

1
(7) (True -> -)
X

Type: ConditionalExpression Integer
(8) -> abs (-3 /(x**2+axx4))$CEX INT

2 4 _3
8 ((x +a<0) -> - )
2 4
X + a
2 4 3

((0r (x +a=0)) -> ——————- )

2 4 2 4

(x + a >0) X + a

Type: ConditionalExpression Integer

Figure 3.1: Computations with ConditionalExpressions

INRIA



Multi-valued Computer Algebra 19

(13) -> 1/(x**2+a) :: EXPR INT

Type: Expression Integer
(14) -> integrate(},x)

(14)
2 +-——+ 2
log((x - a)\l- a + 2a x) - log(x + a)
((a<0) -> == )
"
2\ |- a
1
((a=0) -> ---)
X
X
atan(----)
+-+
\la
((@>0) -> —————mm - )
+-+
\la

Type: ConditionalExpression Integer

Figure 3.2: First example of conditional integration
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(15) -> a/(x**2-a**2+1) :: EXPR INT

Type: Expression Integer

(16) -> integrate(},x)

(16)

4
((a

2
- a >0) >

1
((a - 1=0) -> - -)
X
((a=0) -> 0)
1
((a + 1=0) -> -)

(a - a<0) -> ———-——m-mmmm - )

2 2 | 2 2

Type: ConditionalExpression Integer

Figure 3.3: Output from Command 16.

INRIA



Multi-valued Computer Algebra 21

(17) -> integrate (x**n,x)

n log(x)
X %e

n+1
Type: Union(Expression Integer,...)

This is a fundamentally different kind of problem: the generic answer is valid away
from a point singularity. Here there are two possibilities: the methodology suggested
by Duval (see for example [13]), which would involve performing the whole of the
integration algorithm with ConditionalExpressions rather than Expressions); or a
retrospective analysis of the result to decide if any special cases need treatment, and, if
S0, a special-case integration of these cases. We intend to pursue this latter approach
in further studies.

2. It does not deal with cases where the expression as posed is un-integrable in closed
form, but certain special cases are integrable. This is a very difficult problem and in
the case of algebraic functions, probably undecidable [11], since an infinite number of
special rational values of a transcendental parameter may need to be checked.
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Chapter 4

Solving modular equations

4.1 Theoretical back-ground

We recall that modular arithmetic is performed in the ring (Z,,+,-) where + and - are
performed modulo n. The unit group of Z,, is Z¥ = {m € Z,, : gcd(m,n) = 1}. The solving
of a modular linear equation is described and finally the Chinese Remainder Algorithm is
given.

The Bezout theorem (Extended Euclidean algorithm)

The Bezout theorem states that the GCD (Greatest Common Divisor) d of two integers a
and b denoted by gcd(a, b) is a linear combination of ¢ and b :

d = ged(a, b) = au + bv.

A simple modification of the Euclidean algorithm allows for the calculation of the two
coefficients u and v. This modified version of the Euclidean algorithm is called the Eztended
Euclidean algorithm. These coefficients are used within the Chinese remainder theorem as
well as in the modular multiplicative inverse computation. The Bezout algorithm described
in Algorithm 3 takes as input two nonnegative integers and returns a pair of integers (u,v)
that satisfies the equation ged(a, b) = au + bv.

For example, the Bezout coefficients of ¢ = 1292 and b = 798 in Z are v = —8 and v = 13
(the ged is 38).

4.1.1 Modular linear equations solving

We consider solving the equation az = b (mod n) where ¢ > 0 and n > 0. a, b and n are
given and the values x that satisfy this linear equation are looked for. This equation may
have zero, one or more solutions in Z,,.

Here is a summary of some results necessary for solving the equation ax = b (mod n).
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Algorithm 3 The Bezout algorithm

{Computation of Bezout coeflicients (u,v) for (a,b)}
(u,u') < (1,0)
(v,0") < (0,1)
(r,7') < (a,b)
while 7’ # 0 do
qe—r/r
(ug,v0,70) + (u,v,1)
(u7 1}7 T.) - (ul7 /UI7 /r/)
(u',v',r") — (up — qu',vo — qv', 1o — qr')
end while
return (u,v)

Theorem 1 The equation ax = b (mod n) either has d distinct solutions modulo n such
that d = ged(a,n) and 1 < d < n, or has no solution if gcd(a,n) does not divide b.

Theorem 2 Let u and v be the Bezout coefficients of a and n such that d = au+nv. If d|b
(d divides b), xo is one of the solutions of equation ax = b (mod n) where

xo = u(b/d) (mod n).

Theorem 3 Suppose that equation ax = b(mod n) is solvable (that is d|b where d =
ged(a,n)) and that xo is one of its solutions. Then, this equation has exactly d distinct
solutions modulo n given by x; = o +i(n/d) fori=1,2,---,d—1.

Algorithm 4 for solving modular linear equations returns all the solutions of any equation
of form ax = b (mod n). The inputs are two arbitrary positive integers a and n and one
arbitrary integer b.

Let consider one run of this algorithm on equation 142 = 30 (mod 100) (a = 14, b = 30,
and n = 100). The result is zp = 95 and z; = 45. This equation is equivalent to two
congruence equations: z = 95 (mod 100) V 2 = 45 (mod 100).

4.1.2 Chinese remainder theorem

The Chinese remainder theorem can be applied to integers or polynomials. In the following,
we explain only the integer case. Two cases have to be dealt with: (1) the two integers
are supposed relatively prime and (2) the general case. Algorithm 5 presents an extended
version of the Chinese remainder theorem.
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Algorithm 4 Solving of equation az = b (mod n)

{INPUTS: a, band n }
d — ged(a,n)
if d|b then
(u,v) < bezout(a,n) { u and v are Bezout coefficients}
xo — u(b/d) mod n
fori—0tod—1do
x; — (zo +i(n/d))modn
return x;
end for
else {d does not divide b}
False {No solution }
end if

Relatively prime case

Theorem 4 Let M and N be two relatively prime integers. For each pair of integers (a,b)
there exists o unique 0 < ¢ < M N such that:

{x:a(mOdM> o xEC(mOdMN)

x;b(mod N)

Proof. From the extended Euclidean algorithm, there exists two integers f and g such that
fM+gN =1 (M and N are considered relatively prime).
Let choose ¢ such that c=a+ (b—a)fM =a+ (b—a)(1 — gN) =b+ (a — b)gN.

z =a (mod M) _ —
¢=a(mod M) }i r=c(mod M)= FkeZst.x=c+kN

= kEN=IM
z = b (mod N) _ _
¢=b (mod N) }:> z=c(mod N)= Jl€Zst. z=c+IM
If kN = 1M then M|kN, but gcd(M,N)=1s0 M|kN. Asx =c+ kN, z =c (mod MN).
This proves the first implication and the rest of the proof is devoted to the reciprocal
implication.
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General case

Theorem 5 Let M and N be two integers. For each pair of integers (a,b),

(1) if a Z b (mod gcd(M,N)) then the equations x = a (mod M) and x = b (mod N) are
never satisfied,

(2) if a =b (mod ged(M, N)) then there exists a unique ¢ such that:

{ iiZ((:;gg JJ\\/./I)) &z =c(mod lem(M, N))

Proof.
(1) If z = a (mod M), then z = a (mod ged(M, N)). In the same way, if z = b (mod N),
then z = b (mod gcd(M,N)), so a =b (mod ged(M,N)).
(2) if @ = b (mod gecd(M, N)), from the Extended Euclidean algorithm, there exists two
integers s and ¢ such that sM +tN = g = ged(M, N).

Let choose ¢ such that ¢ = a + (b — a)s% =a+(b—a)(l- (t%)) =b-— th_T“.

z =c(mod lem(M,N)) = z=c(mod M)

c=a+(b—a)s _
a = b (mod g)g ¢=a(mod M)

U

}:> x=a (mod M)

z = ¢ (mod lem(M, N)) z =c(mod N)

c=b—tNbta = z=b(mod N)
g =
o= b (mod g)} = c¢=b(mod N)}

4

This proves the reciprocal implication and the rest of the proof is devoted to the first
implication.

x =a (mod M) dkeZst. x=a+kM

=

= sz =sa+k(g—tN)

= sr=sa+kg(mod N) 3= kg=s(b—a)(mod N)
z=b(mod N) = sz = sb (mod N)

kg = s(b—a) (mod N) is equivalent to kg = s(b —a) + rN where r is an integer. Then,

M M M MN
:c=a+kM:a+?gk=a+?(s(b—a)+rN)=a+?s(b—a)+7r,

Moreover, lem(M, N) = % andec=a+ %s(b—a), so z = c+lem(M, N)r. This implies
that £ = ¢ (mod lem(M, N)).
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Chinese Remainder Algorithm

The Chinese Remainder Algorithm 5 is applied to reduce two congruence equations x =
a (mod M)andz =b (mod N) to one equation z = ¢ (mod lem (M, N)) by the calculation
of c.

For example, z = 1 (mod 180) and z = 61 (mod 600) are reduced to z = 1261 (mod 1800)
using algorithm 5 where ¢ = 1, M = 180, b = 61, N = 600, ¢ = 1261 and m = 1800 =
lem(180, 600).

Algorithm 5 Application of the Chinese Remainder Algorithm
{z=a(mod M)and z=>b (mod N)}
g < ged(M,N)
(s,t) « bezout(M,N) { s and t are Bezout coefficient}
m «— lem(M,N) = %
if a #b (mod g) then
return False
else
c—(a+ (b— a)s%) mod m
return (¢,m) { z = ¢ (mod m)}
end if

4.2 Conditional Modular computations

This package is developed in the ALDOR [6] language as a separate module. This section
shows in an ALDOR session basic conditional modular computations: algebraic expressions,
congruence conditions and conditional expressions.

4.2.1 Algebraic expressions

A library dedicated to the computation of algebraic expressions is developed. Simplification
of these expressions is described in 2.2.
Loading of our library in the ALDOR interpreter:

%1 >> #include "expcond"
Simplification of our algebraic expressions:

%3 >> el := 3*x+2-x; e2 := 62+x-100
() @ AlgExpression

%4 >> stdout << el << endnl << e2

2 .x + 2

x - 38 () @ OutputStream
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Canonicalisation of the expression by an ordering of the terms:

%7 >> e3 1= -1+2%x+x"3

() @ AlgExpression
%8 >> stdout << e3
x ~3+2.x-1 () @ OutputStream

2

Automatic simplification of terms: z? and —42? are combined to obtain a new term

—3z2:

%9 >> ed = x"2+x-4*x"2

() @ AlgExpression
%10 >> stdout << e4
-3 . x~ 2+ x () @ OutputStream

Application of the standard simplification rules:

%11 >> eb:=x*y+2*x"2%y+y T 2%xX"2-2%y*Xx
() @ AlgExpression
%12 >> stdout << eb
(y~2.x"2)+2. (x"~2.y)-x.y () @ QOutputStream

Some specific operators have been defined to compare (=), or compute the type of an
expression (integer?, somme?, power? ...) :

%3 >> e:= x+3
() @ AlgExpression
%4 >> stdout << somme? e << endnl << power? e
T
F () @ OutputStream

%6 >> el:= x+2xy+4; e2:=4xy+10+x-6-2*y
() @ AlgExpression

%7 >> stdout << (el = e2 )

T () @ OutputStream

%9 >> el:= x+2xy+2
() @ AlgExpression

%10 >> stdout << (el = e2 )

F () @ OutputStream
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4.2.2 Formal congruence conditions

Formal congruence conditions are built as general boolean expressions with congruence con-
ditions as atomic boolean expressions. General simplification rules are described in Sec-
tion 2.3.

Atomic congruence conditions allow for specifics simplification. They are constructed
with the operator congru. For example, the ALDOR command congru(x,4,5) built the
condition z = 4 (mod 5):

%3 >> cl:= congru(x,4,5)

() @ GeneralCondition
%4 >> stdout << cl
{x = 4 (mod 5)} () @ OutputStream
%5 >> c2:= congru(x,4,5) \/ congru(x,3,5)

() @ GeneralCondition
%6 >> stdout << c2
{{x = 4 (mod 5)} \/ {x = 3 (mod 5)}} () @ OutputStream
%7 >> c3:= congru(y,2,6) /\ congru(y,0,4)

() @ GeneralCondition
%8 >> stdout << c3
{y = 8 (mod 12)} () @ OutputStream
%9 >> c:= c2 /\ c3

() @ GeneralCondition
%10 >> stdout << c
{{y = 8 (mod 12)} /\ {x = 4 (mod 5)} \/
{{y = 8 (mod 12)} /\ {x = 3 (mod 5)}}

A normal form is defined over these conditions. For example, condition 3 = 1 (mod 2)
is simplified to Always (True) whereas condition 3 x z = 4 (mod 6) is reduced to Never
(False) because this equation has no solution:

%3 >> c:= congru(3::AlgExpression,1,2)

() @ GeneralCondition
%4 >> stdout << ¢
Always () @ OutputStream
%5 >> c:= congru(3+x,4,6)

() @ GeneralCondition
%6 >> stdout << c
Never () @ OutputStream

Key example:
The problem is to find n such that n = (k + 1)(5k + 1)(9k + 1) is a Carmichael number
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where (k + 1), (5k + 1) and (9% + 1) are relatively prime. The symbol k is associated to a
congruence condition C defined as follows:

k=0 (mod 7)
C = k=2 (mod 4)
") k=15 (mod 45)
k=0 (mod 11)Vk =1 (mod 11)

This example illustrates the simplification problem that arise when finding counterexam-
ples to pseudo primality tests [4]. The system simplifies the condition C' to a new condition:

%13 >> c:= congru(k,0,7)/\congru(k,2,4) /\congru(k,15,45)
/\(congru(k,0,11)\/congru(k,1,11))
() @ GeneralCondition
%14 >> stdout << c
{{k = 4830 (mod 13860)} \/ {k = 2310 (mod 13860)1}}
() @ OutputStream

The simplified condition C'1 = (k = 2310 (mod 13860) V k = 4830 (mod 13860)) allows
for the enumeration of all possible values for k by varying k' in equalities k¥ = 13860k’ + 2310
and k = 13860k’ + 4830.

4.2.3 Conditional expressions with congruence conditions

Conditional expressions with congruence conditions are algebraic expressions where each
expression may be associated to a congruence condition. For example, the expression {2z +
3,224+ 3 =3 (mod 4)} is computed in our package by:

%5 >> cl:= condition(2*x+3, congru(2*x+3,3,4))

() @ ConditionalExpression
%6 >> stdout << ci
[2.x+ 3,{x=2 (mod 4)} \/ {x =0 (mod 4)} 1]

() ©@ OutputStream

A condition may be simplified to Never within a conditional expression without cancel-
lation of the total expression:

%7 >> c2:= condition(2*x+3, congru(2*x+3,2,4))

() @ ConditionalExpression
%8 >> stdout << c2
[ 2. x+ 3, Never ]

() ©@ OutputStream

Conditional expressions may be combined thanks to classical arithmetic operators:
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%4 >> ecl:= condition(2*x, congru(x,1,5))
() @ ConditionalExpression
%5 >> stdout << ecl
[ 2. x,{x=1 (mod 5)}] () @ OutputStream
%6 >> ec2:= condition(x, congru(x,0,2))
() @ ConditionalExpression
W7 >> ec3:= ecl + condition(3::AlgExpression)
- ec2 + condition(4::AlgExpression)
() @ ConditionalExpression
%8 >> stdout << ec3
[ x +3,{x=6 (mod 10)}] () @ OutputStream

Even if a symbol does not appear within a simplified expression any condition concerning
this symbol is kept in the conditional expression:

%3 >> ec:= condition(x,congru(x,0,2)) - condition(x, congru(x, 5, 7))
() @ ConditionalExpression

%4 >> stdout << ech

[ 0,{x = 12 (mod 14)}] () @ OutputStream

Key application:
Deduction easily implements in this context. We implement a minimal Deduction mechanism
over congruence conditions based on modular arithmetic results presented in Section 4.1.1.
For example, from n = 2 (mod 4) and m = 2 (mod 4), condition n + m = 0 (mod 4) is
deduced.

{ n =2 (mod 4) = n+m=0(mod 4)

m =2 (mod 4)

%14 >> cl:= condition(n,congru(n, 2, 4)) + condition(m,congru(m, 2, 4))
() @ ConditionalExpression

%15 >> stdout << cl

[n+m, {n =2 (mod 4)} /\ {m = 2 (mod 4)}]
() @ DutputStream

%16 >> c2:= deduction(cl)
() @ ConditionalExpression

%17 >> stdout << c4

[n+m, {n+m=0 (mod 4)} /\ {n =2 (mod 4)} /\ {m = 2 (mod 4)} ]
() @ OutputStream

The deduction operator deduces the condition associated with an expression from the

conditions associated with its sub-expressions. Operator modulo? solves the equation
expr = x (mod m) in x where expr is a generic expression and n a fixed integer:
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%11 >> c1:= modulo? (n*(n+1), 2)
() @ GeneralCondition
%12 >> stdout << ci
{(n+1) . n=0 (mod 2)}
() @ OutputStream
%13 >> c2:= modulo? (n*(n+1), 3)
() @ GeneralCondition
%14 >> stdout << c2
{{n+1) .n=2 (mod 3)} \/ {(wn+1) . n=0 (mod 3)}}
() @ OutputStream
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Chapter 5

Conclusions

There are various ways to handle the problem that a mathematical calculation may have
more than one valid response. We can summarise the existing ways as:

1. give the user just one answer :

e which cannot be controlled by the user (Reduce),

e which can be guided by the user (Macsyma, Maple, Mathematica);
2. give the user some of the answers :

e in an implicit way using Heaviside, signum ... functions (Maple, Derive ...),

e in an explicit way (Axiom, Mathematica) but not in a structure which can be
easily computed with.

With conditional computation, all the mathematical results are computed. Such multi-

result is produced during the computation by introducing conditions on parameters. But
not only can conditional expressions express several results, but they can be included in
some other calculation.
Generally speaking, introducing conditional objects in Computer Algebra Systems enables
complete computation with analytic, as opposed to purely algebraic objects. Then, the
user knows all the solutions of his problem and how the parameters influence this result.
Conditional expressions have proven there interest by the two applications presented in
this report. But there are clearly many other areas of computer algebra which could benefit
from conditional computation. One that springs to mind is the computation of limits.

Giving the different values of a computation is now possible. But the approach presented
above does not allow the expression of cases when no solution can be found.

As we pointed out, we intend to modify the treatment of ConditionalExpressions: not
only different solutions, but also point singularity must be taken into account. This leads
to the introduction of a new generic value which is "Error". But a more fundamental
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question arises from this problem: “what is a parameter and what is a variable?” because
only parameters are supposed to appear in the conditions. Some properties of conditional
expression are also in question. Is it necessary to insure that all the solutions have been
computed ? If the answer is yes, the completness must be automatically verified even if it
is costly. Is it reasonable to have several solutions for the same value of the parameters. If
it is not, then the coherency of the conditions must be checked.

The second point that must be worked on is the evaluation and the simplification of
conditions. First of all, the system must be able to evaluate a condition to True, False in
order to diminish the size of conditional expressions. We have looked at the BDD [5] point
of view and it doesn’t fit our needs because this approach does not take into account the
links between elementary conditions such as null (a*(a+b)) and null (a) or null (a+b)
except if the system has made them explicit (as in the case of the integrator above). This
method seems only interesting if a lot of independent boolean variables are involved in a
conditional computation.
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