An Elementary Algorithm for Reporting Intersections of Red/Blue Curve Segments

Jean-Daniel Boissonnat 1 Antoine Vigneron 1
1 PRISME - Geometry, Algorithms and Robotics
CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : Let E_r and E_b be two sets of x-monotone and non-intersecting curve segments, E=E_r \cup E_b and |E|=n. We give a new sweep-line algorithm that reports the $k$ intersecting pairs of segments of E. Our algorithm uses only three simple predicates that allow to decide if two segments intersect, if a point is left or right to another point, and if a point is above, below or on a segment. These three predicates seem to be the simplest predicates that lead to subquadratic algorithms. Our algorithm is almost optimal in this restricted model of computation. Its time complexity is $O((n+k)\logn) and it requires O(n) space. The same algoritm has been described in our previous report [5]. That report presented also an algoritm for the general case but its analysis was not not correct.
Type de document :
[Research Report] RR-3999, INRIA. 2000, pp.13
Liste complète des métadonnées

Littérature citée [1 références]  Voir  Masquer  Télécharger
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 10:29:31
Dernière modification le : samedi 27 janvier 2018 - 01:30:58
Document(s) archivé(s) le : dimanche 4 avril 2010 - 21:00:11



  • HAL Id : inria-00072646, version 1



Jean-Daniel Boissonnat, Antoine Vigneron. An Elementary Algorithm for Reporting Intersections of Red/Blue Curve Segments. [Research Report] RR-3999, INRIA. 2000, pp.13. 〈inria-00072646〉



Consultations de la notice


Téléchargements de fichiers