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Abstract: Let E, and E} be two sets of z-monotone and non-intersecting curve
segments, £ = E, U E, and |E| = n. We give a new sweep-line algorithm that
reports the k intersecting pairs of segments of F. Our algorithm uses only three
simple predicates that allow to decide if two segments intersect, if a point is left or
right to another point, and if a point is above, below or on a segment. These three
predicates seem to be the simplest predicates that lead to subquadratic algorithms.
Our algorithm is almost optimal in this restricted model of computation. Its time
complexity is O((n + k) log n) and it requires O(n) space.

The same algorithm has been described in our previous report [5]. That report
presented also an algorithm for the general case but its analysis was not correct.
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Un Algorithme élémentaire pour déterminer les
intersections entre deux ensembles d’arcs de courbe

Résumé : Soit deux ensembles d’arcs de courbe z-monotones et disjoints du plan
E, et Ey, E = E,UE} et n = |E|. On présente un nouvel algorithme par balayage qui
détermine les k paires d’arcs de E qui se coupent. Cet algorithme n’utilise que trois
prédicats élémentaires qui permettent de décider si deux arcs se coupent, si un point
est & droite ou a gauche d’un autre, et si un point est au dessus, sur, ou au dessous
d’un arc. Ces trois prédicats semblent étre les plus simples prédicats qui permettent
d’obtenir un algorithme sous-quadratique. L’algorithme a une complexité en temps
de O((n + k)logn), ce qui est presque optimal dans ce modele de calcul, et une
occupation mémoire de O(n), ce qui est optimal.

Le méme algorithme a été décrit dans un rapport précédent [5]. Ce rapport
présentait aussi un algorithme pour le cas général mais son analyse n’est pas correcte.

Mots-clés : Géométrie algorithmique, Robustesse, Arithmétique exacte, Algo-
rithmes de balayage
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1 Introduction

The usual model to analyze geometric algorithms is the Real RAM which is assumed
to compute exactly with real numbers [15]. This model hides the fact that the arith-
metic of real computers has a limited precision and ignores numerical and robustness
issues. As a consequence a direct implementation of an algorithm that is correct un-
der the Real RAM model does not necessarily translate into a robust and/or efficient
program, and catastrophic behaviours are commonly observed.

A first approach to remedy this problem is to use exact arithmetic. In the context
of geometric algorithms, much progress has been done in the recent past [18, 19, 16,
14]. Another approach, to be followed here, has emerged recently. Decisions in
geometric algorithms depend on geometric predicates which are usually algebraic
expressions. For example, for a triple of points given by their cartesian coordinates,
deciding what is the orientation of the triangle reduces to evaluating (the sign of)
a multivariate polynomial of degree two. If an algorithm only uses predicates of
degree 2 as a function of the input data, and if the input data are coded as simple
fixed precision numbers, computations can be done exactly using the native double
precision hardware of the computer. The degree of an algorithm is therefore related
to the precision required to run an algorithm using exact arithmetic. This motivates
the design of efficient algorithms of low degree. Reducing the degree of the algorithms
will reduce the number and the complexity of the degenerate configurations, make
the algorithms more elementary and more general, reduce the amount of numerical
computations, which is usually quite a large fraction of the total execution time
especially if multi-precision computing is invoked, and possibly also refrain the use of
complicated data structures resulting in low space requirements. However, reducing
the degree of an algorithm may increase its time complexity in the Real RAM model.
Following Liotta et al. [13], we consider the degree of the predicates as an additional
measure of the complexity of problems and algorithms, and intend to elucidate the
relationship between time-complexity and degree of the predicates. Related research
can be found in Knuth’s seminal work [12] and in some recent papers [10, 4, 3].

In this paper, we consider the problem of reporting the k intersecting pairs among
a set of n z-monotone curve segments. We address the red/blue case, where this set is
partitioned into two subset of non intersecting segments. This problem can be solved
in optimal O(nlogn + k) time [6, 9, 1]. However these algorithms use predicates of
high degree, e.g. to compare the abscissae of two intersection points or to locate an
intersection point with respect to a vertical slab. These predicates have a degree and
an algebraic complexity that are usually higher than the intersection predicate : this
is in particular the case for line segments and circle segments [3]. Our algorithms
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4 Boissonnat & Vigneron

only use the intersection predicate and two other simple predicates : the predicate
that sorts two points by abscissae, and the predicate that says if a point is below,
on, or above a segment. In particular, we do not compute the arrangement nor
the trapezoidal map of the segments. Moreover, the predicates we use do not say
anything about the number or the positions of the intersection points, and the time
complexity of these algorithms depends only on the number of intersecting pairs
of segments, not the number of intersection points (differently from the other non
trivial algorithms [2, 9, 8, 6, 1]).

The time complexity of our algorithm is O((n + k)logn), which is a log factor
from optimal and it uses optimal space O(n). This result generalizes a similar result
for the case of pseudo-segments, i.e. segments that intersect in at most one point [3].

We learned recently that T. Chan has independently obtained a different algo-
rithm that uses a segment-tree [7]. Its time-complexity is O((n + k)logy s/n 1),
which is better than the time complexity of our algorithm for £ = Q(n!*¢) but it
uses O(n + k) space.

2 The problem

A curve segment is x-monotone if it is the graph of a partially defined univariate
function (i.e. any vertical line intersects such a segment in at most one point). Let
E = E,. U Ey be a set of n z-monotone curve segments such that no two segments of
E, (resp. Ep) intersect. The problem is to report the k pairs of segments of F that
intersect.

Let s and s’ be two segments of E and let p and ¢ be two endpoints of some
segments of E, not necessarily of s or s’. x(p) and y(p) denote the coordinates of
p, and s(z) denotes the point of s whose abscissa is x (if such a point exists). We
consider the following predicates :

Predicate 1: sNs' # ()
Predicate 2: z(p) < z(q)
Predicate 3: y(p) < y(s(xz(p)))

Predicate 4: y(s(z(p 2))) < y(jé‘/( z(p)))

Predicate 5: 3z € ,x(q)] such that s(z) = ¢'(x)

Predicate 1 is mandatory. Predicate 2 allows to sort the endpoints. Predicate 3
tells whether an endpoint lies above or below a segment. Predicate 4 provides the
order of two segments along a vertical line passing through an endpoint. Predicate 5
checks whether two segments intersect within a vertical slab defined by two endpoints.

AI/\I
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Reporting Intersections of Red/Blue Curve segments 5

We do not specify a precise representation for the segments, which may depend
on the application. For example, the function associated to a segment may be given
explicitly together with the interval where it is defined, or the function may be given
implicitly as the algebraic function of degree d that interpolates d + 1 given points
(including the endpoints of the segment). Other representations are also possible.
The degrees of the predicates clearly depend on the chosen representation. In the
table below (see also [3, 11]), the degrees of Predicates 2-5 are given for line segments
represented by the coordinates of their endpoints, for half-circles defined by centers,
radii plus a boolean (to distinguish between the upper and the lower arc), for circle
segments defined by three points (including the two endpoints of the segment), and
for curves defined by a polynomial equation y = f(x). Observe that the predicates
are ordered by increasing degrees in all those cases. However, this order may be dif-
ferent for some other types of segments. For instance, for half-circles defined by three
non z-extreme points, the degree of Predicate 2 is 20 while the degree of Predicate
3 is only 4.

Predicate degree

line half circle | pol. of

segment | circle | segment | degree

3 points d
L+ 1 2 [ 2] 12 [ d ]

2 1 1 1 1

3 2 2 d

4.5 3 4 12 d

Our algorithm only requires predicates 1,2 and 3 while other non-trivial algo-
rithms [2, 9, 8, 6, 1]) make use of our five predicates. Thus they have higher algebraic
degree when we consider line segments, half circles or circles defined by three points.

3 Algorithm

In this section, e (resp. e,) denotes a blue (resp. red) segment, that is e, € Ej and
er € E,.. We will prove the following result:

Theorem 1 The red-blue curve segment intersection problem can be solved in O((n+
k)logn) time and O(n) space using predicates 1,2 and 3.

We present a new plane sweep algorithm for this problem. A vertical sweep line
moves across the plane from left to right. When it reaches an enpoint, some data
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6 Boissonnat & Vigneron

structures are updated and intersections can be reported. At any time, we only
consider active segments which are the segments that cross the sweep line.

Definition 1 A good intersection (see figure 1) is an intersection between a blue
segment ep and a red segment e, such that the left endpoint of ey is above e, and on
the right of the left endpoint of e,.

In the following subsections, we describe an algorithm that reports the good
intersections. The other intersections are reported by the same algorithm after ex-
changing the orientation of the y-axis or the colors of the segments. The algorithm
to be described is therefore applied four times.

3.1 Data structures

The idea is to report the good intersections while pushing the blue segments down-
wards. Each blue segment is stored in a set U(e,) for some active red segment e,.
The set of segments in Ul(e,) will be maintained during the sweep. It consists of the
blue segments that cannot be pushed down because they are blocked either by e, or
by the lowest segment of U(e; ).

The above/below relationship within Ej (resp. E,) is a partial order, which is a
total order when restricted to active segments. We will maintain the ordered list of
the active red segments in a balanced search tree just like in Chan’s algorithm [6]
for red-blue segments.

For each blue segment e, we associate a red segment {(ep). We will require that
the two following properties remain satisfied during the course of the algorithm :

Property 1 The good intersections of e, with a red segment that lies above I(ep)
have been reported previously (see figure 3).

Property 2 As the plane is swept, l(ep) decreases with respect to the vertical order
of red segments.

For each active red segment e,, we denote by U(e,) the set of all active blue
segments e, such that I(e;) = e,. It is stored in a data structure that allows union,
minimum extraction and suppression in O(logn) time (e.g. a binomial heap). The
underlying order is the vertical order of active red segments along the sweep line.
Note that we shall not maintain /(e;) explicitely, as it is not clear whether we can
do it within the same time bounds. Its value can be retrieved in logarithmic time
from the heaps Ul(e,). For any red segment e,, the set Ul(e,) satisfies the following

property:

INRIA



Reporting Intersections of Red/Blue Curve segments 7

Property 3 The minimum of Ul(e,) does not intersect e,. The other segments of
U(e,) can only intersect e, or any red segment below e, on the right of the right
endpoint of this minimum (see figure 1).

sweep line

Figure 1: U(e,) and a good intersection

However, the sets U(e,) do not have any simple monotonicity property. For
example, if e, is below e/, then U(e,) may be entirely above U(el) or they may be
interlaced (see figure 2).

eb

R

Figure 2: Ul(e,) is above U(el).

3.2 Handling the events

We have to consider four kinds of events that occur when the sweep line reaches an
endpoint of a segment. Each event corresponds to the insertion, the deletion of a
blue or a red segment. We will now explain in detail how these events are handled,
and prove that our invariants (properties 1, 2, 3) are maintained.

RR n° 3999



8 Boissonnat & Vigneron

3.2.1 Inserting a red segment

The new red segment e, is just inserted in the list of active red segments and the
heap U(e,) is initialized as an empty set. Our invariants are obviously maintained.

3.2.2 Inserting a blue segment

When the sweep line reaches the endpoint of a blue segment e, we first determine
the red segment e, that lies just below the endpoint. If e, does not intersect e,
then it is inserted in U(e,). Otherwise, we report this intersecting pair and repeat
the same process with the active red segment that is below e, until we reach a red
segment that does intersect e, .

Figure 3: Insertion of e,

This procedure can be written in the following way, where e, denotes the active
red segment that lies immediately below e,.

Insert(ep, e,)

While e, intersects e,
report the intersection
er —ep—1

Insert e, in Ufe,)

The intersections between e, and the red segments that are below the left end-
point of e, and above [(e) have been reported, therefore property 1 is true for ey.
Besides, it is still valid for the other blue segments.

INRIA
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Since I(e) remains the same for each active blue segment e, property 2 still holds
after the insertion of ep.

Finally, let us check property 3. If e is the new minimum of U(e,) where e, =
l(ep), then of course it does not cross I(ep). Moreover, the other segments of U(e,)
may only cross U(e,) on the right of the sweep line, therefore they can not cross it
before the right endpoint of e, is reached since e, lies between these segments and
er. The case where e is not the new minimum of Uf(e,) is trivial.

3.2.3 Removing a red segment

Now suppose the sweep line reaches the right endpoint of a red segment e.. m
denotes the minimum of U(e,). If m intersects e, — 1, then report the intersection,
try again with e, — 2 ... until a segment e, — j is found that does not intersect m.
Then m is moved from U(e,) to U(e, —j), and we start again with the new minimum
of U(e,). Otherwise, if m does not intersect e,, we simply merge U(e,) and U(e, —1)
thus maintaining property 3.

In this algorithm, Insert is the procedure we described in the previous section.

While m = min(U(e,)) intersects e, — 1
report the intersection
extract m from Ul(e,)
Insert(m,e, — 2)

Ule, —1)=U(e, —1)UU(e,)

Bad intersections may be reported during this operation, we may just discard
them by comparing the coordinates of the left endpoints.

Note that [(ep) is not updated after merging U(e, —1) and U(e,.) in order to keep
our time complexity bound.

The invariants are maintained as is easily checked as in the previous case.

3.2.4 Removing a blue segment

Let e; be the segment to be removed and e, = I(ep). As we said before, [(ep) can
be obtained in O(log n) time from the mergeable heap data structure that stores the
sets U(.).

If e, is not the minimum of U(e,), we just remove it. Otherwise, we still re-
move e, from Uf(e,), but then we need to check whether the new minimum m of

RR n° 3999



10 Boissonnat & Vigneron

U(e,) intersects e,. If it does, we push it downwards by running the procedure In-
sert(m,e, — 1), then repeat the whole process with the new minimum until it does
not intersect e, so that property 3 remains true.

extract e from U(e,)

while m = min(U (e, )) instersects e,
report this intersection
extract m from Ul(e,)
Insert(m,e, — 1)

Once again, this procedure may report bad intersection which can be fixed by a
simple test.
It can be easily checked that the invariants are maintained.

3.3 Proof

The correctness of this algorithm directly follows from properties 1 and 3.

3.4 Analysis

Maintaining the ordered red segments list takes O(nlogn) time. Localizing an end-
point or removing it takes O(logn). The other parts of the algorithm take at most
O(log n) for each event or reported intersection, then we just need to prove that an
intersection cannot be reported twice. Let e, and e, be two intersecting segments.
After reporting their intersection once, l(e;) < e,. Moreover, property 2 means
that I(ep) can only go down the list of red active segments, and we never test the
intersection between e, and a segment that lies above [(ep).

3.5 Degenerate cases

Since this algorithm is elementary we only need to consider a few degenerate cases
which turn out to be very easy to handle. Two kinds of degeneracy may occur: either
two endpoints have the same abcissa or an endpoint lies on a curve.

The first case can be solved by extending the partial order on endpoints abcissae
to any total order. The order should be the same for each one of the four plane
sweeps we perform for otherwise some intersections would never be good.

If a point lies on a segment, we just consider that it is above the segment during
two sweeps and below the segment during the two sweeps with the y-axis reversed.

INRIA



Reporting Intersections of Red/Blue Curve segments 11

4 Conclusion

Given a set of general z-monotone segments, we have presented an algorithm to
report the pairs of red-blue segments that intersect. Our algorithm uses only three
simple predicates that allow to decide if two segments intersect, if a point is left or
right to another point, and if a point is above, below or on a segment. These three
predicates seem to be the simplest predicates that lead to subquadratic algorithms.
Our algorithm is almost optimal in this restricted model of computation.

Interestingly, the time complexity of our algorithm depends on the number of
pairs of intersecting segments, not on the number of intersection points. In particular,
our algorithm works even if the segments intersect infinitely many times.

We conclude with some open problems. First, can we remove a logn factor in
our time complexity results ?

The Q(nVk + nlogn) lower bound holds for general curve segments. It has been
possible to do better for line segments [3]. Can we also do better for other special
curve segments such as circle segments. Some preliminary results for thick objects
have been obtained by Vigneron [17].

In this paper, we have restricted our attention to x-monotone segments. This
may be a restriction when the points with a vertical tangent are difficult to compute.
This is in particular the case for circles defined by three points where the predicate
that compares z-extreme points has degree 20 while the intersection predicate has
degree 12 only.
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