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Conception de canaux fluidiques a dispersion
minimale en environnement CAD-Free

Résumé : Nous montrons ’application de notre platforme d’optimisation pour la
conception des canaux fluidiques a fonctionnement électroosmotique. Le but de ces
configurations est la détection et la séparation de quantités microscopiques ayant des
mobilités différentes lorsque suspendues dans un fluide et soumis & un champ électrique.
Pour réaliser des configurations compactes de canaux, 'on est amené a introduire des
coudes. Ceci implique, du fait de la variation du champ électrique, une grande dis-
persion des espéces transportées et nuit donc fortement aux capacités de séparation de
I’ensemble. Le but est de proposer des formes minimisant cet effet et permettant ainsi
la réalisation des canaux de longueur maximale sur une surface minimale et ayant la
meilleure résolution possible. A cet effet, I’on considére deux types de coudes avec des

angles de 90 et 180 degrés.

Mots-clé : Canaux Fluidiques, Optimisation, Gradients Incomplets, CAD-Free.
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1 Introduction

Microfluidic channel systems used in bio-analytical applications are fabricated using
technologies derived from microelectronics industry including lithography, wet etching
and bonding of substrates. One important class of these channel system uses ca-
pillary zone electrophoresis to separate and detect chemical species. The aim is to
analyze and then optimize the separation performance of such device for chemical
tests. This technique separates chemical species suspended in a liquid buffer based
on their electrophoretic mobility. The electric field in these systems is applied in the
axis of the channel using electrode immersed at reservoirs at the end of the micro-
channels. The ability to discriminate between sample species of nearly equal mobility
is enhanced by increasing the channel length ([Culbeston, Jacobson & Ramsey (1998)],
[Molho et al. (2000)]). Separation capacity increases with the length of the channel
([Culbeston, Jacobson & Ramsey (1998)], [Molho et al. (2000)]). In order to achieve
channel lengths of order 1 m and yet confine the micro-channel system to a compact
configuration with dimensions less than about 10 c¢m, curved channel geometries are
required. Unfortunately, curved channel geometries introduce skews which imply a dis-
persion of the electrophoretic sample bands in the flow . This curved-channel dispersion
has been identified as an important factor in the decrease of separation efficiency of
electrophoretic micro-channel systems. Unfortunately, we notice that reducing the skew
often introduce a new type of residual dispersion associated with band advection away
from the channel boundaries. We also notice that to avoid this effect it is necessary for
the channel walls to be as smooth as possible with minimal curvature variation. This
is somehow contradictory with the shapes obtained from a minimization based only on
skew minimization. We therefore add this constraint to our optimization.

The optimization formulation for such devices has to include therefore the following
points:

e minimize the skew due to turns,

e minimize the residual dispersion associated with band advection,
e avoid too much variations in walls curvature,

e maximize the length of the channel,

e minimize the occupied surface.

Our aim in this paper is to show how to use our op-
timization platform, first designed for aeronautical applications
([Mohammadi (1997a)],[Mohammmadi & Pironneau (2000)]) to the design of mi-

nimal dispersion electrokinetic channels.
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An important ingredient in the platform is the Computer-Aided-Design-free parame-
terization of the micro-fluidic channel geometry which has shown its ability to produce
various new shapes not necessarily reachable in the original CAD parameterization. In
this parameterization, the control space is quite rich compared to a CAD parameteriza-
tion ([Mohammmadi & Pironneau (2000)]). We will see also that this parameterization
enables to account for a possible loss of regularity in the manufacturing step.

Another important ingredient is to use dynamic minimization algorithms. We showed
how to put well known minimization algorithms in the form of dynamic systems, having a
decreasing energy like in Hamilton-Jacobi systems, suitable to reach stationary point for
the solution of coupled problems. Indeed, in this approach, the minimization algorithm
is seen as an extra state equation (for the parameterization) and the whole system
is marched in a pseudo-time to a stationary point. Global minimization can also be
introduced by coupling several dynamic systems from different parameterization states

([Mohammmadi & Pironneau (2000)]).

Finally, we would like to point out the issue of using incomplete sensitivities in the
design process. The aim is to perform analysis and design at the same time. The main
idea is to use two different state equations for the evaluation of the state variables and for
the evaluation of sensitivities. The first one being usually complex and probably given
by a commercial package, the second one simpler, but on which we have complete control
and knowledge. The point being that we would like the simulation and design problems
to have about the same complexity. We widely used this technique in shape design in
aerodynamical applications ([Mohammmadi & Pironneau (2000)]|) where the gradient
of aerodynamical coefficients were approximated keeping only geometrical contributions
([Mohammadi (1997a)],[Mohammmadi & Pironneau (2000)]). This is especially impor-
tant where the number of control parameters is large making otherwise necessary the
use of an adjoint solver. This simplification is also important when the size of the direct
simulation problem is quite what can be treated in a reasonable time by the existing
computer facilities.

We show the application of this technique to the design of a 90 and 180 degrees corner
minimizing the dispersion of chemical species in motion in the electric field. These turns
are important as their combination permits to maximize the length to surface ratio for a
channel. Typical cross-section sizes for these channels are 100 ym in cross-section width
and 10 gm in depth.

2 Governing equations

This problem is multi-model in the sense that several PDE are involved in the defini-
tion of the state variables and the cost function. We will see that different levels of
approximation can be introduced for these state equations.
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2.1 Electric field

The aim is to use the difference in the mobility of the species in an electric field E(¢, z).
E can be both stationary and unsteady. In this work, we consider only steady electric

fields.

E = Vv is defined solving a Poisson equation for the potential v:
—Av =0, in Q (1)

o
9w _ 0 on other boundaries.

v(lin) =v1,  v(low) = va, o

2.2 Flow motion

For typical electrokinetic microchannel applications the observed flow motion has a
velocity of about 107*m/s — 107®m/s, channel thickness of 100 pm and kinematic
viscosity about 107°m?s™!. This leads to Reynolds numbers ranging from 0.001 to
0.01. Due to spontaneous charge separation that occurs at the channel walls, there is
formation of an electric double layer ([Probstein|). The typical size of this layer is a
few nano meters. The stiffness of this electric double layer makes it hardly computable
using classical numerical approaches applied to the Stokes model with a Lorentz force
term. However, it is known that at the edge of the double layer the flow is parallel and
directly proportional to the electric field. The first model describing the flow motion
can be therefore the Stokes system with the previous condition as wall-function.

aa—ltj — pAU 4+ Vp =0, in the channel (2)

U = pep ' on the inner and outer walls,

—Ho +p.n =0 on in and outflow boundaries,

n

where . is the electrokinetic mobility of the flow, u the dynamical viscosity and n the
unit external normal to the boundaries.

2.3 Reduced models for the flow

In the absence of a pressure gradient, the previous model reduces to two elliptic equations
for the velocity components and states that the velocity vector is locally parallel to the
walls and proportional to the local electric field U = ., EU with U obtained solving
for U = (T, ts):

—Atuy; =0, —Auy;=0, in (3)
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U= (ty,09) =7 =(m1,72), on channel walls, F 0 on other boundaries,
n

where 7 is the local unit tangent to channel walls. Noticing that the electric field itself
is parallel to walls, this means that the velocity is everywhere parallel and proportional
to the electric field:

U = ,uekE. (4)

We use this former model in our optimization problem. In addition, this model is
interesting for incomplete sensitivity evaluation (see below), where different models are
used for the state and gradient computations. In other words, even when using more
complex models, we should consider this model as the state equation to be taken into
account for sensitivity evaluation.

2.4 Advection of species

The motion of a species a at infinite Peclet number by the velocity field U computed
above is described by:
al(z,t)+ U(z)Va=0, in 0, (5)

a(Tinter) = given.

As we consider the velocity field defined by the stationary electric field, this step is
therefore only a post-processing step and is devoted to the qualification of the skew.

3 Design problem formulation

We consider the following constrained minimization problem:

min J(z, g(z), u(q; v)), (6)

z(t)eX

E(z,q(x),u(q,z)) =0,
g1(2) <0,92(q(2)) <0, gs(q,u(g,z)) <0,

where © € X C R" describe our CAD-Free parameterization ([Mohammadi (1997a)]).
q(x) describes all geometrical entities (normals, surfaces,...). u € RY denotes the state
variables (here the potential, electric field, fluid velocity and the advected species) and
E € RN the state equations described above. ¢; defines the constraints expressed di-
rectly on the parameterization and is taken into account in the definition of the admis-
sible space X, g2 those on geometrical quantities (for instance concerning the regularity
of the shape) and gs state constraints on u (for instance concerning the regularity of the
velocity field).
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Figure 1: Shapes obtained under the same optimization conditions for three admissible
spaces with different minimum required regularity for the shape.

3.1 Robustness

In many microfabricated fluidic channel systems ([Molho et al. (2000)]), it is difficult
to exactly realize proposed shapes due to small but significant errors introduced in
the manufacturing step. One way to account for these variations around to introduce
a random perturbation operator in the optimization algorithm in the sense that the
proposed shape is equivalent to any shapes in a given range (e.g. 5 percents in normal
variation). The minimization problem (6) can therefore be reformulated as:

i J(y,q(y),ulq,: 7

Jnin max J(y,q(y), ule,9)), (7)

with the state equation and constraints as above. Here the admissible space Y (X)) for
the worst case analysis approach is defined by:

1
Y(X)={y¢€ [ax,oz:r:],‘v’:ﬁ € X} C R™,

which for instance, for @ = 1.05 defines a 5 percent variation range around the proposed
shape. If @ = 1, there is no randomness and the two optimization problems (6-7) are
similar.

Another way to proceed is to perform the optimization in an admissible space with
slightly less regularity requirement than what would be realizable by the manufacturing.
Hence, the obtained shapes includes a possible imperfection. We propose the following
approach:

o Define the admissible space X for the manufacturing,
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e Extend X to X' including less regular shapes,
e Perform the optimization (6) in X",
e Project the optimized shape into X,

e Validate the regularized shape for the skew.

This approach is easy to account for in our CAD-Free parameterization presented bellow.
We show in (Fig. 1) a possible loss of regularity for the shape during manufacturing,
three designs have been performed under the same conditions but with slightly different
minimum required regularity for the admissible spaces.

4 CAD-Free shape and mesh deformation tools

The shape deformation is done in a CAD-Free framework
([Mohammmadi & Pironneau (2000)]) in the sense that the only entity known
during optimization is the mesh. This parameterization has several characteristics:

1. All the nodes on the inner wall of the channel are control points. More precisely,
we use the local normal to the inner channel wall and specify the deformations in the
direction of this normal n(z). Hence, for a curve y(z), a deformation of amount f(z),
defined for each nodes, leading to the deformed curve 3(z), can be expressed in the
normal direction to v by:

V(@) =v(z) + flz)n(y(z)).
2. To avoid oscillations, a local” smoothing operator is defined over the shape.

The reason for this is that the gradient has necessarily less regularity than the pa-
rameterization. Indeed, suppose that the cost function is a quadratic function of the
parameterization: J(z) = (Az — b)? with = € HY(T), A € H™'(T) and b € L*(T).
The gradient J! = (2(Az — b)A) € V with H~Y(T') ¢ V C L*(T). Hence, any pa-
rameterization variation using .J! as descent direction will have less regularity than z:
Sz = —pJ. = —p(2(Az — b)A) € V, where H™1(Q) C V C L*(Q). We need therefore
to project into H'(£2) using the localized solution of a second order elliptic system in
regions where the deformation is found to be not enough smooth.

(I —eA)oi = bz, (8)
0% = dx =0 where constrained,

where 07 is the smoothed shape variation for the shape nodes and dx is the variation
given by the optimization tool. By ’local’ we mean that if the predicted shape is locally
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smooth, it remains unchanged during this step and ¢ is set to zero for these regions if,

(dz)r

< TOL, (9)

where §;;(dz) is the difference between the variations of the two nodes of each boundary
edge and (dx)r the mean variation on this edge and TOL is a regularity tolerance factor.

Now, to include a loss of regularity as discussed above, it is sufficient to ask for more
tolerance in the step above.

Once the shape deformation defined, it is propagated over the computational domain
using elasticity based procedure as described in ([Mohammmadi & Pironneau (2000)]).
These shape and mesh deformation tools have been used in optimization pro-
blems in 2 and 3D configurations for incompressible and compressible flows

([Mohammmadi & Pironneau (2000)]).

5 Cost function and constraints

We want to minimize the skew, which can be qualified in different ways. For example,
we can ask for iso-values of the advected species to be always normal to the flow field.
In this case, we can consider:

J(z) = /OT/Q(Va(x,t) x U(z))2dedt, (10)

where T' is the maximum migration time. These integrals are not suitable for cheap
sensitivity evaluation as they involves information over the whole domain. In addition,
this cost function is too restrictive as we are actually interested only in minimizing the
final skew. The cost function reduces to:

J(z) = /Q(Va(:c,T) x U(z))2de, (11)

which again reduces, in region of space where the channel has no turn and therefore
where U is constant to:

J(z) = /Q(%)de, (12)

where n is the normal direction to the local walls.

Another way to reduce the skew, which also avoids the previous restriction, is to ask
for all particles traveling on characteristics to have the same migration time. Hence, the

cost function is given by:
ds ds
Sy =(] Z= [ 5r 13
@W=([ - (1
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Figure 2: Sensitivity evaluation using the multi-level approach (left) for a initial 90 de-
grees corner. There are about 100 control points along the inner channel wall. Compari-
son between the exact and incomplete gradient evaluations (middle). The deformations
obtained using the incomplete and exact gradients (right).

for any couple of characteristics x and ' linking the outlet to the inlet. Here again, the
cost function is over the whole space, but we can consider only a few characteristics.
The two main characteristics are those defined by the internal and external walls of the
channel:

@ = ([ = [ (1)

where I'; is the inner wall and I', the outer wall in a turn. This last formulation is
interesting as it only involves boundaries which we know to be suitable for the application
of our incomplete sensitivity. Another interesting feature of formulations (13 and 14)
over (10) is that they do not require the knowledge of the distribution of the advected
species.

As we said, we notice that the residual band advection dispersion away from walls
increases with the variation of the shape curvature. We therefore add the following
constraint to the cost function (14) above:

I@) e )+ ([ 15 H—/H D+ G- 5 )

where 0 denotes initial inner and outer walls. This is why, when we alow both walls to
move, we obtain for about the same amount of skew, a higher residual dispersion inside
the channel. In cases, where the outer wall is kept unchanged the second constraint
vanishes.

Two other types of geometrical constraints concern the amplitude of the deformations
and the regularity of the deformed shape. In the first constraint, shape variations are
allowed between two limiting curves. Regularity requirements are enforced using the
smoothing operator of the CAD-Free parameterization described above.
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6 Sensitivity and incomplete sensitivities

Consider the general simulation loop, involved in (6), leading from shape parametri-
zation to the cost function :

J(e): @~ a(z) = Ula() = J (e, q(2), Ula())).
The Jacobian of J is given by:
df _dJ  9Jdq 9J0Udq

— =+ = + ————.

de dx  0qdx OU 0q Oz
In most applications, the cost function is, or can be reformulated, to have the following
characteristics:

e The cost function J and the parameterization x are defined on the shape (or a
same part of it),

e .J is of the form

/ :/ Ly u)d s
(z) shape or part of the shape [z, q)g(u)dy

which means that it involves a product of geometrical and state based functions,

We have shown that for such cost functions, the sensitivity with respect to the
state can be neglected in regions where the curvature of the shape is not too large

([Mohammadi (1997a)]-[Mohammadi (1999)]).

The concept of incomplete sensitivities was first introduced for aerodynamical appli-
cations involving hyperbolic and parabolic PDEs ([Mohammmadi & Pironneau (2000)]).
In that work, we showed that where the cost function, constraints and controls are de-
fined over the shape (through boundary integrals for instance), a good estimation of
gradients are obtained by keeping only geometrical sensitivities. This means that only
the shape deformation tool has to be differentiated and not the whole simulation loop,
in particular neither the mesh deformation or the state equation solver have to be linea-
rized ([Mohammadi (1997b)]). Hence, we consider the following approximation for the
gradient:

49, 010
de 0z dqoz’

We can illustrate this idea on the following simple example. Consider as cost function
J = a"u(a) and as state equation the following diffusion equation:

—Uz, =1, on Je 1], u(e) =0, wu(l)=0,

which has as solution u(z) = —2?/2+(e+1)/2—¢/2. We are in the domain of application
of the incomplete sensitivities ([Mohammmadi & Pironneau (2000)]):
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e the cost function is product of state and geometrical quantities (larger is n, better
is the approximation),

e it is defined at the boundary,

e the curvature of the boundary is small (here no curvature at all).

The gradient of J with respect to € is given by:
677,—1

Jo(€) = " H(nug(e) + eug(c)) = 5

(—n(e+1) —¢).

The second term between parenthesis is the state linearization contribution which is
neglected in incomplete sensitivities. We can see that the sign of the gradient is always
correct and the approximation is better for large n.

As we said, cost function (14) is suitable for the application of incomplete sensitivities.
We can increase direct geometrical contributions by the fact that the velocity is parallel
to the walls. The cost function we consider for derivation is therefore:

ds ds
J = / — _/ — 2'7 16
= U, Fudl BT . Pl B o)

where 7 is the local unit tangent vector to the wall.

To evaluate the accuracy of these gradients, we compare the results obtained with
this approximation of the gradients with those coming from finite differences. This
incomplete sensitivity evaluation possibility shows the importance of redefining cost
functions as boundary integrals when possible (as shown above) and to bring as close as
possible the cost function and control definition locations. This is in particular important
for 3D configurations and it also permits to consider a whole circuit pattern and not only
a piece of shape. In fact, optimization becomes possible for the configurations for which
simulation is affordable as the cost of simulation and design becomes equivalent. Indeed,
sensitivity analysis is now equivalent to the linearization of the following approximate
simulation loop:

j(r) rx = q(x)r — J(z,q(x),U(q(x))),

which means that we only account for the modification in the geometrical part defined
over the inner channel wall.

6.1 Multi-Level gradient construction

From what said on incomplete sensitivities, it is clear that it is more suitable to have
an accurate state evaluation and an approximate gradient than to try to compute an
accurate gradient based on a wrong state obtained on a coarse mesh.
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Consider a bilinear cost function involving state u and geometrical ¢ contribution and
defined over the same region than the control x.
d d du

d d
|%(uq) - u(fine)£| < |%(uq) — %(coarse).q + u(coarse)£|.

The left hand side is the difference between exact and incomplete gradient computed on
a fine mesh.

This error is often present and is due to the fact that the cost of iterative minimization
and gradient evaluations limit the user to coarser meshes than what would have been
used for a pure simulation.

One possibility to avoid this difficulty is to use different level of refinement for the
state and the gradient. This is the idea behind multi-level shape optimization where
the gradient is only computed on the coarse level of a multi-grid construction and where
the state comes from the finer level ([Beux & Dervieux (1997)]):

d du dg
%(u.q)(ﬁne level) = ](%(coarse level)).¢(fine) + u(fine level)%(ﬁne).

The first term of the left hand side is the interpolation of the gradient computed on the
coarse grid over the fine level.

7 Pseudo-unsteady closure equation for z

Consider the following time dependent equation for the shape parameterization x. Here,
the time is fictitious and is similar to the descent parameter.

i+e i=—FI,LM ' V.J).

F is function of the exact or incomplete gradient, it takes into account for the projection
over the admissible space and the smoothing operator (II, M). This system represents
most minimization algorithms. If € = 0, we recover the steepest descent approach. If
¢ > 0, this is the heavy ball method ([Attouch & Cominetti (1996)]) The aim in this
approach is to access different minima of the problem and not only the nearest local
minimum. Conjugate gradient and quasi-Newton methods can also be cast in this form

([Mohammmadi & Pironneau (2000)]).

To advance in time (7), we use a central difference scheme (denotes by dx? the shape
deformation at step p):

1
(37 + 7)o" = %W — F(Vard”). (17)

The shape parameterization z° being defined, the dynamical algorithm we use is as
follows:
Optimization iterations
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ot 4P o 4P
1. compute the gradient: %— or %,

if (H%H <TOL or J?» < TOL) stop.
2. define the new admissible shape deformation using (17):
ox?, 3. smooth the deformations using (8),
4. deform the mesh.
5. compute the new state: uP*!.
6. compute the new cost: JP*t1,
6. p+ p+ 1 and goto 1.

End of optimization loop.

8 Numerical results

In addition to the characteristics presented above, we use a Delaunay mesh adaptation
technique by local metric control widely used in various simulations involving the solu-
tion of PDE’s ([Frey & George (1999)], [Hecht & Mohammadi (2000)]). The impact of
this coupling has been shown on a the advection of a passive scalar by the field (figures
3). It is clear that to have the same quality without mesh adaptation implies the use of
a regular fine mesh everywhere, which is out of reach for general applications. The re-
meshing is also important and absolutely necessary as the large deformations introduced
for the shape makes the mesh too distorted to be effective for finite element simulations.

We show the skews produced by 90 and 180 degrees turns in pictures (4-5). We then
applied our optimization approach to these configurations. No symmetry assumption
has been made. The first class of optimized shapes for the 90 and 180 degree turns
(Fig. 6-7) correspond quite to what found by an intuitive design ([Molho et al. (2000)]).
This is important as it permits some confidence on the global design approach. The
second classes of optimized shapes for the 90 and 180 degree turns (Fig. 8-9) have
been obtained asking for the cross-section not to reduce too much and also for less
regularity for the shapes. But, this leads to more band dispersion away from walls. The
previous optimization were performed under the constraint for the outer wall to remain
unchanged. To avoid too much restriction in the channel cross-section, a third class of
shape can be obtained asking for both the inner and outer walls to move (Fig. 10-11).
However, this turn is may be not optimal neither as we would like also to avoid for two
close 180 degree turns to interfere, which would imply a larger surface for the whole
channel.

9 Concluding Remarks

We have shown how to combine incomplete sensitivity analysis and pseudo-unsteady op-
timization approach to design reduced dispersion electrophoretic microchannel devices.
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Figure 4: Initial shape for the 90 degrees turn: effect of the turn on the advected species.

Figure 5: Initial shape for the 180 degrees turn:

species.

effect of the turn on the advected
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Figure 6: First class of optimized shapes for the 90 degree turn. The magnitude of the
skew has been reduced by one order.

Figure 7: First class of optimized shapes for the 180 degree turn. The magnitude of the
skew has been reduced by more than one order.
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Figure 8: Second class of optimized shapes for the 90 degree turn. The magnitude of the
skew is about the same than for the first class above with 15 percent less reduction in
cross-section, but there is more dispersion in the advection band as the wall curvature
variation is higgher.

@
N

Figure 9: Second class of optimized shapes for the 180 degree turn. Here again, larger
curvature variation introduces more dispersion in the advection band away from walls.
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Figure 10: Third class of optimized shapes for the 90 degree turn with both the inner
and outer walls moving. The skew is about the same than for the first class of the
90 degree optimized turn but with a much larger cross-section, but also more band
dispersion away from walls.

Figure 11: Third class of optimized shapes for the 180 degree turn with both the inner
and outer walls moving. The skew has been quite reduced and the cross-section conser-
ved (compared to the first class of shape), but there is much more band dispersion away

from walls.
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This analysis implies a redefinition of the cost function used for sensitivity evaluation
based on approximate formula through boundary integrals. In addition, it has been
shown that, to reduce the dispersion associated with band advection away from the
channel walls, these walls need to be smooth with minimal curvature variation along
the walls. Using the ingredients presented in this paper, minimal dispersion 90 and
180 degree turns have been obtained which enables by their combination to build low
dispersion microfluidic patterns of any length in a minimum surface.
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