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Abstract: The singular evolutive extended Kalman (SEEK) filter has been proposed
recently by Pham et al. [21] for data assimilation into numerical oceanic models.
This filter has been applied in different realistic ocean frameworks and have provided
satisfactory results [20, 21, 24]. However, the SEEK filter remains expensive in real
operational assimilation. To reduce cost and obtain a better representativity, we
introduce the idea “local correction basis”. In this local analysis, the basis vectors
support a small region of the model domain and vanish elsewhere. Such basis however
can not be made to evolve according to the model without destroying its locality
property. Therefore we shall keep this basis fixed and we argument it by a few global
basis vectors which evolve. The resulting semi-evolutive partially local filter is much
less costly to implement than the SEEK filter and yet can yield better results. In a
first application, validation twin experiments are conducted in a realistic setting of
the OPA model over the tropical pacific ocean.

Key-words: Data assimilation. Reduced Kalman filtering. SEEK Filter. EOFs
analysis. Forgetting factor.
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Un Filtre Semi-Evolutif avec une Base de Correction
Partiellement Locale pour I’Assimilation de Données en
Océanographie

Résumeé : Le filtre de Kalman étendu singulier évolutif (SEEK) a été proposé par
Pham et al. [21] pour I"assimilation de données dans les modéles océaniques. Ce filtre
a été implémenté et testé avec succés dans plusieurs situations réalistes. Cependant ce
filtre reste cher pour une océanographie opérationnelle. Pour réduire son cotit et avoir
plus de représentativité, on introduit 1'idée “base de correction locale”. Dans cette
analyse, les vecteurs de la base ont pour support une petite région du domaine du
modéle. Une telle base cependant ne peut pas évoluer avec le modéle sans perdre son
caractére local. On propose alors de garder cette base fixe et on lui rajoute quelques
vecteurs de base globaux qui évoluent. Le filtre semi-évolutif & base de correction
partiellement locale qui en résulte est bien moins cotiteux que le filtre SEEK mais
donne des meilleurs résultats. En premiére application, des experiences jumelles ont
été conduites dans une configuration réaliste du modéle OPA dans I'océan pacifique
tropical.

Mots-clé :  Assimilation de données. Filtrage de Kalman réduit. Filtre SEEK.
Analyse EOFs. Facteur d’oubli.
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1 Introduction

Developing operational data assimilation schemes in oceanography is one of the major
challenge for the coming year. Such schemes should be operated in conjunction with
realistic ocean models, with reasonable quality and at an acceptable cost as in meteo-
rology. Increasing interest in these assimilation schemes is emerging for the purposes
of improving short and mid term weather prediction, developing climate predictions
or for the specific objectives of the navies in various countries. Since the occurrence
satellites launching, considerable progress has been made in applying concepts and
techniques from statistical estimation and optimal control theories to the problem of
oceanographical data assimilation (see for example Ghil and Manalotte-Rizzoli [11]
for a review).

The Kalman filter is a statistical data assimilation scheme which provides the
best estimate, in the sens of least-squares, of the state of a linear model giving the
previous observations [16]. However, its application into oceanic models encounters
two major difficulties: non lineartiy and computational cost. The first can be par-
tially resolved by linearising the model around the state estimate, which leads to the
so-called extended Kalman (EK) filter [15]. The second is due to the huge dimension
of the model state. Several approximations, that essentially consist in projecting the
system state onto a low dimensional sub-space, have been proposed to reduce the
dimension of the system [5, 6, 7, 9, 12].

The singular evolutive extended Kalman filter (SEEK) introduced by Pham et
al. [21] is an approach to reduce the cost of the EK filter. It essentially consists in
approximating the error covariance matrix by a singular matrix which leads to not
making corrections in the directions where the errors are naturally strongly attenua-
ted by the system. These “directions of correction” evolve in time according to the
model dynamics and as usually initialized through the empirical orthogonal function
(EOFs) analysis. This filter has been applied in different realistic ocean frameworks
and quite satisfactory results have been obtained [20, 21, 24].

Nevertheless, the SEEK filter remains expensive in real operational assimilation
since the evolution equation of its correction basis requires model integration for
each correction basis vectors. To reduce the cost of this filter, Hoteit et al. [13]
have proposed different degraded forms of the SEEK filter in which they simplify
the evolution of its correction basis. But this does not address a built-in weakness
of the SEEK filter (in fact it may even exacerbate it) in that the correction basis
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4 1. Hoteit, D.T. Pham and J. Blum

may not contain enough vectors to capture the (usually short) range variability of
the model dynamics. Increasing the number of basis vector would of course increase
cost and, as our experiences show, can only increase marginally the representativity
of the basis. Indeed, the percentage of explained inertia in an EOFs analysis (see
section 2) quickly level out as the number of basis vector grows. Further, the last
EOQOFs usually cannot be accurately evaluated, due to statistical fluctuation and the
use of a not long enough historical run. More importantly in real applications, the
model can be subjected to errors and hence an EOFs analysis based on a run of the
model would be subjected to errors too. We believe that such error affect mostly the
last EOFs because they are the most numerically unstable.

For the above reasons, we shall introduce a kind of “local EOFs analysis” which
would hopefully provide better representativity. The local EOFs have support a small
region of the ocean and vanish elsewhere and therefore reduce the computation cost
thus allow more basis vector for a given cost. This local analysis limits the spatial
correlation length of the ocean variables which is consistent with the idea that such
correlation should vanish for far away spatial locations. Further, it allows choosing
the number of the EQFs differently in each ocean sub-domain in order to maximize
representativity. There is however a difficulty in the above “local basis” approach.
Such basis cannot be made to evolve with the model without destroying its locality
property. Therefore we shall keep this basis fixed and we will augment it by a few
global basis vectors which evolve. The resulting semi-evolutive partially local filter
Kalman (SEPLEK) filter, is much less costly to implement than the SEEK and yet
can yield better results.

The paper is organized as follows. Section 2 discusses different approaches to
obtain better representativity from the EOFs analysis. The SEPLEK filter is descri-
bed in section 3. In section 4, we present an adaptive scheme to tune the value of
the forgetting factor to overcome model instabilities. Finally, the performance of the
new filter is illustrated in section 5 with some simulation results performed under a
realistic setting of the OPA model in the tropical pacific ocean.

2 Empirical orthogonal functions (EOFs) analysis

The “classical” EOFs analysis is an efficient method to find an optimal representation
of the “global” ocean variability. It can be viewed as a method of “compressing data”
contained in ocean states by summarizing the correlation of their variables in a few
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vectors only, called EOFs. However, a too small number of EOFs will be able to
capture generally only the long range spatial correlation of the ocean variables. To
capture the short range correlation without requiring an excessive number of EOFs,
we shall develop a so called local EOFs analysis.

2.1 Classical (Global) EOFs analysis

This analysis provides a representation as accurately as possible of an ensemble of
state vectors Xq,..., X in IR? in a low-dimension (noted r) subspace. Indeed, for
a vector X, let X denotes its orthogonal projection onto a subspace spanned by an
M —orthogonal basis L = {¢y, } k=1, where M is some metric (to be chosen) in the
state space, and the constant function:

k=1
where X is the barycenter of X1,..., Xy i.e.
1 N
X= X_;X (2)
and
er =< X — X, ¢ >pm= ¢f M(X — X). (3)

Then the EOFs analysis aims at minimizing the mean squares projection error

2 1 al
=52l
=1

with respect to all choices of the basis. Here the introduction of a metric M is
needed in the case where the state variables are not homogeneous (as they represent
different physical variable such as velocity, salinity, temperature ...) to obtain a
distance between state vectors independent from unit of measure.

Xi — Xil5u (4)

The solution L of the above minimization problem is given by the first r nor-
malized eigenvectors of the matrix P relative to M, where P is the sample cova-
riance matrix of Xq,..., Xy ranked in decreasing order according to their eigenva-
lues Ay,..., A.. Moreover, one can verify that the EOFs analysis also provides the
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6 1. Hoteit, D.T. Pham and J. Blum

best low rank r approximation of P (in the sens of least squares) by
P~ LALT (5)

where A is a diagonal matrix containing Ay, ..., Ay on its diagonal. With regard to
the choice of r, it has been shown that the fraction of variance (or inertia) explained
by the first » EOFs is given by

_ Z;:l Ak
I(¢17"'7¢T)_ Z_l Ak (6)

which can be used as a guide for choosing r (Z should be close to 1). The reader is
referred to [19, 22| for more details.

In our case, we are interested in representing the variability of the state mo-
del around its mean and thus we use a long historical sequence of model states

X1q,..., Xy which can be extracted from a model run. The matrix P is given by
1 _ _
P = WXXT with X =[X; - X--- Xy — X]. (7)

Such matrix P contains a bulk of information on the system variability when N is
sufficiently large.

2.2 Local EOFs analysis

The classical EOFs analysis summarizes the correlations between all ocean variables.
The correlations which results often have long range if a few EOFs are retained.
However, one can expect that the ocean variables have a limited spatial correlation
length since two variables evaluated at ocean locations too far away would not, in
principle, correlated. Further, the EOFs analysis does not distinguish calm zones
from turbulent zones because it treats the ocean as a single homogeneous domain.
The resulting basis L contains therefore common information on these zones and this
can reduce its capacity to well-capture rather different local variabilities.

To remedy to these deficiencies, we propose to force the EOFs to be local wi-
thout losing too much the optimal characteristic of the EOFs analysis. Our basic
idea consists in constructing a set of EOFs having support a small region of the ocean.
This can simply be done by independently applying the EOFs analysis on different
ocean sub-domains. Such local analysis will limit the spatial correlation length in
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the relevant domain. Since the combined representation would provide no correlation
between spatial points in different sub-domains, to obtain better representativity, we
will use overlapping sub-domains. Such an approach is very flexible as we have at our
disposal a wide range of options to choose: (i) the number of sub-domains, (ii) the
extent of their overlaps and possibly the size and shape of these sub-domains as well,
and (iii) the number of the local basis elements in each sub-domains. Such flexibility
would allow us to construct a basis best adapted to the problem at hand. Another
point is that calculations on local basis functions are much less costly, therefore one
can afford more local basis elements (on the whole) without increasing (even possible
decreasing) the computation cost.

e Construction of the local FOFs basis:

To construct the local EOFs basis, one should first define the ocean sub-domains
on each of a separate EOFs analysis will be applied. As said before, these sub-
domains should overlap. To do this properly, one consider a partition of unity of the
ocean domain, i.e. an ensemble of positive functions {X(j),j =1,...,J} defined in
the ocean domain whose sum is identically equal to 1. Therefore any ocean state
vector X can be written as

J J
/Y(:C7 Y, Z) = Z/Y(‘r7 Y, Z)X(])($, Y, Z) = ZX(])($7 Y, Z) (8)
7=1 7=1
where
XO(a,y,2) = X (2,y,2)xY (2,4, 2) (9)

and z, y and z design the spatial coordinates. Next, for each 7 between 1 and .J, one
carries out separately an EOFs analysis on each local field X ¥) to obtain a basis for
each ocean sub-domain.

Now, using equation (1), one obtains a representation formula for each Xj ac-
cording to

r(9)

X0 (z,y,2) = XD (2,y,2) + Y Vo (2,y, 2) + ) (10)
=1

where the ¢§j)(m, y, z) design the EOFs resulting from the 4t local EOFs analysis,
X ) is the mean vector, r(9) is the number of retained EOFs and the coefficients
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8 1. Hoteit, D.T. Pham and J. Blum

() are constants. Thus by taking the sum of the last equation on the index 7, one
obtains a representation formula of the global vector X in the form

c

J )

X(2,y,2) = X(z,9,2)+ > > 6 (2,y,2) + . (11)

7j=11=1

In this formula, the representation error e is equal to the sum of all local representa-
tion errors el?), which clearly vanishes outside the support of the function y{?) (z,9,2).
However, one can still reduce this error by fitting the coefficients 65]) in order to ob-
tain the minimum of the squared errors sum. Indeed, if one writes equation (11) in

the matrix form
X=X+C"B+e (12)

where B is the matrix whose r = E}-jzl ) columns are the local EOFs ¢§j) and C

(

is the column vector containing the coefficients cl]), then it can be easily seen that
one can still reduce the representation error e in (11) by considering the vector C*
which minimizes the norm of (X — X) — CT B, which is no other than the orthogonal
projection of X on the subspace spanned by the columns of B. Therefore, one takes
as in section 2.1, the set of row vector of B as a representation basis, called local
EOQOFs basis, of the variability of the system state.

The number ) of the EOFs in each sub-domain can be chosen as in the classical
EOFs analysis. Thus the value of /) varies according to the variability of each sub-
domain. But this may served as a first guess, one can still readjust it for example by
increasing the value in the sub-domains of strong variability.

e Choice of the ocean sub-domains:

The size of every sub-domain is obviously characterized by the support of the
partition of unity functions y(). In practice such functions should support a small
region of the ocean and vanish elsewhere. For example, in the case of a rectangular
oceanic domain, one can take these functions in tensorial form i.e.

XD (z,y,2) = x8 (@) () (13)

INRIA



Semi-evolutive filter with partially local correction basis 9

such as j; varies from 1 to .Jq, j2 from 1 to J3, 7 = 71 + J(j2 — 1) varies from 1
to J = JiJy and the functions ngl) and Xgﬁ” have also a small support with sum
identical to 1. Moreover, since the ocean vector field is manifestly continuous, it is a
good idea to take these functions continuous too, which would require them to have
overlapping support. Note that one should not limit the correlation length in the

vertical direction to let the surface informations propagate to the ocean bottom.

The main difficulty with the local EOFs is that we have not find a way to make it
to evolve with the model (see section 3) without loosing its locality property. Even
if we decide to use it to initialize the SEEK filter and abandon the locality property
by allowing the basis function to evolve to track the model dynamics, this can be
very costly because of the large dimension of the basis. We have also noticed in our
experiments that the long range variability was not well represented by the local
basis. For these reasons, we will introduce some global basis elements, which results
in a so-called mixed global-local basis. An advantage of this approach is that the
global basis can be made to evolve to track the system dynamics as in the SEEK
filter.

2.3 Global-Local (Mixed) EOFs analysis

The oceanic phenomena can have both long range and short range variability. The
last type of variability is not generally well represented in the first few global EOQFs.
The residues of state vectors in the sub-space generated by the global EOFs analy-
sis thus contain mostly informations about the short range motions. Therefore, by
applying a local EOFs analysis on these residues we can obtain a local EQFs basis
which summarizes the local variability. By combining the local and the global basis
we will possess a representation basis capable to represent the long range as well as
the short range oceanic phenomena. Moreover, as it has been said, this global part
of this basis can be made to evolve with model dynamic (see section 3).

To construct such basis, one first computes a global EOFs basis I from a sample
of ocean states Xy,..., X as usual. The reconstruction formula of these states in
the sub-space generated by L is then given by (see section 2.1)

where e is the representation error (or residue) of state vector X in the sub-space
generated by L. Next, by applying a local EOFs analysis (not centered) on the
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10 1. Hoteit, D.T. Pham and J. Blum

representation residues ey, ..., ey of the state vectors set X1, ..., Xy, one obtains a
reconstruction formula for the residues according to

e=BB T Me+e¢. (15)

where the matrix B contains the first local EOFs and €' is the representation error
of the residue e in the sub-space generated by B. Note that we do not center the
vector e, as it represents a residue and thus should be already centered. Now, by
replacing e by its value in (14), one gets
X = X4LL"TM(X -X)+BB"Me+¢
= X+ LLTM(X - X)+BBTM(X = X) = BBTMLLTM(X - X) +¢
X+ LBUIPYTM(X - X) = BBTMLLTM(X — X) + ¢ (16)
with
IP=[L:B]. (17)

But since e is M —orthogonal to L, B is too, hence we have BT ML = 0. Therefore,
one obtains a new reconstruction formula for a state vector X namely

X=X+LPIBYTM(X - X)+¢ (18)

which can be much more accurate than the one obtained from a simple EOFs analysis
(1). Finally, as in section 2.1, one takes the matrix LB, called mixed EOFs basis, as
a representation basis of the variability of the system state.

Note that one can also start by applying a local EOFs analysis and then computes
a global basis from the residues of the state vectors in the sub-space generated by
the local basis. However, we have noticed in our experiments that the representation
basis obtained from the first method seems to have better reprentativity.

3 The semi-evolutive partially local filter

We shall adopt the notation proposed by Ide et al. [14]. Consider a physical system
described by

X' (tr) = M (tg-1, te) X (tg—1) +1(tx) (19)

INRIA



Semi-evolutive filter with partially local correction basis 11

where X(¢) denotes the vector representing the true state at time ¢, M(s,t) is an
operator describing the system transition from time s to time ¢ and 7(¢) is the system
noise vector. At each time f, one observes

Y = H X' (tg) + e (20)

where H}, is the observational operator and € is the observational noise. The noises
n(ty) and e are assumed to be independent random vectors with mean zero and
covariance matrices (J; and Ry, respectively.

Direct application of the extended Kalman (EK) filter to data assimilation in
meteorology and oceanography is not possible due to the huge dimension (n) of the
considered system. To overcome this problem, Pham et al. [21] proposed a subop-
timal EK filter very close to the original EK, called SEEK filter, in which the error
covariance matrix was assumed to be singular with a low rank r << n. This leads to
a filter in which the errors correction is made only along certain directions parallel
to a linear subspace of dimension r. They are the directions for which error is not
sufficiently attenuated by the system dynamic. Indeed, the ocean is fundamentally a
forced dissipative dynamical system which possesses an attractor. This means that
the trajectories of the system are drawn towards a small dimension subspace of the
phase space. Since the errors in the directions perpendicular to the attractor will be
naturally attenuated one do not need to correct them in these directions. For more
details one can consult Pham et al. [21].

Although the cost reduction of the EK filter is very important, the SEEK filter
remains expensive in real operational assimilation since the evolution of its correc-
tion basis Ly requires r + 1 times the model run. To reduce the cost of this filter,
one should simplify the evolution of its correction basis. Brasseur et al. [4] proposed
to keep the initial EOFs basis fixed in time as they have noticed in there numerical
experiments that most of the estimation error was reduced immediately after the
first correction i.e. while the evolution of the EOFs basis was not yet effective yet.
This approach leads to a very low cost filter, called singular fixed extended Kalman

(SFEK) filter. This filter provides an interesting cheap way to test the relevance of
the EOFs basis.

With the same aim in view, Hoteit et al. [13] proposed different degraded forms
of the SEEK filter and its interpolated variant, which are less costly and yet per-
form reasonably well. Among them, the singular semi-evolutive extended Kalman
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12 1. Hoteit, D.T. Pham and J. Blum

(SSEEK) filter can be most easily adapted to be used with the present global-local
approach. This filter consists essentially in letting only evolve a few basis vectors
of the correction basis while keeping the others fixed. Moreover, the basis vectors
which do not evolve are those which contribute the least to the error representation
as this would minimize the effect of keeping them fixed.

Here, our idea is to let the global part of the mixed EOFs basis evolve according
to the model while leaving the local part fixed in time, as we can not let it to evolve
without losing its locality property. However, we can not use the SSEEK filter di-
rectly as described in Hoteit et al. [13] because this will destroy the partition of the
mixed EOFs basis as global-local parts. Thus we simply use the evolution equation of
the correction basis of the SEEK filter to let the global part of the mixed EOFs basis
evolve while keeping the local part fixed in time as in the SFEK filter. This results
in a filter called semi-evolutive partially local filter Kalman (SEPLEK) filter. Note
that we have only constructed this version associated with the SEEK filter but not
that associated with the (its interpolated version) SEIK filter, due to some technical
difficulties.

The SEPLEK filter proceeds in two stages after an initialization stage just as
the SEEK filter. It may be desirable, for numerical stability reasons, to normalize
the evolutive basis vectors at each filtering steps. This amounts to dividing these
vectors by suitable constants. Therefore, in the representation of the forecast error
covariance matrix in the form LkUk_ng, one should then multiply the rows and the
columns of Up_; of the same index as that of the evolutive basis vectors by the same
constants. The filter operates, as usual, in two stages, excluding the initialization,
which can be summarized as follows.

- Initialization stage: To initialize the filter, we make a long historical run of the
model. Then we perform a mixed global-local EOFs analysis which yields a
mixed EOFs basis LE factorized as

LB =[L:B] (21)

with (r + s) columns, r and s denoting the dimensions of the global and local
bases respectively. However, such an analysis does not readily provides a rank
(r+s) error covariance matrix for stat vector. For this purpose, we shall resort
to an objective analysis, based on the first observation Y: we take as the

INRIA



Semi-evolutive filter with partially local correction basis 13

initial analysis state vector
X%(to) = X + Lg[(Lg) Hg Ry "HoL§ ™' (Lg) TH Ry ' (Yg — HoX)  (22)

where X is the average of the state vectors (from the historical run) and Hy is
the gradient of Hy evaluated at X. The initial analysis error covariance matrix
may be taken as

P*(to) = L Uo(LE)T (23)
where
Uo = [(L§)™H{ Ry "HoLF]™". (24)

Note that we have used the first observation for initialization, the algorithm
actually starts with the next observation.

1- Prediction stage: At time #;_1, an estimate X*(fz—1) of the system state
and its corresponding error covariance matrix P?®(fx_1), in the factorized form

Pa(tk_l) = Lf_lUk—l(LE—l)T (25)

where the mixed correction basis LE—1 =[ Ly ‘B ] and the matrix Uy_; are
of dimension n x (r + s) and (r + s) X (r + s) respectively, are available. The
model (19) is used to forecast the state as

Xf(tk) = M(tk_l,tk)Xa(tk_l). (26)
The corresponding forecast error covariance matrix is approximated by
Pr(ty) = LEUR-1(LE)T + Qi (27)
where the mixed correction basis is taken equal to
Ly =[Ly:B]. (28)

The global part of the correction basis Lj evolves as in the SEEK filter (see
Pham et al. [21]), i.e.

Ly = M(tg,tr—1)Lr— (29)
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where M(t, tx—1) is the gradient of M (tx_1,tx) evaluated at X *(f5_1).

Finally, we shall normalize the evolutive basis vectors such that they have norm
equal to a constant ¢, to be chosen. This amounts to replacing the 4t column
L, of Ly, by the vector (¢/||L},]|sm) L3, and then dividing the j** column and the

3" row of U_y by the constant ¢/||Li | .

Correction stage: The new observation Y)? at time #;, is used to correct the
forecast according to

X (ty) = X (t) + Gi[YY = He X (t1)], (30)
where G, is the gain matrix given by
Grp = LEU(LE)"HL R}, (31)
Hj, the gradient of H} evaluated at Xf(tk) and U computed from
~1
Up' = U1 + PrpQuPls|  + (LE) TH{ R HLLE, (32)
k
with PLkB represents the projection operator onto the correction basis, i.e.
Pps = (L)) LY (L)) (33)
The corresponding filter error covariance matrix is then equal to

P (ty) = LPUL(LE)T. (34)

The SEPLEK filter can be much less costly than the SEEK filter since the dimen-

sion of the global part of the mixed basis can be much smaller (3 — 5 for example)
than the dimension of the SEEK correction basis (30 — 50 for example).

Concerning the choice of the normalizing constant ¢, we take the mean square

of the norms of the EOFs (which are equal to the corresponding eigenvalues), which

seems to be a good choice.
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4 Algorithm with variable forgetting factor

There are three reasons behind the use of the forgetting factor in the SEEK filter.
Firstly, it limits the effective filter memory length by discarding old data. This will
attenuate the error propagation and enable the SEEK filter to follow system changes.
Secondly, it sets up the gain matrix to avoid the “blow up” phenomena (see Astrom
[2]). Thirdly, it does not require any extra cost for its implementation: the filter
equations remain unchanged except for the emergence of the forgetting factor p in
the time propagation error covariance equation (see Pham [21]). Specifically, the
updating equation (32) for Uy now changes to

_ -1 _
Ui = [pUs—1 + PpaQrPls]™ + HLP)TRTHLLE. (35)

With p = 1, all data have the same weight, but with p < 1, recent data are expo-
nentially more weighted than old data.

However, the use of a too small forgetting factor when the system evolution is
stable would degraded the filer performance especially when there is little information
in the measurements. To maximize the benefit of the forgetting factor, we propose to
use a variable one (Sorenson and Sacks [23]): such factor should be close to 1 when
the model is stable and much less then 1 when the model is unstable. Indeed old data
should be forgotten more in the last case to adapt the filter to the new model’s mode.

To detect the periods of model instability, one can track the filter’s state by
computing a short term and a long term averages of the prediction error norm,
denoted by s and [ respectively. If s; < [, one may assume that steady conditions
have been achieved and consider that the model is in a stable period. In this case,
the forgetting factor is set close to unity. If s; > [; this is an indication that the
model may be in an unstable period, therefore it is better to use a forgetting factor
strictly less than 1. In short, p; can be adaptively tuned as follows.

_ pr S1 if csy < g,
Pk = { ps <py if esg > I (36)

where ¢ is a tuning constant. Finally, the estimates of s; and [ are computed
recursively as follows.

se = asp_1 + (1— a)||YY — Hil X ()], (37)
e = By + (1= B)IYY — Hp X7 (1)) (38)

where a and 3 are constants chosen such that 3 <1 and a < f.
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5 Application to altimetric data assimilation in the OPA
model of the tropical Pacific

In order to evaluate the performance of our filters, we have implemented them in a
realistic setting of the OPA model in the tropical Pacific ocean, under the assumption
of a perfect model (Qr = 0). The assimilation is based on the pseudo-observations
which are extracted from twin experiments. The SEEK filter is used as a reference
to compare the performance of these new filters. The configuration and the charac-
teristics of the model used in our experiments are presented in the next section.

5.1 OPA model in tropical Pacific

In this section we briefly present the model basics and a description of our configu-
ration.

5.1.1 Model description

The OPA model (OPA for Océan PArallélisé) is a primitive equation ocean general
circulation model which has been developed at the LODYC laboratory (Laboratoire
d’Océanographie DYnamique et de Climatologie) to study large scale ocean circula-
tion. It solves the Navier-Stokes equations which express the momentum balance,
the hydrostatic equilibrium, the incompressibility, the heat and salt balance and a
non-linear realistic equation of state plus the rigid lid assumption and some hypothe-
sis made from scale considerations. The system equations is written in curvilinear
z-coordinates and discretized using the centered second order finite difference ap-
proximation on a three dimension generalized “C-grid Arakawa”. In this scheme,
the scalar variables are computed in the center of the cells and the vector variable
in the center of cell faces (see Arakawa [1] for details). Time stepping is achieved
by two time differencing schemes: a basic leap-frog scheme associated to an Asselin
filter for the non-diffusive processes and a forward scheme for diffusive terms. The
sub-grid scale physics are a tracer diffusive operators of second order on the vertical,
the eddy coefficients being computed from a turbulent closure model (see Blanke and
Delecluse [3]). On the lateral, diffusive and vicious operators can be either of second
or of fourth order. The reader is referred to the OPA reference manual Madec et al.
[18] for more details.
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5.1.2 Model configuration

The model domain covers the entire tropical Pacific basin extending from 120°F to
70°0 and from 33°S to 33°N and the level depth varies from 0 at the sea surface
to 4000m. Two buffer zones are included between 20° and 33° in the north and
south of the domain, for the connection with the sub-tropical gyres. The number
of horizontal grid points is 171 x 59 on 25 vertical levels. The model equations are
solved on an isotropical horizontal grid with a zonal resolution 1° and a meridional
resolution maximum at the equator of 0.5° and goes down to 2° to north and south
boundaries. The vertical resolution is approximatively 10m from the sea surface to
120m depth then decreases to 1000m at the sea bottom. The time step is one hour.

The bathymetry is relatively coarse. It was obtained from Levitus data’s mask
[17]. The forcing fields are interpolated from the ECMWEF (European center for
medium-range weather forecasts) reanalysis with monthly variability. It is composed
of wind stress and heat, temperature and fresh water fluxes. Zero fluxes of heat and
salt and non-slip conditions are applied at solid boundaries.

A second order horizontal friction and diffusion scheme for momentum and tra-
cers is chosen with a coefficient of 2000m?/s in the strip 10°N — 10°S and increase
up to 10000m?/s at the north and south basins boundaries. The static instabilities
are resolved in the turbulent closure scheme.

The model starts from rest (i.e. with zero velocity field) and S and T" are stem
from seasonal climatologic Levitus data [17].

5.2 Experiments design

5.2.1 The state vector

The state vector is the set of prognostic model variables that must be initialized
independently. Since the prognostic variables of the OPA model are the zonal U and
meridional V' velocities, the salinity S and the temperature T, one should consider
the state vector

X'=(U,v,s, ). (39)

However, the observed variable, which is the sea surface height SSH, is a diagnostic
variable computed from the barotrope velocity by a complex nonlinear algebraic
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equation. Thus, the observation operator H which relies the observed variable to
this state vector will be nonlinear. Moreover, in order to determine H one should
inverse this equation and this can be very costly. To avoid these difficulties, we will
adopt a pseudo-state vector in our experiments which contains the true state vector
augmented by the SSH, namely

X'=(U,V,S,T,SSH)T. (40)

In this case, H will always be linear of the form (0: I). Of course, the dimension
of the state vector will increase but the increase is insignificant since the SSH is
computed only on the sea surface. More precisely, the number of state variable is
now 4 X 171 x 59 x 25+ 171 x 59 = 1018 989 instead of 4 x 171 x 59 x 25 = 1008 900.

5.2.2 Filters initialization and EOFs analysis

Following the strategy explained in Pham et al. [21], the choice of the initial state
estimator flow field and the corresponding error covariance matrix is made through
a simulation of the model itself. In the present study, the data for the assimilation
experiments is again simulated but in an unrelated way with the above simulation.

Thus, in a first experiment, the model has been spun up for 7 years from 1980 to
1986 with the aim to reach a statistically steady state of mesoscale turbulence. Next,
another integration of 4 years is carried out from 1987 to 1990 to generate a historical
sequence Hg of model realization. A sequence of 480 state vectors was retained by
storing 1 state vector every 3 days to reduce the calculation since successive states
are quite similar. Because the state variables in (40) are not of the same nature,
we shall in fact apply a multivariate EOFs analysis (local and global). We define
a metric M in the state space to make distance between state vectors independent
from unit of measure. We choose M as the diagonal matrix with diagonal elements
being the spatial variances of each state variables, namely U, V, S, T and SSH,
average over the grid points.

e Global FOFs analysis

Figure 1 plots the number of EOFs and the percentage of variability (or inertia)
contained in the sample Hg they explain. From this result, we have chosen to retain
r = 30 global EOFs in all assimilation experiments, as this achieve 85% of the inertia
of the sample and this percentage is not much increased for higher value of r.
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Figure 1: Percentage of inertia versus the number of retained EOFs.

e Local FOFs analysis

Since the domain is rectangular with a large width with respect to its height, we
have subdivided the ocean domain into three zonal sub-domains to limit the spatial
correlation length of the ocean variables in this direction. We have actually conside-
red subdividing the ocean domain also along the meridional, but the results are not
as good. The reason may be that the height of the domain is quite short and further
it includes two buffer zones in the north and the south.

The choice of the partition of unity functions is shown in Figure 2. The single
one-dimensional tensorial function in the meridional Xg,l)(y) direction is then taken
constant equal to 1. After applying separately EOFs analysis on the state vectors of
these sub-domains, we have retained 18, 30 and 23 EOFs to attain 85% of the inertia
in the first, second and third sub-domains respectively. Thus, the dimension of the

local EOFs basis is equal to 18 + 30+ 23 = 71.

o Mized FOFs analysis

We have applied the same previous local EOFs analysis on the residues of the
ocean states in the sub-space spanned by the first five global EOFs which contain
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Figure 2: One-dimensional tensorial functions (x

(z),7 = 1,...,3) and two-
dimensional partition of unity functions (x)(z,y) = ng-)(m),j =1

s 3).

almost 50% of the total global inertia. Results of these analysis shown that one
should consider 19, 19 and 20 EOFs in order to explain 65% of the inertia of the
residues in the first, second and the third sub-domain respectively. Therefore, the
dimension of the EOFs mixed basis is equal to 5 + 19 + 19 + 20 = 63.

5.2.3 Data and filters validation

Twin experiments are used to assess the performances and the capabilities of our
filters. A reference experiment is performed and the reference X' retained to be
latter compared with the fields produced during the assimilation experiments. More
precisely, a sequence of 250 state vectors was retained every 24h during the period

of Mars 1%t 1991 to October 10 1991.

The assimilation experiments are performed using the pseudo-measurements which
are extracted from the reference experiment. The SSH are assumed to be observed
at every grid points of the model surface with a nominal accuracy of 3em. The
observation error is simulated by adding randomly generated Gaussian noise to the
synthetic observations of SSH. Note that in the assimilation interval, a period of
very strong model instability occur between July and September (see Figure 3).
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Figure 3: Relative variation of the state vector.

Finally, the performance of all our filters is evaluated by comparing the relative
root mean square (RRMS) error for each state variable, in each layer or in the whole
domain of the ocean model. The RRM S is defined as

_ X (t) - X () ]
RRMS(ty) = ||Xf(tk) - X\T 7

(41)

where X is the mean state of the sample Hg and || - || denotes the Euclidien norm.
Note that the error is relative to the free-run error since the denominator represents
the error when there is no observation and the analysis vector is simply taken as the
mean state vector.

5.3 Results of assimilation experiments

The results of the assimilation experiments will be described as follows. Firstly, we
present the results of the SEEK filter. Secondly, we test the relevance of the dif-
ferent types of EOFs analysis by comparing their performances with the SFEK filter.
Thirdly, we conduct experiment with the SEPLEK filter and compare its results with
respect to the SEEK filter and the SFEK filter (with the mixed EOFs basis). Finally,
we study the influence of the variable forgetting factor on the SEPLEK filter and
the SFEK filter (with the mixed EOFs basis).
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o The SFEK filter

We first present the assimilation results of the SEEK filter with a fixed forgetting
factor equal to p = 0.8. It can be seen from Figure 4 that the SEEK filter performs
well both in the upper layers just and in the lower layers. Although the performances
of the SEEK appears to degrade somewhat in the presence of instabilities, it still be-
have satisfactory during this period too. One may think that the meridional velocity
V' is not sufficiently well-assimilated because the assimilation error is only reduced
by almost to half. But it is worthwhile to point out that, since the velocity field
of the tropical Pacific ocean is particularly zonal, the meridional velocity fields are
generally, and especially the referenced field in our experiment on Mars 15 1991, is
well-approached by the average of the meridional velocity. Since this average serve
as our initial analysis, the initial error is already low and therefore it would be hard
to reduce it much further.

We have presented the results of our experiments for the SEEK filter in both
the upper and lower layers for completeness. But we have noticed that, for our new
filters, the difference between their RRM S and that of the SEEK in the upper lower
layer are quite similar. Therefore, in the sequel we will only present results in all
layers, to save space.

e Study of the representativeness of the different FOFs basis

A simple and low-cost way to test the relevance of the different EOFs analysis
presented in section 2 is to use the EOFs basis obtained from these analyses as a
fixed correction basis for the SFEK filter and examine its performance. Therefore
we have conducted 3 experiments using the SFEK filter with the different correction
basis obtained from the global, local and the mixed EOFs analysis. The forgetting
factor was chosen fixed equal to 0.8. Results are plotted in Figure 5, and show that
the local EOFs basis is much more representative, concerning the variables U, V
and SSH, than the global EOFs basis. However the assimilation results with the
variables S and T, which may be thought as being controlled by phenomena of long-
range variability, are not as good as those obtained from the global basis. Concerning
the mixed EOFs basis, the SFEK filter performs very well with the variables U, V
and SSH just like the local EOFs basis and moreover it considerably improves the
assimilation of S and T" with respect to the last basis.
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Figure 5: Evolution in time of the RRM S for the SFEK with the global, local and

the mixed EOFs basis.
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One can also see that the use of a mixed EOFs analysis particular enhances the
filter performance in the assimilation of the variable S and T. Thus suggests that
the mixed EOFs analysis is able to capture the ocean variability of both the short
and the long range phenomena.

Finally it is important to mention here that the divergence of the velocity on the
vertical obtained in the OPA model should be equal to zero. But when the local
EOFs analysis is applied on the state vectors, the basis vectors do not fulfill this
condition on the common border of the ocean sub-domains. To correct this, we have
projected the analysis state X “(fx) on a zero-divergence subspace before using the
model to forecast the state at the next step and this at every filtering step. Despite
the loss of precision on X *(¢;) because of this projection, the local basis was shown
to have very good performance.

e The SEPLEK filter

Here, we have used the SEPLEK filter with a fixed forgetting factor p = 0.8.
The global part of the mixed basis was made to evolve as in the SEEK filter while
the local part is fixed. We shall compare its performance with regard to the SEEK
filter. Since the dimensions of the (global) EOFs basis and the global part of the
mixed basis were taken equal to 30 and 5 respectively, the SFEK the SEPLEK are
respectively almost 30 and 6 times faster than the SEEK filter.

It can be seen from Figure 6 and Figure 9-12 that the SEPLEK performs very
well. Its assimilation results of the velocity components U and V' and the SSH are
even shown to be much better than those obtained with the SEEK filter during the
unstable period. Concerning the salinity S and the temperature T, the SEPLEK
filter performs almost just as well as the SEEK filter. One can also notice the good
influence of the evolution of the global basis part of the mixed correction basis by
comparing the results of the SEPLEK filter with those obtained with the SFEK filter
when the mixed EOFs basis is used as a fixed correction basis.

o Testing the variable forgetting factor with the SFEK and SEPLFK filters

The use of a variable forgetting factor was shown to enhance the performance
of the SEEK filter and its variants (see Hoteit et al. [13]). Here, we have used a
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Figure 6: Evolution in time concerning the RRM S for the SFEK (with the mixed
EOFs basis), SEPLEK and SEEK filters with a forgetting factor 0, 8.
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Figure 7: Evolution of the forgetting factor (solid line) and the relative variation of
the state vector (dotted line).

variable forgetting factor with SFEK (with the mixed EOFs basis) and SEPLEK
filters. Such forgetting factor takes one of the two values 1 or 0.8 according to the
relative magnitudes of the short-term and the long-term prediction error s; and I
prediction error. The initial values sy and Iy were taken as ||Y¢ — Hp X7 (to)|? to
make sure that p takes the value 0.6 during early assimilation period. The values of
the constants o and 3 were chosen as 0.85 and 0.8 respectively.

Figure 8 shows the RRM S error for these experiments compared with those of
the SEPLEK filter with a fixed forgetting factor equal to 0.8. These results show the
efficiency of our adaptive tuning scheme of the forgetting factor and, as can be seen
form Figure 7, for the detection of the unstable periods.

6 Conclusions

A new data assimilation scheme, called SEPLEK, derived from the SEEK filter has
been developed and discussed. The motivation for developing such filter was to
reduce the cost of the SEEK filter and possibly obtain a better representativity for
its correction basis. Our approach was to construct a mixed EOFs basis composed of
global and local EOFs and then to let only evolve the global part. To compute the
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Figure 9: Maps of ocean velocity on Sept 1% 90 in the first (left) and the 17
(right) layers: from the SEEK filter (top); reference (middle); from the SEPLEK
filter (bottom).
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Figure 10: Maps of sea salinity on Sept 1°! 90 in the first (left) and the 17" (right)
layers: from the SEEK filter (top); reference (middle); from the SEPLEK filter

(bottom).
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Figure 11: Maps of sea temperature on Sept 1% 90 in the first (left) and the 17t
(right) layers: from the SEEK filter (top); reference (middle); from the SEPLEK

filter (bottom).
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Figure 12: Maps of sea surface pressure on Sept 15" 90: from the SEEK filter (top);
reference (middle); from the SEPLEK filter (bottom).
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local EOFs, we have introduced the use of a local EOFs analysis on the residues of the
ocean states in the sub-space generated by the global part. In this new EOFs analysis,
the EOFs supported a small sub-domain of the ocean and vanished elsewhere. Indeed,
our aim was on the one hand to limit the spatial correlation length of the ocean
variables and on the other hand to construct a set of EOFs basis suited for every
sub-domains according to its variability. A series of twin experiments was conducted
with the OPA model in the tropical Pacific. Our aim was first to test the relevance of
the representativeness of the different type of the EOFs basis representativeness and
second to assess the feasibility of the SEPLEK filter by evaluating its performance
with regard to the SEEK filter. Our main conclusions are as follows.

1- The local EOFs basis represents much better the variability of the velocity and
the sea surface height than the classical EOFs basis but not of the salinity and
the temperature which seen to be essentially of global variability. However,
finding a way to let the local basis evolve with the model dynamic remains an
open problem.

2- The mixed EOFs basis is shown to perform very well even if we keep it fixed.
It especially enhances the filter performance concerning the salinity and the
temperature, with respect to the local EOFs basis. When its global part is
made to evolve as in the SEEK filter, it provides a dynamically evolutive filter
which performs even better than the SEEK filter, but with a much lower cost.
One can also note the good influence of the evolution of the global part of this
basis.

3- By tracking the prevision errors one can obtain informations about the filter
state and then adapt the filter parameters to the present situation. In parti-
cular, the adaptive tuning of the forgetting factor considerably enhances the
performances of the SEEK filter and its variants.

In twin experiments, our SEPLEK filter combined with the mixed EOFs basis
was found to be very effective in assimilating of surface-only pseudo-altimeter data.
Further works will consider more realistic situations, like the addition of the model
error or the use of more realistic observations (according to satellite tracks and real
data from satellite). However, these preliminary twin experiments applications were
necessary steps before realistic applications and provide us with encouraging results
as regard to that purpose.
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