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Abstract: Based on kinetic formulation for scalar conservation laws we present
implicit kinetic schemes. For timestepping the schemes require resolution of linear
systems of algebraic equations. We justify that the developed implicit framework is
very suitable for steady state calculations. Namely, we prove the convergence towards
steady state when t tends to infinity. To our knowledge this is the first theoretical
result of this type for nonlinear scalar conservation laws. Then for the equation with
stiff source term we construct a stiff numerical scheme with discontinuous coefficients
that ensure the scheme to be equilibrium conserving. We couple the developed
implicit approach with the stiff space discretization thus providing improved stability
and equilibrium conservation property in the resulting scheme.

Numerical results demonstrate high computational capabilities (stability for large
CFL numbers, fast convergence, accuracy) of the developed implicit approach.

Key-words: scalar conservation laws, kinetic formulation, stiff source terms, steady
states, convergence

(Résumé : tsvp)

* VIAM, Thilissi State University, 2 University Street, 380043 Thbilissi, Georgia and INRIA,
M3N, Domaine de Voluceau, BP 105, F78153 Le Chesnay. E-mail: Ramaz.Botchorishvili@inria.fr,
rdboch@viam.hepi.edu.ge

Unit é de recherche INRIA Rocquencourt
Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
T él éphone : 01 39 63 55 11 - International : +33 139 63 55 11
T él écopie : (33) 01 39 63 53 30 - International : +33 1 39 63 53 30



Schémas Cinétiques Implicites pour les Lois de
Conservation Scalaires

Résumé : Nous avons développé des schémas cinétiques implicites fondés sur la
formulation cinétique des lois de conservation scalaires. Nous montrons la conver-
gence vers une solution entropique stationnaire dans le cas des lois de conservation
homogénes. Dans le cas des lois de conservation avec terme source, nous couplons
I’approximation implicite avec une approximation raide des dérivées partielles en es-
pace. Des résultats numériques montrent que le schéma cinétique implicite est stable
et précis pour des grands CFL.

Mots-clé : lois de conservation hyperboliques, formulation cinétique, termes
sources raides, solutions stationaires, convergence
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4 Ramaz Botchorishuvili

1 Introduction

For hyperbolic conservation laws using of explicit finite difference schemes is very
convenient because of their simplicity and accuracy at the same time; but their
computational efficiency is substantially reduced by crucial CFL condition that res-
tricts very much the size of time discretization step with the purpose of ensuring
the stability for the scheme. Notice that small time step is very undesirable pro-
perty, especially, for steady state calculations while using time marching procedure.
On the opposite, purely implicit finite difference schemes enable application of suffi-
ciently large CFL numbers maintaining at the same time stability of computations.
But finding of solutions of nonlinear finite difference equations are very expensive
from viewpoint of computational costs that restricts the efficiency of the implicit
approach. In this paper we develop a special class of implicit kinetic schemes for
scalar conservation laws

Z A e =0, 120, s R, (1.1)

u(z,t =0) =up(z), wup(z) € L' N LN BV (RY), (1.2)

with smooth functions A;(.), 2(z), b(.), A; € C*(R), z € CY(RN), b € C'(R), b(0) =
0, ||b/||Le < Kp, Kp = cst, where the unknown function u(t, z) belongs to R. Also,
the equation (1.1) is endowed with the full family of entropy inequalities

+Zaglwz (0)b(u)V2(z) < 0, (1.3)

for all convex entropy functions S(-) and corresponding entropy fluxes 7;(-) defined
in accordance with the relation

nit(u) = S'(wai(u),  ai(u) = Aj(u) (1.4)

see Kruzkov [3], Lax [4] for more details.

The implicit schemes we develop here are linear at (n+ 1)-th time level and non-
linear at n-th time level with respect to grid function. The schemes possesse with a
good stability property as purely implicit ones and are less expensive because of the
linearity in the implicit part. Thus in some sense the new schemes have “averaged”

INRIA



Implicit Kinetic Schemes for Scalar Conservalion Laws 5

properties of purely implicit and purely explicit schemes. The cost of these impro-
ved properties is that we can justify the convergence of the scheme for steady state
calculations only.

The starting point in construction of the scheme is a kinetic formulation of
scalar conservation laws by P.L.Lions,B.Perthame,E.Tadmor [5] that enables to re-
write (1.1)-(1.4) equivalently as kinetic equation with a kinetic “equilibrium” function

x(&;u)

N N e N
ox(&u) €, 3 () Gxai, u) —b(f)Vz(x)ani’ u) _ am(g;,f) (15)

=1

for some nonnegative bounded measure m(t, z, £) which satisfies

m(t,z,§) =0 for &[> [ult,-)]|Le, (1.6)
and
+1,  0<&<u,
x(Gu)=q -1,  uw<{<0, (1.7)
0, otherwise.

The rest of the paper is organized as follows. We start construction of the scheme
with homogenous equation, i.e. z(z) = 0, in single space dimension, N = 1. Then we
develop the scheme on the basis of usual methodology of kinetic schemes + fixing of
suitably selected kinetic velocities at implicit (n+4 1)-th time level in the usual purely
implicit kinetic scheme. In section 2 we obtain desired apriori estimates (L', L>, BV
bounds) on the family of approximate solutions and prove the convergence of time
marching procedure for homogenous equation, i.e. the convergence towards steady
state solutions as t — oo. To our knowledge this is the first proof of convergence
of the time marching procedure for scalar conservation laws. Notice that the ex-
tension of the developed implicit method for conservation laws with source terms is
straightforward when space discretization is specified, see remarks 2.1, 2.3 and 2.5.
In section 3 we consider scalar conservation laws with stiff source term. For numeri-
cal solution of this problem we modify artificial viscosity coefficient in the standard
Engquist-Osher scheme and select the approximation for the source term and space
derivatives in such a way that the resulting scheme is exact on the equilibriums, i.e.
steady state solutions. We emphasize that after this modification artificial visco-
sity coefficients become discontinuous and discretization of the spatial derivatives is
reduced to the central finite differences close by equilibriums. Evidently, resulting

RR n-3972



6 Ramaz Botchorishuvili

space discretization is stiff and this is confirmed by numerical tests, see section 4.
Since implicit kinetic method has sufficiently large reserve of stability, introducing
of it in modified scheme results in efficient algorithm. Numerical tests in section 4
show advantages of this implicit scheme over the standard ones. For the simplicity
of exposition we restrict ourselves by one dimensional in space case making at the
same time the remarks regarding extensions in multi dimension.

2 Implicit Kinetic Schemes for homogenous equation

We start construction of the schemes for homogenous equation (z = 0) in one space
dimension (N = 1). Therefore we drop the subscripts and the source term where
appropriate below.

2.1 Purely Implicit Schemes

A certain class of purely implicit schemes can be constructed by means of discreti-
zation of (1.5), e.g:

A

O ~ X6 + 5o (- OXH © + (@ (©) -
om7 ! :
—a (€O~ as (O (©)) = —5¢
where

O = X1 (€) (22)
A BRI (23)
W) = a (O +arle), ar(®)>0, a(6)<0, (2.4
m? 1 (€) is some bounded nonnegative compactly supported measure. (2.5)

J
Notice that for construction of the scheme at macroscopic level we do not need the

exact expression for m?"’l (€) and knowledge of (2.5) is sufficient. Indeed, integrating

of (2.1) in & yields

uj+1 —u? + E(A(ujillvuj—}—l) _ A(uj+1,uj_+11)) = 0. (2.6)

where

Awo) = [Ca@der [ e ae 2.7

INRIA
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is usual Engquist-Osher numerical flux function [6]. Numerical schemes in the form
(2.6) with monotone numerical flux functions are studied by several authors, see e.g.
Sanders [8]. As is well known the numerical solutions of these schemes satisfy the
estimates

min; (u]) < u?“ < max; (uf), (2.8)

St -t < Y - 29)
J J

S Az <> juf| A, (2.10)
J J

S = () + 1o (i wpth) = n( L wt) ) <o, (211)
where S is entropy function and corresponding numerical entropy flux is defined
as

n(u,v) = /0 " (€)a_(€) de + /0 "8 (€)ay (€) de. (2.12)

2.2 Construction of Implicit Kinetic Schemes

The main drawback of implicit scheme (2.6) is that it is nonlinear at (n+ 1)-th time
level and thus very expensive from the standpoint of computational costs.To smooth
this restriction we use equivalent kinetic reformulation (2.1) for implicit scheme (2.6)
and suppose to select in a suitable way kinetic velocities and to fix corresponding
propagation speeds in the implicit scheme (2.1) written at kinetic level. Thus setting

51,;‘—1/2 = const, 5f,]~+1/2 = const, (2.13)

a4 (51,]'—1/2) = ai,j—l/?? a-(£:j+1/2) = aﬁ,j-}-l/?’ (2.14)
and fixing kinetic velocities in (2.1) we arrive at the following implicit scheme at
kinetic level:

X?H(f) - X7+ % (ai,j+1/2X?I11 (&) + ai,j—l/QX;'H_l(g)
Il (2.15)
X O — (L O) = 55

Integration of (2.15) in £ results in the following implicit kinetic scheme at ma-
croscopic level:

RR n~ 3972



8 Ramaz Botchorishuvili

At
~n+l . n n ~n
i uj + Aw( —]+1/2u]+1 tal o120

) n+l . n ~n+1Y) __
al ivi/2% Ut j—1/2Y; )—0'

+1
(2.16)

Lemma 2.1 Solutions of (2.16) satisfy the estimates (2.8)-(2.10).

Proof of the lemma 2.1 can be performed on the basis of the standard technique
used for purely implicit schemes, see e.g. [8], and therefore we omit it.

For the convenience of further exposition let denote via L(§) and L(£*) linear ope-
rators corresponding to space discretizations in (2.1) and (2.15) respectively. Then
(2.1) and (2.15) are written equivalently as

n+1
(I+ALE) [ ="+ 07755 (2.17)
~ n+1
(I+ALEF) =+ 07755 (2.18)

where A = %, and
xr

=Y, = ey

denote the vector-functions corresponding to solution of (2.1),(2.15) respectively,
m™*t, m" ! are corresponding measure-valued vectors, £ is usual kinetic velocity,
€1 is a set of the fixed kinetic velocities, £ = (£5,£%). &,&" € I', see remark
2.1 for certain choice of 7+, Notice that we can consider operators L(£), L(£*) as
a limit of (2k 4 1) x (2k + 1) matrixes as k — oo,

Li(§) = tridiag{—a*(€),a* (&) — ™ (§),a” (§)}j= s

Lk(ff-}—l) = tridiag{—a+(§i:;1_1/2), a+(€i-;'1_1/2) (gn J+1/2) (gn J+1/2) ?:—k'

Lemma 2.2 If (I + AL(£211)) 7! exists and

/(”“ ) [ (€)dE = / (2.19)

INRIA
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then implicit kinetic scheme (2.16) is consistent with (1.1) in the sense of local trun-
cation error.

Proof of Lemma 2.2 Equations (2.17),(2.18) can be written in equivalent form as

1+ AL©IAS (€)= -ALO (€ + 25, (220)
- omntl
(L ALEMATHE = AL O+ @2

AN = MO =M, ATTTHO = [T = IO
With account of the existence of (I + AL(£7F1))~! (2.21) can be rewritten in the
following equivalent form
dmntl
3
We integrate (2.22) in £. Then consecutive substitutions by using of (2.19), (2.20)
in the right hand side of it yield:

AJHHE) = (I ALEH) TALET) () + (1 4+ ALE) ™! (2.22)

AT = (14 ALEM) T AL e =

(2.23)
—ranE) [ an@)arieds

Using classical representation of functions from matrixes in the form of series one
can write:

o0

(1 4+ AL(E))™ = S (- 1NLH e, (2.24)

=0
Substitution of (2.24) in right hand side of (2.23) results in the relation between
solutions of equations (2.20) and (2.21):

AT = A [(THALE) L - LET)AST O (225)

Following standard techniques for calculation of local truncation errors, i.e. as-
suming sufficient smoothness of f**1 and substituting it’s Taylor’s expansion in the

RR n° 3972
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expression under consideration results with account of the structures of L(£) and
L(&,) in the estimate

A [AALE) L - LETAS T = 0. (220)

Since purely implicit scheme (2.1) is first order accurate in the sense of local trun-
cation error, clearly, with account of (2.25) and (2.26) one has the same first order
truncation error for implicit kinetic scheme (2.16) and this concludes the proof.

+1

12 8 by the

Remark 2.1 It is easy to see the existence of values 5175‘1—1/27 &
following selections:

A* () = A*(u2,)

J—1 : n n
S A

n

a+(fi,j_1/2) = uy —ui_y
ay(0u] + (1 —-0)uj_y), otherwise.

A7 (ufyy) — A7 (u])
a (&2 ji1y0) = U Uy

a_(0ujy, + (1 —-0)u}), otherwise.

: n n
, b wlyy # ol

for some 6,0, 0 < 6,0 < 1. In case of several independent space variables, i.e.
N > 2, similar formulaes can be used for selection of £* and thus the extension of
implicit kinetic schemes for the equation in multi dimension is straightforward from
this viewpoint as well. Namely, following the approach stated above in case of several
independent space variables implicit kinetic scheme writes:

At -
~n+1 n i n n ny __
Wt — i+ Tea(Cj) ga area(F]a)aja(uja — uj) =0,

where C; is a cell with center z; € RY, o runs a set of indices corresponding to
surrounding z; nodes, I';, is cell interface between cells C; and C\,,

IR <al®) Ta > (Ga (O = X (€))dE

Jjo T no_ .n )
’u]a u]

< a(€),® >=min () ai(&)n;, 0),

=1

INRIA
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Wja is outward normal vector to cell interface between C'; and C\,.

Remark 2.2 Implicit kinetic scheme (2.16) is not conservative though in case of
sufficient smoothness of the solution corresponding approximate solution by implicit
kinetic scheme is close by to the one by conservative purely implicit scheme (2.1),
see (2.25),(2.26).

Remark 2.3 One of the important properties of matrices Lg(&), Lr(£211) used in
the next section for further analysis of implicit kinetic schemes is that the sum of the
elements in the rows is zero except of the first and last ones that e.g. for Ly (£7T1),
are equal to a4 (fi:"ll/Q p) and a_ (¢ntl e 1/2) respectively. Clearly, in multidimensional
case the matrixes Lg (&), Ly(€7T!) will not be tridiagonal as above and they can have
more complicated block structure on unstructured grids. But even in that case the
property mentioned above remains valid: the sum of the elements in the rows is
nonnegative and it is zero except of those ones corresponding to the “boundaries”.
Remark 2.4 Derivation of formulae (2.26) as it is presented in the proof of lemma 2.1
is formal since the equilibrium function at kinetic level is discontinuous in &. But it is
easy to see that on smooth solutions of scalar conservation laws under consideration
the result remains true, e.g. perform Taylor’s expansions in (2.26) after integration

in &.

2.3 Convergence towards steady state solutions

In case of Aa"™! = 0 implicit kinetic scheme (2.16) results in conservative finite
difference approximation for the steady state equation

_ N
Z axz =0, t>0,2eRY, (2.27)

Clearly, corresponding to (2.27) entropy inequality is the following

iam(u)
— oz; —

We will prove the convergence of implicit kinetic schemes towards steady state

when ¢ — oo. First of all we prove the convergence of the time marching procedure
for (2.16), i.e

(2.28)

lim Aa"t =0 (2.29)

n—0o0

RR n~ 3972
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for At, Az fixed. To do so we need to recall logarithmic norm of a matrix and some
properties of it, see e.g [2] and references therein. Namely

pa[B] = maz;(bj; + Y |bijl) (2.30)
i#]
Byl > max(—p1[=B], —pa[B])]|yll, (2.31)

where via pq[B] the logarithmic norm of a matrix B induced by the usual vector

norm
vl = 1yil
i

is denoted. Application of (2.30)-(2.31) with respect to finite dimensional linear
operator that is of similar structure with the one presented in implicit kinetic scheme
(2.18) yields:

[ (T AL(EF )] = 14 Amaz (@, =5 ),
ul=(1+ ALL(ET)] < 0, (2.32)
(T L))y > (14 Amaz(@l 1y~ ) el

for any vector yj, € E***1. Pointing out from (2.32) we arrive at the following desired

estimate
(7 4 ALk (E2))y
lyrllr < 1+ max(a™ L ntl
+ max(a+’_k+1/27 —a_,k—1/2)
and thus
1+ ML) T < (L Amax(@ = )7

Clearly, since y € ! passing to the limit in (2.32) will result in similar estimates for
k = oo, i.e. for the linear operator of implicit kinetic scheme (2.18). These estimates
write:

(7 + AL(E)yl]
Iyl < 1+ Amax(ay(0), —a_(0))

I+ AL(E*)) Ml < (14 Amax(at(0), —a—(0)))~". (2.34)

Notice that in general the denominator in the right hand side of (2.33) can be
reduced to 1 thus making the estimate useless in the proof of (2.29). One can avoid
this difficulty simply by means of selection of splitting (2.4) in such a way that

ay(0)#0, a_(0)#0. (2.35)

(2.33)

INRIA
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Multiplying of (2.18) on (I + AL(£})) yields:

(I + AL(f”))(firME( ”“))f”“f 0
—— o Omnt 2.36
f ag + (T ALED) ¢

Repeating the same procedure with respect to (2.36), i.e. multiplying on (I +
AL(£271)) etc., one arrives at the following equivalent form of implicit kinetic scheme

(2.18):

n+1 amk-}—l
[T+ ALyt = foJrZH (I + AL(EY)) e
1=1 k=01:=1
n+1 - _ _
[T+ ALE) T =) =
=1
_ n+1 n k amk_l_l
0 I+ AL(E) (I+AL(&) =
- I[l( +AL(E)) 2 1:[ +ALE) =5
n—|—1 - 7 mn 7 8,mk+1
JO - (1 4+ AL H AL(ED) ] +;H<I+ MEN TG = (237
n—1 k
F0 n+1 0 amk-H
FO— (I + AL(e f+;HI+AL£* e )t
n k P
ST+ Az
k=0:1=1 g
where
LE) =T + AL - Leety - T + An(€) =,
=1 =1
k .
[T +AL(E€)) = (T4 ALED) - (T4 AL(E) -+ (T + AL(ED)-
=1
Integration of (2.37) in & results in implicit kinetic scheme in desired A-form:
n+1
[I0+ALE))aat = -aLra,
=1 1 (2.38)
(L+AL(E) AT = AL [T+ aLE) ™
=1

RR n~ 3972
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Notice that due to lemma 2.1 @® € L' N L* for any n € IN and one can estimate

INL(EFF) k| < 2 g max, (a€))- 1@ (2.39)

The L'-norm of the left hand side of (2.38) can be estimated by means of using
(2.34) and finally we arrive at the following estimate:
2A maxje| < ugllo. (2(E)]) - [12°[]s
[T+ Amaz (as (0), —a_(0)) 1
Clearly, with account of assumption (2.35) the estimate (2.40) results in (2.29).

At <

(2.40)

As usual we define approximate solution ua, by means of piecewise constant
reconstruction on timexspace cells. Now we are ready to prove the following conver-
gence theorem.

Theorem 2.3 If (I +AL(£211)) ™! exists for any n € IN, (2.35) holds true and z = 0
then there exists ua,, such a subsequence of approximate solutions constructed by
implicit kinetic scheme (2.16) that in the limit { — oo, Az — 0 converges towards
some steady state entropy solution to (1.1),(1.2).

Proof of the Theorem 2.3. The proof consists of the following four steps

(1) Derivation of apriori estimates, see lemma 2.1.

(ii) Convergence of time marching procedure, i.e. passing to the limit ¢ — oo, see
(2.40).

(iii) Derivation of steady state entropy inequality.

Recall that purely implicit scheme (2.6) corresponding to initial data ! satisfies the
following in-cell entropy inequality

Syt = S(@) + T (it wpth) = nlg ™ wth) <o. (2.41)

n+1

One can obtain the analogue of (2.38) for "7 — " by using the same technique as

above; namely, one has

n

[T+ ALED) [ (T4 ALO) ) = xap ) de = = [ AL (©) dE (242)
where

L&) = [+ ML) - L&) - [T + AL (D)
=1

=1

INRIA
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and thus one can deduce from (2.42) that

lim [Ju"t! — @™ = 0. (2.43)
n— 00
Multiplying of (2.41) in Azp;, ¢; = ¢(z;), ¢ - nonnegative smooth test function,
summing in j and passing to the limit n — oo results thanks to (2.43) in desired
steady state cell entropy inequality for the time marching procedure

2:%< Uit U )—n@?w]0)<0 (2.44)

(iv) Extracting subsequence and passing to the limit.

The estimates (2.8)-(2.10) remain valid for the functions uaz(z) = u3®, @;_1/5 <
& < 412, and thus one can extract the convergent a.e. subsequence. Performing
the integration by parts in (2.44) and passing to the limit Az — 0, clearly, results in
the validity of the steady state entropy inequality (2.28) in distributional sense for
limiting function that concludes the proof.

Remark 2.5 Since A = £ it is clear from (2.40) that large time steps can signi-
ficantly accelerate the convergence towards steady state, e.g. compare the factors
for different steps in time, see also Table 1. in section 4 and compare the errors for
different CFL numbers. Note that for implicit kinetic schemes we do not need cru-
cial CFL condition that is usual for explicit schemes. Instead we need less restrictive
requirement - the existence of (I + AL(£%))™?

Remark2.6 In multidimensional case, since the matrixes corresponding to the im-
plicit kinetic schemes have the suitable properties, see remarks 2.1,2.3, calculation
of corresponding logarithmic norm for (I + AL(£2%1)) results in similar with (2.32)
formulaes; thus one can arrive at similar with (2.40) estimate and as a result the
convergence of the time marching procedure is ensured for implicit kinetic schemes
in multi dimension as well.

Remark 2.7 If the uniqueness theorem for entropy steady state solutions would be
available than the convergence of the implicit scheme under consideration follows by
standard uniqueness arguments.

RR n- 3972



16 Ramaz Botchorishuvili

3 Equilibrium conserving implicit kinetic schemes for equa-
tion with stiff source term

3.1 Selection of equilibrium conserving discretization for space de-
rivative and source term

Equation (1.1) admits steady state solutions defined by
D(u) 4+ z(z) = const, (3.1)

where

and we assume that

O<w<oo D(+o00) = +00 (3.2)

bu) , . .

The difficulty associated with numerical resolution of (1.1) is to preserve at a discrete
level the equilibriums, i.e. steady state solutions given by (3.1), e.g. see [1] for the
details and existing approaches. Below for (1.1) we introduce one more numerical
scheme that is exact on the equilibriums. For the convenience of further exposition
we consider again the Engquist-Osher scheme written in the viscosity form, see e.g.
[7]. Notice that for the source term we use non standard apprioximation. The scheme
writes:

+1
N R ey
Atz . Az L Az
n J T *5-1 n g+l T <5
O.5b]-_1/QT + 0.5 2T A (3.3)
ui g —ur u —u?_,
0.5Q" Jr  J 0.5Q" g J=
T2 Ay =2 Ag
where Q?ﬂﬂ are artificial viscosity coefficients,
N P R L e L o
T g T g g, |
/2= ’ -1/2 = :
DR - D D - Dy,

Lemma 3.1 Numerical scheme (3.3),(3.5) where artificial viscosity coefficient is set
to zero is exact on the equilibriums.

INRIA
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Proof of Lemma 3.1 Rewriting of (3.1) for (z;_1,z;) and (z;, 2;4+1) yields

D(uj) + 2 = D(uj1) + zj-1, D(uj) + zj = D(ujpr) + zj11 (3.6)

Defining z;41 — 2z; and z; — z;_ from (3.6) and substituting them in (3.3) results

in u?“ = u}, i.e. equilibrium initial data are maintained and this concludes the
proof.

Clearly, artificial viscosity coeflicients equal to zero reduce discretization of space
derivative to central finite difference approximation that is known to be unstable.
In order to maintain the stability and equilibrium conservation property we should
ensure artificial viscosity coefficient to be zero close by equilibriums only. Thus we

define

| A7 | — AT
_— if E‘+1 9 > €

12 = wty —ul i+1/ ’ (3.7)
0, otherwise,

where € > 0 is a small parameter the value of which will be specified later on from
the viewpoint to ensure the convergence of the scheme, F;;/; should characterize
the deviation from the equilibrium and we define it according to formulae

Ejt1y2 = |D(uj) + 25 = D(wjt1) = zj4a . (3.8)
Introducing
n - 0, if Ej—|—1/2 <é,
iti/2 { 1, otherwise, (3.9)

the scheme (3.3),(3.7),(3.8) writes in the equivalent but suitable for investigation
form

G e AR AT o AT AT
At i+1/2 Az i-1/2 Az

+®?—1/2b?—1/2% + ®?+1/2 ?+1/2% = (3.11)

(71— by (3.12)

(O1ys ~ Dy it DTS (313
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One can observe that contribution to L°°-norm of approximate solutions is pro-
vided by maximum principle for (3.10), the terms like (3.11) usually are control-
led by exp(TKy||2'||o0) |0l and analogically (3.12),(3.13) can be controlled by
exp(T Ky||2'||co 5= ) [|#ol|co. Based on these arguments exact computations result in

the validity of following
Lemma 3.2 If ¢ = AzAt", v > 0, and CFL condition

At
Emax|u|§Koo|a(u)| <1, (3.14)

Ko = exp(TK,

oo (1+ A)) w0l oo,

holds true then for any ¢ < T approximate solutions uas(t,z) = u?, (¢, @) €
(tnytnt1) X (Tj_1/2, Tj41/2) satisfy

”uAa?(tv m)”[ﬁ’" S 1(007

luaz(t,z)||p < Ky, Ky =exp(TKy

oo (14 A1) o] 1

Remark 3.1 One of the drawbacks of the presented space discretization is that
it results in the discontinuous artificial viscosity coefficient for numerical scheme;
Another one is that it depends on thresholding parameter € which although can be
estimated from stability requirements according to lemma 3.2 but at numerical level,
as is well known, this can result in different results for different choices of € in case
of different initial data. Thus it is evident that the developed equilibrium conserving
space discretization is stiff.

3.2 Coupling of implicit approach with equilibrium
conserving discretization in space

In order to have consistent implicit time discretization we need the requirements of
lemma 2.2 to be satisfied. Simple computations verify that the following implicit

scheme
oy A(@?H/Qaﬁﬁma?j} + 9?_1/2&7]-_1/2@?“
=0741/207 418" - 9?—1/2“1,1_1/2@?+1> (3.15)
A (@] — @)+ Ay (@ - a3t = uf,
where

in n n n n n ny—1
i+1/2 = (ZJ'-H -z +(1- j+1/2)( i+l T Dj)) j+1/2(“j+1 - “j) )

INRIA



Implicit Kinetic Schemes for Scalar Conservalion Laws 19

P = (21— o+ (L= Oy ) (DF = D) by — wiy) ™

with ©7, /5, 07410

rement of lemma 2.2 and thus (3.15) is consistent with scalar conservation law (1.1).

defined according to (3.7),(3.5) respectively, satisfies the requi-

Remark 3.2 Evidently for implicit scheme (3.15) on finite time interval one can
derive uniform L! and L°° estimates similar to the ones given in lemma 3.2. Notice
that for this purpose the alternative to the classical technique could be the estimation
of ||(I 4+ AL(€7*1))~Y| by means of using corresponding logarithmic norm for (I +
AL(E7H1)), by analogy as it was used in section 2 above.

4 Numerical test

In order to study computational capability of the developed implicit approach the
following test problem is considered:

ou 9w
E—ka—x?—}—z(x)u_o, (4.1)
u(z,t=0)=0 forz > 0, u(z =0,t) =2 fort >0, (4.2)

where the function z(z) is choosen as

_f cos(mz), 4.5<z<5.5,
2(z) = { 0, otherwise. (4.3)
The steady state solution of this problem is given by the simple relation
u+tz=2. (4.4)

All numerical computations of this test problem are performed with 101 nodal points
in space. Below the results of computations are given for Engquist-Osher scheme,
modified Engquist-Osher scheme with discontinuous artificial viscosity coefficients
and by implicit kinetic scheme coupled with stiff space discretization that was consi-
dered in section 3. From the figures 1.-5. one sees that standard Engquist-Osher
scheme gives high errors on large domain & > 4.5; the scheme with discontinuous
artificial viscosity coeflicient is oscillatory for CFL number 0.8; it gives better re-
sults then Engquist-Osher scheme for CFL number 0.2 but significant errors are still
presented in the large domain; stabilizing effect and high accuracy of the developed
implicit approach can be clearly observed by comparison of figures 1,2,3 and fig.4,5,

RR n~3972
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see table 1 as well.

Analysis of the formulae (2.40) gives two ways for improving the accuracy of
computations by the implicit kinetic scheme, namely:
(i) to increase the number of time iterations;
(ii) to use large time steps, see remark 2.5 as well.

Table 1. Comparison of numerical schemes

Method CFL — number Time L —error L' — error
Engquist — Osher 0.2 20 0.1650527 0.4880051
Modi fied 0.2 20 0.1125576 0.2450109
I'mplicit 0.2 20 6.78402-1072 0.1066506
Engquist — Osher 0.8 20 0.1650536 0.4880109
Mod: fied 0.8 20 1.74094 1.78926
I'mplicit 0.8 20 3.61729-1072? 8.00558 - 1072
Engquist — Osher 2 40 7.85635 1.93917

Modi fied 2 40 over flow

I'mplicit 2 40 1.66893-106 7.84397-107°

Table 2. Implicit kinetic scheme, influence of CFL-number and time iterations

N CFL — number Time L — error L —error Iterations
1 02 20 6.78402- 1072 0.1066506 3000
2 0.8 20 3.61729-1072 8.00558-10"2 750
3 0.8 30 2.69651-107* 1.11885-1072 1125
4 0.8 40 2.14577-10~% 8.73804-10=% 1500
5 2 40 1.66893-107° 7.84397-10"% 600
6 4 40 2.57492-107° 1.70803-10~* 300
7 8 40 5.99766 - 10~2 2.42001-10=2 150
8 10 50 6.22369- 1072 3.95213-1072 150
9 12 60 2.80309- 10~ 9.71185-10=3 150
10 14 70 1.44053-10~3 5.00364-10~2 150
11 14 100 7.15256-10~7 3.37362-10-% 214

These conclusions are confirmed by calculations of the test problem for different
CFL numbers and numbers of iterations in time, see table 2. In particular better
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results can be obtained by increasing number of iterations in time, e.g. compare
the rows 5-7 in table 2, or by enlarging the time interval while keeping CFL number
fixed, see rows 2-4 in table 2; For fixed number of iterations increasing of CFL num-
ber results in improvement of the accuracy as well , compare the rows 7-10 in table
2. Notice that suitable selection of the couple - CFL number, number of iteration
in time - gives best numerical results, e.g. see the rows 1,2 and rows 4-6, table 2.
Finally notice that though the computational cost per iteration for implicit scheme
is higher then by the explicit schemes it is computationally less expensive and much
more accurate then explicit schemes, e.g. compare the errors after 3000 time itera-
tions by explicit Engquist-Osher scheme, see table 1, row 1, with 214 time iterations
by implicit kinetic scheme, see table 2, last row.
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I NVI SCI D BURGERS EQUATI ON W TH BOTTOM
3.5 T T T T

exact steady solution —
explicit Engquist-GCsher schene -----
bottom — 1

Figure 1: 101 nodes, CFL=0.75, time=20.
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I NVI SCI D BURGERS EQUATI ON W TH BOTTOM
4 T T . T T

exact steady solution —
discont.artific.visc.coef. ----- |
bottom —

Figure 2: 101 nodes, CFL=0.8, time=20.

I NVI SCI D BURGERS EQUATI ON W TH BOTTOM
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bottom — |

Figure 3: 101 nodes, CFL=0.2, time=20.
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I NVI SCI D BURGERS EQUATI ON W TH BOTTOM

T T T T
exact steady solution —
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bottom — |

Figure 4: 101 nodes, CFL=0.8, time=20.

I NVI SCI D BURGERS EQUATI ON W TH BOTTOM

T T T T
exact steady solution —
implicit schene -----
bottom — -

Figure 5: 101 nodes, CFL=2, time=40.
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