Series Expansions of Lyapunov Exponents and Forgetful Monoids

Abstract : We consider Lyapunov exponents of random iterates of monotone homogeneous maps. We assume that the images of some iterates are lines, with positive probability. Using this memory-loss property which holds generically for random products of matrices over the max-plus semiring, and in particular, for Tetris-like heaps of pieces models, we give a series expansion formula for the Lyapunov exponent, as a function of the probability law. In the case of rational probability laws, we show that the Lyapunov exponent is an analytic function of the parameters of the law, in a domain that contains the absolute convergence domain of a partition function associated to a special «forgetful» monoid, defined by generators and relations.
Type de document :
RR-3971, INRIA. 2000
Liste complète des métadonnées

Littérature citée [47 références]  Voir  Masquer  Télécharger
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 10:33:46
Dernière modification le : vendredi 25 mai 2018 - 12:02:03
Document(s) archivé(s) le : dimanche 4 avril 2010 - 23:18:01



  • HAL Id : inria-00072677, version 1



Stéphane Gaubert, Dohy Hong. Series Expansions of Lyapunov Exponents and Forgetful Monoids. RR-3971, INRIA. 2000. 〈inria-00072677〉



Consultations de la notice


Téléchargements de fichiers