Averaging of Non-Self Adjoint Parabolic Equations with Random Evolution (Dynamics)

Abstract : The averaging problem for convection-diffusion non-stationary parabolic operator with rapidly oscillating coefficients is studied. Under the assumptio- n that the coefficients are periodic in spatial variables and random stationar- y in time and that they possess certain mixing properties, we show that in appropriate moving coordinates the measures generated by the solutions of original problems converge weakly to a solution of limit stochastic PDE. The homogenized problem is well-posed and defines the limit measure uniquely.
Type de document :
Rapport
[Research Report] RR-3951, INRIA. 2000, pp.32
Liste complète des métadonnées

https://hal.inria.fr/inria-00072698
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 10:37:33
Dernière modification le : jeudi 11 janvier 2018 - 16:30:56
Document(s) archivé(s) le : dimanche 4 avril 2010 - 23:19:00

Fichiers

Identifiants

  • HAL Id : inria-00072698, version 1

Collections

Citation

Marina Kleptsyna, Andrey Piatnitski. Averaging of Non-Self Adjoint Parabolic Equations with Random Evolution (Dynamics). [Research Report] RR-3951, INRIA. 2000, pp.32. 〈inria-00072698〉

Partager

Métriques

Consultations de la notice

105

Téléchargements de fichiers

84