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Abstract: A function F : R® — R is called a piecewise convex-function if it decomposes
as

F(z) =min{f;(z) | j € M ={1,2...,m}},

where f; : R* — R is convex for all j € M.
Let D be a nonempty, compact, and convex subset of R”, T : R® — R” be a continuous
operator and F' : R* — R be piecewise convex, the purpose of this article is twofold:

1. to extend necessary and sufficient optimality conditions for convex maximization prob-
lem to piecewise convex maximization problem:

maximize F(x), subject to € D (PCMP)

2. to apply (PCMP) to a class of nonmonotone variational inequality problem, i.e. find a
vector z € D such that

(T(2),z —2) <0, forallz €D. (VIP(T,D))

Both problems have many practical and theoretical applications. Solution for the latter
has been extensively considered under monotonicity or pseudomonotonicity of the operator
—T'(-); here we further study the nonmonotone case.

Key-words: nonconvex and nonsmooth problem, sufficient and necessary optimality
conditions, piecewise convex function, variational inequality, nonmonotone operator
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Conditions d’optimalité pour des Problemes de
maximisation convexe par morceaux!

Résumé : TUne fonction F : R* — R est dite convexe par morceauz si elle se décompose
de la fagon suivante

F(z) =min{f;j(z) | j € M ={1,2...,m}},

ot f; : R* — R est convexe pour tout j € M.
Etant donnés un sous-ensemble D compact et convexe de R™, un opérateur continu 7 :
R™ — R™ et une fonction convexe par morceaux F : R® — R, le but de cet article est double:

1. étendre les conditions nécessaires et suffisantes d’optimalité pour les problemes de maxi-
misation convexe au cas convexe par morceaux:

max F(z), pour z € D (PCMP)

2. appliquer (PCMP) & une classe d’inégalités variationnelles, c’est & dire trouver un
vecteur z € D tel que

(T(2),z — z) <0, pour tout z € D. (VIP(T,D))

Ces deux problemes ont de nombreuses applications tant théoriques que pratiques.

Pour les inégalités variationnelles, de nombreuses solutions ont été étudiées pour des condi-
tions particuliéres de monotonie ou quasi-monotonie de 'opérateur —T'(-); dans cet article,
nous étudions plus particulierement le cas non monotone.

Mots-clé : problémes non convexes et non différentiables, conditions nécessaires et
suffisantes d’optimalité, fonction convexe par morceaux, inégalités variationnelles, opérateur
non monotone

1This research was supported by Direction des transports terrestres, Ministére de I’Equipement des Trans-
ports et du Logement (projet N 226 75 01 63-41 50)



Optimality Conditions for Piecewise-Convex

1. INTRODUCTION

The purpose of this article is twofold: first, to extend necessary and sufficient optimality
conditions for convex maximization problem to piecewise convex maximization problem
(PCMP); second, to apply (PCMP) to a class of nonmonotone variational inequality problem
(VIP).

Both problems have many practical and theoretical applications [HPT95, HT90, Ben95)
and [Ham84, LPR96, KS80]. Solution for the latter has been extensively considered in the
literature (see in [Ham84]) under monotonicity or quasimonotonicity; here we further study
the nonmonotone case.

The present paper is organized as follows. First we will take a short look on some local
and global necessary and sufficient conditions for convex maximization in section 2. As a
result of the section we will derive optimality conditions for nonsmooth convex maximization
problem; in section 3 we extend previous result to (PCMP); in section 4 we apply (PCMP)
result to some variational inequality problem.

RR n°3941



4 I. Tsevendorj

2. CONVEX MAXIMIZATION PROBLEM

Let D C R™ be a convex and compact set and f : R* — R be a convex function; in this
section, we consider the global optimization (conver mazimization) problem:

maximize f(z) (CMP)
subject to z € D.

The state-of-the-art in convex maximization including many algorithms and abundant
applications, is extensively described in text books [HPT95, HT90], in papers [Str98, Str93,
HU95, DHL98] and surveys [Ben95].

In recent years, several interesting necessary and sufficient optimality conditions charac-
terizing a global maximum of (CMP) have been proposed:

Strekalovsky’s necessary and sufficient condition ([Str87])

0f(y) C N(D,y) forally : f(y)= f(2), (SgNs)

Hiriart-Urruty’s necessary and sufficient condition ([HU89])

O:f(2) C N.(D,z) foralle >0, (HUgNS)

and Flores-Bazan’s necessary and sufficient condition ([FB97])
9, f(2) C 8,6(|D)(2), (FBgNS)

where 0f(y) and N(D,y) are subdifferential of a function f(-) and normal cone to a set D
at point y:

Of(y) ={y" e R* | f(z)—f(y) 2 (y",z—y)forallz € R*},
N(D,y)={y* € R*| (y*,xz—y) <O0forallz € D},

O: f(2) and N, (D, z) are e-subdifferential of a function f(-) and the set of e-normal directions
to a set D at a point z:

O:f(2)={2"eR"| f(z)—f(z) > ("2 —2)—¢ forall ze€R"},
N.(D,2z)={z" € R"| (2*,z—2)<eforallz € D},

6(-|D) is the indicator function of D and 9, f(#) is y-subdifferential of a function f(-) at
point z:

0, f(2) = {#(x) is continuous | f(z) — f(2) > ¢(x) — ¢(2) for all z € R*}

INRIA



Optimality Conditions for Piecewise-Convex

It is worthwhile to notice that above conditions generalized the Rockafellar’s local neces-
sary and sufficient optimality condition

8f(z) C N(D, 2). (RNS)

It is not difficult to see that (SgNS) with (y = z), (HUgNS) with (¢ = 0) and (FBgNS)
with (linear ¢) all imply (RNS).

The purpose of this section is to improve the (classical) local necessary optimality condi-
tion

2)[(\N(D,2) #0 (CEN)

in order to fully describe a global maximum; we could notice that the classical condition
(CEN) is not sufficient even for a local maximum.

THEOREM 2.1. [Tse98b] A necessary and sufficient condition for z € D to be a global
mazimum for (CMP) is:

{DIDNND £ oty st f)= ) xS,
there exists v € R" s.t. f(v) < f(2) &

Proof.
(=) Let z solve (CMP), in other words f(z) > f(z) for all z € D. Then, due to convexity
of the function f(-) and the definition of subdifferential, for all y such that f(y) = f(2)

02 f(z) = f(2) = fle) = f(y) =2 (", x = v),

holds for all y* € 9f(y) and = € D so that y* € f(y) N(D, y).
(<) By contradiction, let z not a global maximum of (CMP). Thus, there is

uw € D such that f(u) > f(z).
Then, let us consider a convex combination of u and a point v such that f(v) < f(2)
y(a) =av+ (1 — a)u. (1)

There is a number g €]0, 1] such that f(y(ao)) = f(2) since f(-) is continuous and f(v) <

f(z) < f(u). Now, one shows 0f(y(ao)) ¢ N(D,y(ao))-
For all subgradient y§ of f(-) at y(ao) satisfying f(y(aop)) = f(2) and for u € D, it holds

* y(aﬂ) — QoU

* Qo
(y9,u —y(a0)) = (¥ g

—y()) 2 (f(v) = f(y())) > 0.

Oz()—].

RR n°3941



6 I. Tsevendorj

proving yg & N(D,y(ap)) for all y5 € f(y(ap)) ™
Remark.

e classical local necessary condition (C/N) compared to necessary part of global optimality
condition (gNS), only considers z instead of all points on the level set f(z).

e when f(-) is a differentiable function, we retrieve the Strekalovsky’s condition (SgNS)
since 0 (y) consists of a single element V f(y).

e in case of nondifferentiable function f(-) one can see the difference between (gNS) and
(SgNS) since the latter is in general intractable to check (see example).

ExampLE 2.1. Consider the problem in R? to maximize piecewise linear convex function
(polyhedral) defined by (see Fig. 2.1) :

f(z1,22) = max{2z1 + 3z2, 321 — T3, —221 + T2, —227 — 622}

subject to
D={zeR®/ -3<z;<3,i=1,2}.

e At point z = (3,—3)7, the classical optimality condition (C/N) is satisfied: for
2*=(3,-1)" € 8f(z), (z*,x — z) < 0 holds for all z € D; however, z is not local maximum
since the Rockafellar’s condition (R{NS) is violated (for instance, the subgradient z* =
(—1,-3)T € 8f(2), but z* ¢ N(D, 2)).

e The point 2/ = (3,3)T is a local maximum since sufficient local optimality condition
is easily checked. But sufficient local optimality could not decide whether it is a global
maximum.

Let us denote U(z) = {y € R? / f(y) = f(2)} and U(z) = U; U U, U U3 U Uy, where
Ui(2) ={y / 251 +3y2 = f(2)},
Ua(2) ={y / 31 — 92 = f(2)},
Us(2) ={y /| =2y +y2=f(2)},
Us(2) ={y /| — 2y — 6y> = f(2)}.
Using theorem 2.1, it is easy to see that necessary condition is violated at point 2’ = (3,3)T
since for all y € Us(2') y* = (—1,-3)T € 8f(y) but y* ¢ N(D,y); therefore, 2’ is not a
global maximum.

e Now, let consider the point 2"’ = (—3,—3)T; in order to conclude for a global maximum,
one has to check sufficient part of global optimality condition (gNS). According to theorem
2.1, it amounts to check whether y¥ belongs to N(D,y?), for all y* € U;, i=1,2,3,4.

INRIA



Optimality Conditions for Piecewise-Convex

Notice that using the Strekalovsky’s condition (SgNS) instead, requires to check in
addition y* € 9f(y), for all y € U(2) N Ui(2) and (k,!) € {(1,2),(2,3),(3,4),(4,1)}, which
is an intractable problem in general.

Ui (z)
Us(z) 1
y3 N(D,Z
p af(=")
3f3
EEN
2 N(Day Y U2(Z)
Uy(z) /y
of(y) V» z S
z
N(D, z
0f(z)
&

FIG. 1. Example 2.1

RR n°3941



8 I. Tsevendorj

3. PIECEWISE CONVEX MAXIMIZATION PROBLEM

We call a function F : R* — R a piecewise conver-function if it decomposes as
F(z) = min{f;(s) | j €M ={1,2.,m}},

where f; : R® — R is convex for all j € M
In this section, we consider the nonconvex and nonsmooth piecewise conver mazximization
problem (also known as discrete maxmin problem)

maximize F(x) (PCMP)
subject to z € D,

where D € R" is a convex and compact set and F(-) is piecewise convex.

Obviously, if m =1 or all functions f;(-) are affine then the problem (PCMP) turns out
to be a convex maximization problem (CMP).

An important property of convex maximization problem is that every local (and in parti-
cular global) solution is achieved at an extreme point of the feasible domain. In general, this
property does not hold for (PCMP) as a large number of local optima could lie anywhere in
D.

We will use further notations, clco(D) as closure of convex hull of set D and :

I(z) = {ie M/ fi(z) = F(2)},
L5(@) = {zeR" | g(z) <a},
L7(@) = {z€R" | g(z)>a},
Di(z) = Dn( () L3(F(2)=Dn{z| f;(z) > F(z) for all j € M\ {k}}

J#k.jeM

for respectively, set of active function at z, Lebesgue set and its complement for function
g(-) and special subdomain.

LEMMA 3.1. If for a point z € D, both F(z) > F(x) for all x € D and
fx(2) = F(2) for some k € M hold, then fr(z) > fr(x) for all x € Dy(2).

Proof. Let us assume that there exists some u € Dy(2) such that fi(u) > fr(2).
Then, from u € Dy(z) we get f;(u) > F(2) for all j € M\ {k} so that F(u) = min{f;(u) |

j € M} > F(z), a contradiction to F(z) > F(z) forallz € D. &

Lemma 3.1 together with necessary part of (gNS) provides a necessary condition for global
solution to (PCMP).

INRIA
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ProposITION 3.1. If z € D is a global mazimum of (PCMP) then for all k € I(z)

afr(y) (\N(Di(2),y) #0 for all y s.t. fr(y) = F(2). (eN)

Proof. By definition of the set I(z) we have f(2) = F(2) forall k € I(z) C M. Then
by lemma 3.1, if z solves (PCMP) then z is maximum for f(-) over Dy(z) for all k € I(z).
Using necessary part of theorem 2.1 and definition of I(z), it leads to

Ofk(y) (| N(Di(2),y) # 0 for all y s.t. fily) = fu(z) = F(2).
n

In order to strengthen this necessary condition and achieve a sufficient condition for
(PCMP), we first prove the following two lemmas.

LEMMA 3.2. Given vectors ¢ € R" and u € clco(Dy(z)), then there exists w € Dy(z) such
that {c,u) < (¢, w).

Proof. Let us assume that there exists some ¢ € R” and u € cleco(Dg(z)) such that
(¢, u) > (¢, w) for all w € Dg(z).

Then, by Caratheodory’s theorem [Roc70] (p. 155) u € clco(Dy(z)) implies that there are
z',2?,...,2"+! € Dy(z) and nonnegative o; € R such that > "' a; = Land u = Y17 izt
From assumption, we have (¢, u) > (c,z?) for alli = 1,2, ...,n+1. Now, multiplying previous
inequalities by corresponding a; and summing yields

n+1 n+1 )
Z ai<c7 u) > <C, Z ai$z> = (C, u)
i=1 i=1

a contradiction. MW

LEMMA 3.3. Given continuous functions g(-), h(-), let ¢(-) = min{g(-),h(-)}. If for all
x € D, h(z) > p(z) > g(x) for some z then ¢(z) > ¢(x) for all z € D.

Proof. We will use the simple observation in R that for any a,b,c, if a < b then
min{a,c} < min{b,c}. Decompose D as disjoint union D = DT U D™, where D* = DN {z |
h(z) > ¢(2)} and D~ =D n {z | h(z) < p(z)}.

For z € D*, from g(z) < ¢(z) one has min{g(z), h(z)} < min{p(z),h(z)} and hence
w(z) > p(z) for all z € D

For z € D, from h(z) < ¢(z) one has min{h(z),g9(z)} < h(z) < ¢(z) and hence p(z) >

p(z)forallze D-. n

RR n~3941



10 I. Tsevendorj

We are now in a position to establish the main result of this section.

THEOREM 3.1. A sufficient condition for z € D to be a global mazimum for (PCMP) is:

{ there exist k € I(2) and v € R s.t. fr,(v) < fr(z) and (e5)
dfr(y) NN (cleo(Di(2)),y) # 0 for all y s.t. fir(y) = F(z)

Proof. By sufficient part of theorem 2.1 applied to v of (gNS) condition above, we have
fe(2) > fr(z) for all z € cleco(Dy(2))
and hence
fu(2) > fr(z) for all z € Dy(2). (2)
Denoting 9 (x) = min{f;(z) | j € M \ {k}} then z € Dy(z) implies
Yr(x) > F(2) for all z € D.

On the other hand, F(z) = fr(z) holds, since k € I(z) therefore (2) is equivalent to F(z) >
fr(z) for all z € D such that ¢y (z) > F(2).
Finally, using lemma 3.3 we get z is a global maximum since

F(z) > F(z) = min{ fy(z),¥x(z)} for all z € D.

Remark.

e The assumption that there are k € I(z) and v € R” such that fr(v) < fr(z) means that
z is not local minimum of F(+) in R”. If this assumption is violated, in other words for all
k € I(z) one has z = argmin{fr(z) | ¢ € R*} then F(2) = fr(2) < fr(z) (k € I(z)) and
F(z) < fj(2)(j € M \ I(2)). Hence there exists some neighborhood say a ball around z of
radius € > 0 such that for all x € B(z,e) N D we have F(z) < F(x).

On the other hand, for all k£ € I(2) 0 € 9fr(2) N N(clco(D(z),z). In that case, a local
search search improve F(z) since any feasible direction gives better point with respect to
(PCMP).

e The sufficient global optimality condition (gS) could be written as follows

and there exists also y;; € dfi(y) s.t. (5,2 —y) <0,

there exist k € I(2) and v € R” s.t. fr(v) < fr(2)
{ for all z € cleo(Dg(z)) and y s.t. fr(y) = F(z)

INRIA
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e Let (gS) be violated at z, in other words for all k € I(z) there are y*, u* fullfilling
respectively fr(y*) = F(z) and u* € clco(Dr(z)) and such that for all y} € 9f(y*) the
inequality 0 < (y},u* — y*) holds.

Then by lemma 3.2 there exists w* € Djy(z) such that (y},u*) < (y},w*). So due to
convexity of all functions fi(-) we have 0 < (yj, uf —y*) < (yf, w* —y*) < fir.(wk) = fi(y*),
that implies F(z) < fr(w*). On the other hand, by definition of Dy (2), w* € Dy(z) implies
w* € D and F(z) < fj(w*) for all j € M\ {k}. As a result, we have a better point w* € D.

e By proposition 3.1 and lemma 3.2 it is easy to see that (gS) is not only sufficient, it is

necessary and sufficient condition for global maximum to (PCMP).

ExAMPLE 3.1. Consider the problem in R? to maximize piecewise convex function :

F(z) =min{f;(z) | j = 1,2,3,4,5},

where
fi(z) = 2% + (22 +4)* - 36,
fo(z) = (214 8)% + (x2 — 3)* — 36,
f3(x) 22 4 (x5 — 8)% — 16,
f4(ﬂ;’) = (1‘1 - 8)2 + (.’L’2 — 3)2 — 49,
fs(x) = (x1 —10)% + (z2 + 10)% — 4
subject to

D={ze€R|-4<21<10, -6< 125 <8, z1 — 2 < 10}.

The point z = (6,—4)" is a local maximum with F(z) = 0. One wonders if it is global
maximum?

The Lebesque set £5(F(z)) contains two nonconnected sets and one of them is set-
difference of two nonconvex sets (see Fig. 2.). Functions fi(-) and f4(-) are active at
z.

Let us consider the function fi(-). According to our notations D1(z) = D N {z | fo(z) >
0, f3(z) >0, fa(z)> 0} since fs(z) >0 for all z € D and F(z) = 0.

In order to use the necessary global optimality condition (gN), one has to check the
inclusion D;(z) C 5%1 (F(z)). Tt is easy to see that D;(z) is not included to 5?1 (F(z)) since
aty =(0,2)T : fi(y) = f(z) and u = (0,3)" € D1(2) the inequality (Vfi(y),u —y) > 0
holds. Therefore z is not a global maximum.

Now, we consider another point z* = (0,3)" which is local maximum too. At the point,
functions fi1(+), fa(+), f3(+), fa(-) are active. And one can see that D;(z*) is included to

RR n°3941



12 I. Tsevendorj

L’?l (13), (F(z*) =13). That is enough, according to sufficient global optimality conditions

(gS), to say that z* is global maximum.

B I
\/\f\s\(m) 0\ |
— ‘x\f4(m) =13
fa(z) =0
fa(z) =13
7;\\\\\.\)"5(1:) =13

FIG. 2. a simple example 3.1

ExAMPLE 3.2. Here we consider a piecewise convex maximization problem in R? with
functions (see Fig. 3.)

(z) = 27+ (32 +2)> -9,

(z) = 9(z; + 3)* + 423 — 36,
() = (z1 +1)* + (25 — 4)% — 4,
(z)
(z)

T

x

>y

1 1
= §($1 -3+ %(3’2 -4 -1,

= (31 —5)* + (z2 +5)* -1

=

X

X

fs

INRIA
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subject to box constraint:
D={zeR|-2<z <5, —3<zy<4}.

We consider it just to show some difficulty of solving (PCMP). It seems to us, even this two
dimensional problem is not trivial to solve.

It is easy to see that there is number of local maxima on vertices, edges and interior of
the box. In other words, global maximum could be anywhere in the box.

As in the example (3.1) using (gN) we can escape from local maxima which are on box
vertices and edges. And we look for it inside the box. Unlike (3.1), there is no point in the
box where all functions fi(-), f2(-), f3(+), f4(-) are active.

Here the point (—1.3286,1.7381) " is global maximum with value f(z) = 1.2240. This
solution was found by enumerating tree of curve intersection vertices under Maple.

RR n° 3941



14 I. Tsevendorj

FIG. 3. a non trivial example 3.2

INRIA
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4. AN APPLICATION TO VARIATIONAL INEQUALITY PROBLEMS

Let D be a nonempty, compact, and convex subset of R” and T : R — R™ be continuous.
This section deals with the variational inequality problem, denoted by VIP(T, D), i.e. to
find a vector z € D such that

(T(2),z—2) <0, forallzeD. (VIP(T,D))

The case of VIP(T,D) when the operator —T'(-) is monotone (pseudomonotone) on D is
well studied and there exist methods solving it (see [Ham84]). In practical application like
traffic assignement problem, usually the operator —7'(-) is not monotone and therfore we
consider this case below.

Our approach in this paper is based on global optimality conditions for piecewise convex
maximization problem.

Given a starting point y° € D and some index set My = {0}. At iteration y* (k =
0,1,2,..) information (T'(y*), VT (y*)) collected so far is used to build up a model of some
implicit function connected to VIP(T, D). In the sequel, we use V(-) for both gradient and
Hessian for function and vector function.

Now we construct some function such that its gradient equals T at y*

Tile) = 5 (VT (), 2) + (T(F) ~ VT 2), 3)

It is well known that there are two positive semidefinite matrices VT'(y*)* and VT'(y*)~
such that

VT(y*) = VT (y*)* — VT (y*)". (4)
Using this one writes function 7p(z) as d.c. (difference of two convex) function
Ti(z) = gr(z) — hi(2), (5)
where
gu(2) = S(VT(H) 02) + (T(*) - VT ),

hele) = 5(VT*) a,2).

RR n°3941



16 I. Tsevendorj

Due to convexity of hy(z), convex tangent approximation by above of 7;(z) at y**! is
fe(@) = gr(@) = [M(y*) + (Vhr(y*), 2 — "))
since

fr(x) Ti(z), for all z € R”,
(") = Tu(y®).

v

Now we could define a piecewise convex function as some model-function at each iteration

Fy(z) = min{f;(x) | j € My ={0,1,2,...,k}}. (6)

Obviously Fj(-) does not copy the desired implicit function. To master this lack of infor-
mation one enriches the model by finding one more point y**! and by including one more
function fry1(-). So, we obtain the following iteration y* — y#+1,

Arcoritam 1 (PCMP ror VIP(T,D)).

for k from 0 while y* ¢ arg max{F(z) | z € D}
Construct piecewise convex function Fj(z) = min{Fj_;(z), fr(z)}
Compute y*+1 = argmax{F;(z) | z € D}
Myy1 = MU {k + 1}

endfor;

Crs W

Let us assume that piecewise convex maximization problem can been solved at each itera-
tion. Then under this assumption we are in position to formulate some convergence results.

LemMA 4.1. The numerical sequence of {Fy(y*t1)} has a limit.

Proof. TFirst, we prove that {F(y**1)} is decreasing.
By definition of the function Fy(-) we have

Fi(y**") = min{f;(y**") | j € My} = min{Fy_1 (¢**"), fe(@* ")} < Frma (B*).

Since Fj_1(z) < Fy_1(y*) for all z € D, as a particular case we have
Fo1 (") < Fy1(yY)

and therefore Fy(y**1) < Fj_1(y*).

INRIA
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Then we prove that this sequence is bounded by below. From definition of convex tangent
approximation

fi(z) > T;(x) for all x € R", j € M
and
Fi.(z) = min{f;(z) | j € My} > min{T;(2) | j € My} (7)

By the Weierstrass’s theorem the continuous function min{7;(z) | j € M}} has a minimum
over compact set D. Therefore

Fi(y**') > min{min{7;(=) | j € My} | = € D} (8)

Hence convergence of the sequence Fi(y**1). m

COROLLARY 4.1. Sequence {y*} has a accumulation point.

Proof. Since the function Fj(+) is continuous and D is compact, lemma 4.1 implies conver-

gence of the sequence {y*}. ®

PROPOSITION 4.1. As stopping criterion of the algorithm 1,
if Trr1 (y*tY) > Fi(y*+1) then y*+1 = argmaz{Fj41(z) | z € D}

Proof. By assumption of the proposition and by definition of function fj41(-) it holds
Fenn (@) 2 Topa (™) > Fi(y™H).
Therefore
Fip1(y*) = min{Fy (4", fr1 (")} = Fr(y**') > Fi(a) for all z € D,
when last inequality comes from y**! as maximum of Fj(z). On the other hand
Fy(z) > min{Fy(z), fe+1(2)} = Fr41(z) for all z € D.
Last two inequalities prove the result

Fip1(y*Y) > Frya(2) for all z € D.

RR n~3941
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PROPOSITION 4.2. If at some accumulation point y**1 we have I(y**1) = {k} then y*+!
solves VIP(T,D).

Proof. By definition of the set of active functions at y**! I(y**1) = {k} implies
Fi(y**1) = fr(y**1) and Fi(y**1) < fi(y**L) for all j € My \ {k}. Hense there exists
some neighborhood of y**! of radius § > 0 such that for all z € B(y**1,6) N D we
have fi(z) < fj(z) for j € My \ {k} and therefore Fy(z) = fi(z). On the other hand
y**1 = argmax{Fy(z) | + € D} implies fx(z) < fe(y**?!) for all z € D N B(y**!,6) that
means by optimality condition (V fi(y**1),z — y*+1) <0 for all z € D N B(y*+1,6).

Since y**! is an accumulation point, we have y* = y**! and (Vfi(y*),2 — y*) < 0 for
all z € D N B(y*,6). Hense easy to see that (V fr(y*),z — y*) <0 for all z € D since for
w & B(y*,6) (in other words ||w — y*|| > &) one considers v = y* + m(w —y*) € D and
0> (VFiu(y*), v —9*) = e (V") w — *).

Now remember that fi(y*) = 7 (y*) and V7Zx(y*) = T(y*) we can conclude (T(y*),z —
y¥*y<Oforallz€D. m

INRIA



Optimality Conditions for Piecewise-Convex 19

5. CONCLUDING REMARKS

In this paper we have shown how global optimality conditions for (CMP) carries over
(PCMP) and we gave an algorithm for some VIP application.

As a by-product of main theorem 2.1 we add a further item to a well known result
[Roc70, Str98] from convex analysis:
Given two convex sets A, B € R"(B = cl(B)). Inclusion A C B is true if one of the following
equivalent conditions is satisfied

1. (B-—y)° € (A—y)° fory € (AN B);

2.0(y| A) <o(y|B) for all y € R™;

3. N(y| B) C N(y | A) for all y € bd(B);
namely

4. N(y| B)JUN(y| A) # 0 for all y € bd(B)

where ¢l(D), D°, o(-| D), N(-|D), bd(D) are used for closure, polar, support function,
normal cone and boundary of D respectively.

In section 2, for (CMP), A = D, B = L’?(f(z)) and in section 3, for (PCMP), A =
cleo(Dy(z2)), B = £1§k (F(z))-

We could notice however, that to turn (gS) (section 3) into an effective algorithm, requires
to compute w* € Dy(z) from u* € clco(Dy(z) since Caratheodory’s theorem only provides
existence of such a w*.

For (VIP), further research should be done on model-function min{7;(z) | j € My} in
order to better describe solution space.
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