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Discrétisation de problémes de contrdle d’inéquations

variationnelles paraboliques
Résumé : Dans ce travail, nous considérons une approximation numérique pour un probléme
de controdle optimal gouverné par une inéquation variationnelle parabolique. Nous établis-
sons d’abord de nouvelles estimations d’erreur pour une discrétisation totale des équations
paraboliques semilinéaires, et nous donnons ensuite des résultats de convergence pour la
discrétisation du probléme de controle optimal.

Mots-clés : Estimation d’erreur, controle optimal, contraintes sur ’état.



A Fully Discrete Approximation for a Control Problem 3

1. Introduction.

1.1. Formulation of the problem. This paper deals with numerical approximation
of optimal control problems for semilinear parabolic variational inequalities with controls
in LP (not necessarily in L*) and state constraints. The convergence analysis is the main
objective.

Let Q be a bounded convex open subset of R¢ (d > 1), with Lipschitz boundary I'. We
fix T > 0, and put Q = 2x]0,T[ and ¥ =Tx]0,T7.

Let A be a second order uniformly elliptic operator:

d
Ay = - )" Dj(ai(2)Dyy),
Jrk=1

where the coefficients aj, € C!T#(Q) (with 3 > 0) satisfy

Zajk(w)xj)(k > m,|x|? forall y € R? and all z € Q
Ik

with m, > 0. Consider the following parabolic variational inequality:

8 8
Y o Ay + fy) + Ry —0) 50 nQ, — 4by=0 onS, y(0)=y, inQ,
oz ona

(1.1)

where y, € HY(Q) NC(Q), 1 € LI(Q) is defined everywhere on @, b € RT, f: R — R, and
the control variable v is distributed. 0x(y)(z,t) = Ok(y(z,t)), Ok(r) is the subdifferential
of the function x at r € R and & is the indicator function of R :

wry={ 0 ir>0
] +oo else,

Define the following control constraint set:
Uaa = {v € LQx]0,T]) | |[vllg0x0,71 < M},
where M is a fixed positive number. The control problem is defined by
(P)
T T
minimize J(y,v) = / / L(z,t,y)dzdt +/ / G(z,t,v)dzdt +/ Lz, y(T))dz
0o Ja 0o Ja Q
subject to v € Uyg, (y,v) satisfies (1.1), F(z,t,y(z,t)) <0 V(z,t) € Q x [0,T).

We make the following additional assumptions:

RR n° 3940



4 Bergouniouz & Zidani

(H1) f: R — R is Lipschitz on R and of class C!. Hereafter, we denote by C,,C, € R
real numbers such that

Co < flly)<C,, VyeR

d

1
(H3) y, € Wo 2(Q)(C C(Q) n Whe()).
(H4) ¢ € LY(Q) is defined everywhere on @ and y,(x) > 1(x,0) for any z € ) (compatibility
assumption for the initial condition).
(H5) F, L, G : @ x R x R — R are continuous. For any (z,t) € Q x R, the function
F(z,t,-) is Lipschitz continuous, and the function G(z,t,-) is convex.
(H6) £: Q2 x R — R is continuous. For any = € , the function #(z, ) is Lipschitz.

The main goal of the present paper is to study a numerical approximation for (P).
Because of the variational inequality and state constraints this is delicate. First we use an
idea based on the formulation of (1.1) as in [1] with a slackness variable and the regularity of
its solution. Then we obtain a problem (P) equivalent to (P), with constraints on both the
control variable and state variable as coupled state/control constraints. We cannot avoid a
first approximation of (’ﬁ) that allows to relax some constraints. Otherwise, we would not be
able to prove that the discretized formulation of the problem has at least one solution. Then
we study the discretization of the relaxed problem and we shall prove that the discretized
solutions are “close enough” the continuous one.

The main difficulty arising in the numerical study of optimal control problems governed
by parabolic equations, is related to the nature of the state equation [10, 11, 19]. Indeed,
error discretization estimations (either with respect to the time variable or to the space vari-
able) are often established under regularity assumptions of the time-derivative of the solution
[9]. In the case of optimal control problems, we cannot suppose that these assumptions are
satisfied since it may change the nature of the problem under consideration.

There are many works on parabolic equations discretization process. We just mention
here the book of Thome [18], where error estimates are given for equations with smooth
data. We also mention the papers of Choudury [6, 7], where some optimal error estimates
are given for linear parabolic equations with nonsmooth data and with Dirichlet boundary
conditions.

Here we are interested in the full discretization of a semilinear parabolic equation with
nonsmooth data and with Robin-type boundary condition. We derive an error estimate in
L (L*)-norm (see theorem 3.2). For this, we use some technics similar to the ones already
used by Nochetto-Verdi [13].

Notation . We denote by @ the cylinder 2x]0, T and by ¥ the lateral surface I'x]0, T'[.
For any s such that 1 < s < o0, the norms in the spaces L*(Q), L™(T"), L*(Q), L™ (X) are
denoted by || - [ls.,2, || - ls,05 || - ls,@s || - ls,=. The inner products of L?(?) and L?*(T) are
denoted respectively by (, )o and (, )r while (, ) g1 denotes the canonical duality pairing
between H'(2) and (H'(2))'.

INRIA



A Fully Discrete Approximation for a Control Problem 5

The Hilbert space
W(0,T; H'(Q), (H'()") = {y € L*(0, T; H()) | % € L*(0,T; (H'()")}

endowed with its usual norm, will be denoted by W (0, T). The space W21:9(Q) is the usual
space:

WH(Q) = {y € @) | 5, Dev, Diay € U@}

In the sequel, we denote by C;, for i € N — {0}, generic constants occuring in the estimates
given in propositions.

1.2. Preliminaries. The weak solution of (1.1) associated to v is defined as the func-
tion y € W(0,T) satistying 4(0) = y,, and

/ )40 - o) dt + | S an@DuDity - )dzdt+ [ fw)y - oo
0 at Q ik Q

+/ by(y—gp)dsdtg/v(y—cp)dzdt,
b Q

for any ¢ € K where
K={pel?O0,T;H'Q) | ¢p>vae.inQ}.

THEOREM 1.1. Assume (H1)-(H4). For every u € LU(Q), the variational inequality
(1.1) admits a unique weak solution y, in C(Q) N W2L4(Q). Moreover, the following holds.
i) For every v € L1(Q), there exists 8 € LI(Q), such that y, is also the solution of:

0

3—71+Ay+f(y) =v+0 inQ,
ﬂ"'by :0 0”2, and (1234)
Ona

y(0) =1, inQ,

0(z,t) >0 a.e. (z,t) €Q, (1.2b)

{ y(z,t) —P(z,t) >0 V(z,t) € Q,
(y(z,t) — P(z,1)) 0(z,t) =0 a.e (z,t) €Q,

i1) There exists C1 = Cl(T,Q,d,q,Co,mO,||yo||c(§)) > 0 such that, for any (v,0) €
LY(Q) x L1(Q), the weak solution y,9 of (1.2a) associated to (v,0) satisfies:

lywollw2re@) + lyvsllegy < Cr (1 + [[ollg,@ + 19]l2.0)

RR n° 3940



6 Bergouniouz & Zidani

iii) For everye, K > 0, there exista > 0, C] = C1(T,Q,d,q,Cs, my,, ||yo||c(§),5,K, a) >
0 such that, for any (v,0) € LYQ) x LY(Q), yvp belongs to C*%(Q x [¢,T]) and
obeys

||yv9||ca’%(§><[5,T]) < Ci
if [vllg,@ + 10llg,0 < K.

Proof - The proof of the above results is similar to the one given in [1]. O

In addition we shall use the following compactness result.

THEOREM 1.2. The mapping (v,60) — y(v,0) where y(v,0) is the solution of (1.2a), is
sequentially continuous from L1(Q) x L1(Q), endowed with the weak-LI(Q) x L1(Q) topology,
into C(Q) (strong topology).

Proof - Let {(vn,0n)}n be a convergent sequence for the weak-L4(Q) x L%(Q) topology,

and let (v,8) be the weak limit of (vy,8,),. For any n € N, we denote by y,, the solution

y(vn,0,) of (1.2a) associated to (vn,0,). From Theorem 1.1, we know that the sequence

(Yn)n is bounded in C(Q) N W24(Q). Furthermore, for every ¢ > 0, (y,)n is bounded

in a Hélder space on Q x [¢,T]. Then, there exists y € C(Q) N W214(Q) such that (y,)n

converges to y weakly in W214(Q)) and strongly in C(Q). By direct calculations, we can

check that y is the solution of (1.2a) corresponding to (v, 6). O

2. An equivalent problem to (P). Using the previous result we may replace the state
inequation by a system of equations involving a new control variable which is the Lagrange
multiplier associated to the variational inequality. Therefore, the control problem (P) turns
to be a “standard” optimal control problem governed by a state equation and involving
additional constraints on both the state and the control functions . More precisely, consider
a new set of controls:

O ={0€LiQ)|0>0ae inQ}. (2.1)
With Theorem 1.1, we see that problem (P) is equivalent to the following one (P):

Minimize J(y,v) subject to

0

—y+Ay+f(y)=v—|—t9inQ, ﬂ%—by:OOnZ, y(,,0) =y, in (2.2a)
ot ong

F(z,t,y(z,t)) <0, y(z,t) > Y(z,t) in Q (“Pure” state constraints) (2.2b)
(v,0) € Ugg X Onq (“Pure” control constraints) (2.2¢)

/ (y(z,t) — Y(z,t)) 6(t,z) de dt =0 (Mixed State/Control integral constraints) .
Q
(2.2d)

INRIA



A Fully Discrete Approximation for a Control Problem 7

We are going to perform a numerical study of this problem rather than the previous (genuine)
one. To discretize the problem (P) and get some convergence results, we need to bound the
new control function (see [2] for example) to use compactness properties. Therefore we set

Vaa = {(0,6) € Uaa x ©aa | Blluo < M}, (2.3)

where M is a constant which is allowed to be very large and must be greater than the norm
of the control @ corresponding to an optimal solution of (P) (as in [2]). From a numerical
point of view this may be the largest constant allowed by the computer. The problem (P)
is still equivalent to (P) when we replace (2.2¢) by:

(u,0) € Vag. (2.4)

In the sequel we do not care about the existence of an optimal solution to (P) (or (P)): one
can refer to [1]. Since we are interested in the numerical approximation of these problems
we assume from now that such an optimal solution exists and we call it (7,7, 6).

3. Discretization of the state equation. We first give some results about the dis-
cretization of the following parabolic equation:

Oy 8y

+Ay+ fy) =g inQ, +by=0 inX, y(0) =y, inQ, (3.1)

at na
where g belongs to L4(Q). The weak solution y of (3.1) belongs to W219(Q), and satisfies
d
E@(t) x)m + Ay /f z,t)) dw—l—/by s, t) (s)ds=/gx(a:)da: (3.2)
Q

for every x € H'(Q) and a.e. t €]0,7[. The bilinear form A is defined as follows
YVy,z € H(Q) x HY(Q) /Zaﬂ" )Dry(z) Djz(z) dz .

3.1. Discretization and approximating spaces. Now, we make the discretization
process precise: we use a finite difference scheme for the time variable (implicit Euler
method) and a finite element approximation for the space variable (in Q).

3.1.1. Grid for Q. Let (F5)s be a family of triangulations of Q into closed d-simplices.
To any simplex K € Fp, we associate two parameters:
o hi:=diam(K),
e pi:=sup { diam(S) | S is a ball contained in K}.
We suppose that h = max hx and that (Fp)p is regular in the following sense ([8], p.

132):

i) There exist two positive numbers 7, v such that:
hk h
— <71 and — <7 forall K € 7, and all h > 0.
PK Pk

RR n° 3940



8 Bergouniouz & Zidani

ii) We set Qp, = U K, Qy its interior (in general, Q;, # Q) and T, its boundary. We
KEFs

assume that Q, is convex.

REMARK 3.1. Since Q) is bounded, the discretization parameter h is necessarily less than
some constant hg which only depends on €.
To every simplex K € Fj, dealing with the boundary, we associate a “curved” simplex K € Q
such that the d interior faces to 2 correspond with the ones of K, and such that the (d+1)—th
face is the part of T limited by the d other faces. We denote by F the familly composed
by these simplexes K and the simplexes contained inside 2. Hence we have: ) = U K.

Kefh

To any such triangulation F we associate the finite dimensional following space

Yy = {z € C(Q) : 2|k is affine for any K € ﬁh}

Let {z; };V:'zl be the set of all nodes of F, on 4. Let ¢;(.) be the basis function associated
to the node z; (p; € Vn, wj(ar) =1if k= j, pj(zx) =0, if k # j).

In order to analyze the error we perform if we consider the approximation ¥y of the system
(3.7) instead of the (exact) solution y of (3.1), we consider the bilinear form af(.,.) defined
on HY(Q) by

a(w, 2) = A(w, z) + Co{w, 2)q + b(w,2)r Yw,z € H'(Q),
where C, is the constant given in (H1). We can suppose, without loss of generality [14], that

a(z,2) > %”2“%1(9) for any z € H'(Q). (3.3)

Let Ej, be the operator of H(Q) on ) which associates to any z € H*(2) the unique
element Epz of )} such that for all x € Vp:

d
Z / a1j()D;(z — Ep2)Dix dz + / Co(z — Epz)x dz +/ b(z—Epz)xds=0. (3.4)
=l Q r
We observe that this operator satisfies:
a(Epz,x) = a(z,x) for any x € YV, and any z € H'(Q) .

Therefore it is a projection operator and we have the following classical approximation
results [6]:
PROPOSITION 3.1. There exists Co > 0 such that for every h < hq, we have

||Eh(z1 - ZQ)HHI(Q) <Cyh ”21 - ZQHHl(Q) Vzl, 22 € Hl(ﬂ), (3.5&)

||Ehz — Z”Q,Q <Csh ||z||H1(Q) Vz € HI(Q) (3.5b)

INRIA



A Fully Discrete Approximation for a Control Problem 9

_3.1.2. Grid for I'. We denote By, the triangulation of I', inducted by the triangulation
Fh.-

3.1.3. Partition of [0,T]. Let N be a positive integer. We consider the uniform
partition of [0,T] defined by:

to=0<t1 <tag<---<ty=T,

T
;=i (i=0,...,N h = .
t;=4r (i=0,...,N), where 7 N

For any i = 1,..., N, we denote by x; the characteristic function of | ¢;_1,;].
The exact value y° = y(-,t;) of the weak solution y of (3.2) at time ¢; (i = 1,..., N) will be
approximated by:

=> Yipi() €W, i=1,.,N, (3.6)

where Y} = y(x;,t;) (we remark that Y} = y(z;,t;) € R is well defined since y € C(Q).)
Now we derive the discrete analog of (3.2) by means of which we shall define the approximate
solution:

Fori=1,...,N and for any ¢ € YV}

_ 17
/yh v odz + Ay, /f c,oder—/byhcpds— / / x,t godag%l‘l’?
Q ti—1

yh = Ehyo-

We prove that there exists exactly one (finite) family of functions {yi}Y , of the form (3.6)
satisfying (3.7).
THEOREM 3.1. The system (3.7) admits a unique solution.
Proof - The proof of this theorem is based on compactness and monotony arguments (see
[17], Chapter 5). O
From now, we set 6 = (h,7) (space-step, time-step), and we define the “discretized”
solution ys for (3.1) using:

= sz'(t) ya() on]0,T], and ys(-,0) =y} . (3-8)

The function ys belongs to L>(Q) and

/yéxtd:vdt Z/ /ygsct dmdt—TZ/yh d:z:—TZHthm.

ti—1
REMARK 3.2. In the scheme (3.7), the time discretization is the implicit regressive
Euler discretization, which is known to be inconditionally stable ([12], p. 107).

t
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10 Bergouniouz & Zidani

3.2. Error estimates for state equation discretization .

LEMMA 3.1. (Stability result) There exists C3 = C3(Q,d, 0, Co, mo, ||Yo|la1(0), M, ha) >
0 such that for any h €]0, hq[, T €]0,1], and g € LU(Q) satisfying ||gllq,0 < M, the solution
{yi}i=o,...n to (8.7) corresponding to g satisfies:

N N
™3 bl oy + max il e+ vk — v e < Cs
i=1 - - i=1

Proof - We take ¢ := 7 y! in (3.7) and sum from ¢ = 1 to i = i, (i, being a generic index
in {1,..,N}); we obtain

> /Q(yﬁ} —y Whde + > TAWhL YR + DT /Q F@iyhde + T/ blyp)* ds
i=1 i=1 i=1 i=1 “T

o ti
=Z/ /g(m,t)yz dz dt,
ti—1 J4Q

i=1
which can also be written as follows:

io

S [0k —vi ks + Y rAGh ) + 37 [ (SR~ FO)h ds
i=1 7% i=1 ;

i=1 Q

io io t; ) io )
+ Z T/ blyi)? ds = Z/ / g(z,t)y;, dz dt — Z T/ f(0)y}, dz.
i=1 7O i=1 Jti-1/Q i=1 /0
Taking (H1) into account, and using (3.3), we deduce from the above equality :

io

o
S Wi =y Dk dz +me > Tllyhllin g <
i=1 78

i=1

o t; ) o '
K (Y / loOllsallvllmse de + 37 17O i 1sa),
=1 i—1 =1

where K; only depends on Q and d. With the identity

22(@ —ai—1)a; = afa — ag + Z(ai —a;i-1)?,

INRIA



A Fully Discrete Approximation for a Control Problem 11

and the inequality 2ab < ea® + %, we obtain:

io

io
2mo Y 7lyillin ey + v 3.0 + D vk — i 30 <

i=1 i=1

2K
1
lyall3,e +mo Z T||?/h||H1(Q) +

i=1

[K2||g|| @ TP,

where Ky = K»(Q,d,0) is such that [|x||3 5 < Kafx||} 5 for all x € L7(%). Thanks to
Proposition 3.1 and the bound ||g|4,0 < M, we finally obtain

o

o
> rllvilla ) + i lza0 + D Ik —vi 13,0 < Ks,

i=1 i=1

for any i, € {1,.., N}, where K3 only depends on K, K2,Q, M, m,,C,,0, f(0), |[yollz1(0),

and hq. This completes the proof. O
THEOREM 3.2. Let § = (h,7) be in]0,hq[x]0,T[. Let g € LI(Q) be such that ||g|lq.0 <

M, and let y and ys be the solutions of (3.1) and (3.7)-(3.8) associated to g.

There exists a constant Cy = Cy(Q,q,m0,Co, ||¥ollmr, M, hq) independent of h,7,g9 such

that:

h2
lys — yan(mzme—u / 0o(8) = y(0) dt 3y e < Car(1 + )

Proof - We set e =y —ys, y* = y(t:), yj, = ys(ti), Li =]ti1,t:] for i > 1.
i _ ,i—1 . 1
We also set 0z% = i, Zti=— / z(t)dt for i > 1, and z° = 2, for i = 0. In particular
T T I;

we have & = 7' — yi. In what follows, C' is a constant independent of h, 7 which may depend
on M, m,, Cy. Setting ¢ = 7 Epe* in (3.7) yields :

70y} Bne')a + 7 (A(yh, Brne’) + (f(uh), Bre')a + (byh, Bre')r) = 7(g°, Ene')a.  (3.9)
On the other hand, for any z € H'(2), we have:

d

7@, 2)a + Ay(8), 2) + {f(y(2)), 2)a + (by(t), 2)r = {9(t), 2)a-

As y € WH2P(Q), then y* € H'(Q) and we may choose z = € in the previous equality.
Then summing over I; gives:

0y e')a +7 (AW, e) + (T, e)a + (b7, €)r ) = 7(5",)a. (3.10)

RR n° 3940



12 Bergouniouz & Zidani

We substract (3.9) from (3.10) and sum up from i =1t0 i =14, (1 <i, < N):
M)+ (1) =3 (0 - 4i),e)a + 2 — a(yh, Exe®)

i=1

= 7(0yh,(Br — D)) + ZT (Co(@', 80 — Colyh, Ene')a)
i=1 =1

io
+Z (/i) Bae')a — (T )0) + 3 (5", (I - En)e')a
i=1
=: (III) (IV) + (V) + (VI).
We now estimate each term of the above equality. First, we write (I) in the following form:

M =3 0w —vi),)a

i=1

—Z (o€’ & Q+Z ' —7),&)a = (D1 + (D2

Using the following identity (for any F bilinear):

o o
ZZF(SL'Z' - CL',;l,.’Ei) = F(xio,a:ic) - F(.’Eo,.’ll'o) + ZF(.’E; —Ti1,%T5 — 1'1;1), (3.11)

we obtain:

i
o 1 i
(= (e~ @)o = Sl 30 -

i=1

e 3 q-

From Proposition 3.1, we get :

(D1 >Clle"’llm—C‘hZ+CZIIe — &3 o

i=1

Dealing with the estimate of (I)2, we observe first that the following inequality holds:

lly(t) —

) _
T 6_ZZ”L2(QXI") Vie{l,.,N} and teT,. (3.12)

INRIA



A Fully Discrete Approximation for a Control Problem 13

With 7° = y° and (3.12), we have

o
((Da] = (g =78 )a— D> (¥ -7 1,8 —& )

=2

oy » o Oy i i
< C\/FHE”LZ(QXL'D) & l2,0 + CZ \/F“anm(nxli_l) [e* — & 'l2,0

C 0y,
<6||e’°||m+62||€ -2 1||m+ || ||L2(Q><I1 8
=1
i
. ~o C 0y,
<ellel3o+e) et -2 1||m+ 7l 5, “L?(Q)a

o c
<elel3a+e) llet =& 50 + =7
i=1

where £ > 0 will be chosen at the end of estimates. From the definition of Ej, it follows:

II) = 7 (a(7t, & — a(y; ,Ehe Tae Ehe ra(e, e
h

>C ) 7llE o

The term (III) is bounded by means of (3.5b) and of Lemma, 3.1 as follows:

%o

(IID)| = > 70y}, (Ba — DEa| < Ca Y llvh — vj 2.0 hlIEai(e)

i=1
o —i 02(03)2 h'2
<er ol + 2

i=1

K3
~ C h?
< ETZ el o) + P
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14 Bergouniouz & Zidani

We bound (IV) using the same arguments as for (III):

(AV)I < 1Co Y 7T 4k, Ehal +1Co Y 7(wh, (I = En)e')al

i=1 i=1

%o To
<|Col Y 7liEl3.0 +1Co| D Tllyillzg 11 = En)ellz,a

i=1 i=1

<Oy Tl +CY Tlyillae) bliellu @)

o o o e ,
< 027”61”3,9 + 5ZT||62”2H1(Q) + ;hQ ZT”?/;LH%I(Q)
i=1 =1 i=1
’ia z.o C
< CZT||€Z||§,Q + EZT“éZ”%ﬂ(Q) +to

i=1 i=1

n%.

Now we bound the term involving non linearities. We rewrite (V) in a suitable manner. In
addition, we use the fact that f is a lipschitz function and Lemma, 2.1, which lead to:

(VI 1Yo rtiwh) - 7 Q|+|Z (I - En)e)al
sil(/l(f(y?;)—f(( )) dt, &) Q|+ZT| (I — E)e)al
=1 i

< CZ II/ lyi, — y(@®)l dtllz,0 €[22 + CZ (I9hll2 + £ O)]) I(Er = DE'[l2,0

£ & i C io io y
<2 ZTlle o+ ;/0 le(®)12.0 dt + cZT( ) Wl o
i=1 i=1
R c (b C(Cr+1),, e
< 527—“6 ”Hl Q)+ / ||29+Th2+§z7—“e ”%11(9)
i =1
C 2
S " ”2th+ —h +5ZT||€ 1r1.(0)-
=1

INRIA



A Fully Discrete Approximation for a Control Problem 15

Since ||gllq,0 < M, we have:
'io

(VD) =) (7", (Bn — DEg

i=1
C, &
< ;h2 Z llg
i=1

To summarize, we have proved the following estimate:

to 1/2
<o ([ ls®Badt)  hvAlelme
i=1 i

i i
o » C o »
|3,1.x0 + € E T[e ) < ;hz te E 7lle' 5 q)-
i=1 i=1

io o
leel3.q + 3l =2 2 g + 3 7l gy <
i=1 i=1

C h2 C 1i, 1o _i
Cor )+ 2 [TlBadi+ 0 rlelRa
T € Jo i=1
) o ) ) o .
+CellE 3.0+ Ce 3 I~ o +4Ce 3 7lIe i oy (3.13)

i=1 i=1

Now we set C'e = % so that the last three terms of the right-hand side in inequality (3.13)
are controlled by the terms of the left-hand side of (3.13). Thus, for any i, € {1,..., N}, we

have:

» o p h2 ti, o P
1130 + D 7llElFn @) < C (7 + — R+ C/O le®)ll3.0dt +C Y TlEl3 q-

i=1 =1
(3.14)
Let us observe that for ¢ € {1,..., N} and ¢ €]t;_1,¢;], we have:
le@®z,0 < 2lly(t) = F'll2.0 + 207 - yhll2.0
Oy i
<275 I720) + 20 2.0
<2 (Coar +[E115,0) - (3.15)
This observation with (3.14) yields:
i ||2 S i(|2 h? s S 12
130 + D 7lIElEn ) < C (r + — +h)+ CY_TlEl3 o (3.16)
i=1 i=1
Using a discrete Gronwall inequality (see Lemma 3.2), we obtain:
) o ) h2
15,0 + Y 7l @) < C (r + —+h’) (3.17)

i=1
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16 Bergouniouz & Zidani

From (3.15), we have sup [e(t)||?o < C ( max |[€*]2q + T) . This estimate together with
t€]0,1] ’ 1<i<N ’

(3.17) gives:

i
o » h2
sup [le(®)l3.0+ Y 7l i) < C(r+ — +h?).
t€]0,1] =1 T

This completes the proof. a
LEMMA 3.2. ( Discrete Gronwall inequality).

Let (an)n and (b,)n be two sequences of positive numbers, let (¢,)n be an increasing sequence

of positive numbers, and let T > 0 such that

n—1

an+bn§cn+27’ak Vn >1,
k=0

with a, + b, < ¢,. Then, the following inequality holds:
an + by < cpexp(tn) Vn.

Proof - We can find this version of Gronwall’s inequality in [21] p. 43 (see also [17]). O
4. Approximation of the optimal control problem.

4.1. Relaxation of the constraints. In [4], in order to study the approximation of
optimal control problems governed by elliptic equations, the state equation is discretized
with a finite element method and the state constraint is replaced by a finite number of
constraints at the nodes of the discretization. Notice that error estimates for discretizations
of elliptic equations (in dimension 3 or less than 3) can be obtained for the norm of C(12),
which allows to obtain the convergence of the discretization scheme analyzed in [4] and [5].

In the case of parabolic equations, we are only able to establish error estimates for the
L% (L*)-norm, and thus we cannot deal with the state constraints as in [4], [5]. Therefore,
we must give an integral form for these pointwise contraints. In addition, we must ensure
that the discretized problem has a solution, i.e. the “discretized” feasible domain is non
empty. A good candidate to be an element of this discretized feasible domain is of course
the discrete approximation of the solution to the continuous problem (which satisfies the
continuous constraints). Unfortunately, the constaints are not necessarly satisfied a priori for
the discretized solution even if the discretization step § is small. Therefore, we are obliged
to relax these constraints with respect to some e small enough (see the proof of proposition
4.3 below).

Thus, we consider a (continuous) penalized problem (P¢) defined for £ > 0 as follows:

inf {J(y,v,G) ‘ (y,v,0) € C(Q) x Vaq, (y,v,0) satisfies (2.2a) and

/Q((y—w)_) d:cdtﬁs,/@(F*’(w,t,y(a:,t))) drdt < e, (/Q(y—ip)é‘da:dt> 55}.

INRIA



A Fully Discrete Approximation for a Control Problem 17

Here F* denotes the nonnegative part of F' (and y~ the negative part of y). Since V,q4
is bounded in LI(Q) x LY(Q) and the state equation is linear with respect to the control
variables, the problem (P) is weakly stable to the right in the following sense.

PROPOSITION 4.1. We have lin% (inf (P?)) = inf (P) = inf (P).
E—
Proof - Step 1: We fix £ > 0 and we prove that the problem (7°¢) has at least one solution

(ye, ve,0:). It’s clear that the feasible domain of (P¢) is non empty (any solution of (P)
is feasible for (P¢)). Let (yn,Vn,0n)n>1 be a minimizing sequence of (P°). The sequence
(vn,8n)n is included in V,4 and is bounded in L? x L9(Q); therefore there exists a subse-
quence, still denoted by (vy,8p)n, converging to some (ve,8c) in L? x LI(Q). Since V,q is
convex closed, it’s also weakly closed and then (v, §.) belongs to V,4. In addition, theorem

1.2 gives the strong convergence in C(Q) of (y,)r to the solution y. of (2.2a) corresponding
to (ve, ;). On the other hand, since (yn, vy, 0r) is feasible for (P¢), we have:

— )2 + 2 _ ’
/Q (g —)")? dodt <e, /Q (F* (@, t,yn(z, 1)) dzdt < e, ( /Q (v w)endxdt) <e,

for every n > 1. By passing to the limit, when n — oo, we deduce that

AT + 2 _ ’
/Q (v —9)")? dwdt <e, /Q (F* (@, 1, e (2, 8)))% dzdt < e, ( /Q (4 w)egdxdt) <e,

and then (y.,ve,6.) is feasible for the problem (P¢). By the continuity of J with respect
to y and the convexity and continuity assumption with respect to v (see (H5)-(H6)), we
conclude:

Inf(P?) < J(ye, ve) < liminf J(y,, v,) = Inf(PF).

Therefore, (y.,ve, 6:) is a solution of (P*).

Step 2: Now we study the asymptotic behavior of (y.,ve,8:).. Again, since V4 is bounded
in LY(Q) x LY(Q), there exists a sequence {¢;}52; and (7, 6) € Vaq such thate; — 0, v, —
weakly in L4(Q), and 6., — 6 in LY(Q) when j — oo. If we denote by y.; and § the states
associated respectively to (v;,0;) and to (9,6), Theorem 1.2 yields that y., — ¥ uniformly
in Q. By the same arguments as in Step 1, we can check that (§,9,8) is feasible for (P).
Using again the convexity of J with respect to the second variable and the feasibility of
(#,%,0) for (P), we get

inf(P) < J(y,v) < liminf J(y.,,v.;) = lim inf(P) < inf(P),
j—o0 j—oo
which concludes the proof. d
REMARK 4.1. The stability considered in the above proposition has been already in-
troduced by many authors (see [4, 5] for example) in order to study the approzimation of
optimal control problems governed by elliptic equations.
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18 Bergouniouz & Zidani

REMARK 4.2. We may remark that the relaxation of the bilinear integral constraint
is needed anyway if a related Lagrange multiplier is expected [2]. Indeed, this constraint is
too stressing, so that usual regularity conditions (see [23] for example) cannot be satisfied.
Therefore, it is not possible to ensure the existence of a Lagrange multiplier associated to
this constraint.

4.2. The discretized problem. We recall that for any h and 7 (space and time
discretization steps), we set § = (h,7) and we consider the space Vs defined by:

= {vs € LUQ) | vs|kx]t;_,,t;] is constant for any K € Fpandanyi=1,...,N}.
(4.1)

Any function vs of Vs may be written as

e

N
)= Vixi(t) xx;(z) (4.2)

i=1 j=1

where x; is the characteristic function of K; and Vji € R Any function v of LY(Q) can be
approximated by vs as in (4.2) where

. 1
Vie —
J |Ql]| Qij

where Qij = KJ‘X]ti_l, tz'] and |Q,J| is the measure of Qz]
PROPOSITION 4.2. Assume v € L1(Q) and vs € Vs is defined as above. Then

v(z,t) dxdt foranyi=1,... ,N, j=1,... /N, ,

tim [los — .0 =0

Proof - Let (z,t) € @ where v(x,t) makes sense and Qs, = Q;, j, a sequence of discretized
cells which tends to {(z,t)} as § — 0. Extending v by 0 outside @ we have v € L!(R¢*!)
and a classical result (see [16] for example) yields that

1

— v(E,8) déds — v(z,t) asd — 0.
|Q6k| Q5k

Therefore vs, converges to v almost everywhere, and vgk converges to v? as well. In addition,
with Holder inequality we get

Vil < vz, )|? de dt

1
|Qw | Qij

and we obtain

N N,
|v§||qQ—ZZ|Qu||V’|q<ZZ/ o, )7 dzdt < [[o]?

i=1 j=1
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A Fully Discrete Approximation for a Control Problem 19

We conclude with the Lebesgue dominated convergence theorem.

The end of the proposition follows from the uniqueness of the weak limit. d
Similarly, we recall that, for § = (h, ), the discretized solution of the state equation is

defined as

ys(x,t) = in(t) yi(z) = ZZEYJZ Xi(t) pj(z)  in 2x]0,T], (4.3)

y&('a 0) = Ehyo-

We call Vs the finite dimensional space which basis is (Xigoj),-zl,,,,, N,j=1,...,N.- This space
dimension is Ny,t = N * N,. In the sequel we shall set

Vi= (Vji)jzl,--- ,N. € RVe , V= (Vi)z':l,... N € RNtor |

Yi = (Y;'i)jZI,...,Ne € RNe s Y = (Y’i)izl,...,N € RNtat .

We define now the well known mass and stiffness matrices:

[M] = {/ﬂ pi(z) pj(z) dz’] and [R]= [/Q Dy;(z) Dyj(x) dx . (4.4)

1<i,j<Ne 1<4,j<N.

With these notations, we have
il @) = (V)T ((M] + [R)Y",

where Z T denotes the transposed vector of Z. We recall that [M] and [R] are symmetric,
definite positive. Let us detail the discretized equation (3.7). It is equivalent to

( Fori=1,...,Nand j=1,... ,N,
1 X . . N. .
= (/ Prp; dw) Vi =YD+ Alen, 0)Yi
T Q
< k=1 k=1
. N 1 [t
+ [ ruesaet X ([vonvsas) viet [0 [ gtngsdear
Q =1 \/T T Jti_a Ja
\ yﬁ = Ehyo-
Let us set

[A] = [A(er, pj)i<k,j<n. and [B] = [/ bk dsli<k,j<n.
N

and for every i =1,... ,N

(v') = ( / (@) 5 (=) dx)j:l,...,N; Hi(g) = ( / / 9(@,1) ;(2) dxdt)

j=1,...,N.
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20 Bergouniouz & Zidani

Then the above relation is equivalent to
Fori=1,...,N
([M)+7[A] +7[B) Y+ 7®(Y?) = [M]Y*! + Hi(g) , (4.5)
Y, = Enyo-

Now we may define the discretized problem corresponding to (P¢). For any (vs,8s) in
Vs x Vs we denote by ys(vs, 85) the solution of (4.3)-(4.5) associated to g = vs + 65. We set

Vad,s = VaaN (Vs x Vs) ,

and

N N.
Yo, t) =YY Wi xi(t) j(x) where i = ¢(z;,1;) .

i=1 j=1

For any € > 0, we define

( minimize J(ys,vs,0s)

with (vs,05) € Vad,s and y5 = ys(vs, 0s)

(P5) ] / ((ys — )" )? dz dt < 5,/ (FH(z,t,y5))* dodt < e,
Q Q

2
(‘/Qag(yg—¢5)d$dt) <e.

We may now ascertain that the discretized problem has a solution :

PROPOSITION 4.3. Given ¢ > 0, there exists 6* = (h*,7*) such that for all § = (h,7) €
10, h*]x]0,7*] the problem (P5) has a solution.
Proof - Let us fix e > 0 and let us prove that there exists 6* = (h*,7*) such that for all
§ €]0,h*]x]0,7%], & = O(1), the feasible domain D§ of (P5) is non empty.
Let (7,7, ) be a solution of (P) and let (vs,85) be the discrete approximation of (7,8) which
is known to belong to V,4,5 and converge to (v,0) in L4(Q) x L4(Q) (Proposition 4.2). Let
ys = ys(vs,0s5) be the solution of (4.3)-(4.5) associated to g = vs + 05, and y(vs,85) the
solution of (2.2a) associated to (vs,8s). Since we have

llys — :'j“%‘x’((],T;LQ(Q)) <llys - y(“6;06)||2L°°(0,T;L2(Q)) + lly(vs, 05) — 17||2L°o(o,T;L2(Q));
Theorem 3.2 yields

_ h? _
lys = Gl 7o 0. 1;12(0)) < Cat(L 4+ =) + 1y(v5,05) = Gl 70 0,7:12(2))

T
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A Fully Discrete Approximation for a Control Problem 21

h

and by theorem 1.2 we conclude that ||ys — §||pe(L2) — 0 as § = (h,7) — 0 with — = O(1).
T

Since g satisfies the constraints:

/62((g—¢)_)2dxdt:0, /Q(F+(x,t,g))2da:dt=o, (/Qé(g—xb)da:dtyzo,

the function y4 satisfies

/Q (w5~ ) Pdodt <, [

2
(F*(z, t,ys))2 dwdt < e, (/ 05 (ys — ts) da dt) <,
Q Q

as soon as § = (h, ) is small enough, say 6§ < 6* where 6* depends on e. Therefore, D5 is
non empty for such §.
Since Dj is closed and nonempty and thanks to (H4)-(H6), the end of the proof is classical.
O

We end this section with a convergence result of the solution to the discretized problem
(Ps) to the solution of the continuous problem (P¢).

THEOREM 4.1. We fir e > 0. If (v§, 65)s<s+ denotes a solution to (P§), one can
extract a subsequence weakly converging towards (v, 0.) in LI(Q) x LI(Q), where (ve,0:) is
a solution to (PF). In addition we get

gin}] inf(P5) = inf (P°) .

Proof - The sequence (v§,05)s belongs to V,4 and is bounded in LY(Q) x L(Q) (uniformly
with respect to 6); therefore, there exists a subsequence (still denoted (v§, 65)s) and (v.,0.) €
Vad, such that (v§,05)s weakly converges towards (v.,0.) in LI(Q) x L(Q) as 6 — 0.

Let y5 be the solution to (4.3)-(4.5) associated to v§ + 65, and y. be the solution of (2.2a)
associated to (ve, 6.). We know with Theorem 3.2, that

lim |y — (05,650 = 0

where y (v, 65) is the solution to the (continuous) state-equation (2.2a) associated to (v§, 65).
In addition,

lim [ly(v5,65) = yellz. =0,

using the compactness result of Theorem 1.2 .

Hence y§ strongly converges towards y. in L?(Q) (and even in L*(0,T;L*(Q))). Since
(y5,v5,05) satisfies the constraints of the problem (Pf), by passing to the limit when 6
tends to 0 and taking the lipschitz continuity of F' and the continuity of ¢ into account (see
(H4)-(H5)), we obtain

/ (F*(a,t,y.)) dodi < e , / (e — ) P dedt <,
Q Q
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22 Bergouniouz & Zidani

and

(/Q(ys—xb)egdwdt)zg.

Therefore (y.,v.,0.) is feasible for (P¢). The end of the proof is a consequence of the
semi-continuity on LY(Q)-weak of the functional J to minimize. O

REMARK 4.3. The relaxation of the constraints via € is imposed by the necessity to
ensure the non vacuity of the discretized feasible domain. Of course, this is unuseful if we
are able to ascertain that Dy is non empty (i.e. the discretized feasible domain corresponding
to “c = 07), that is, for example if we precisely assume

(H6) Vs <&t 3(y5,08.69) €D .
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