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Abstract: In this article, we propose a new method to solve an eigenvalue problem
(posed in R?) arising from the computation of guided modes in integrated optics
electromagnetic waveguides under the weak guiding assumption.

We consider an open stratified waveguide translationally invariant in the infinite
propagation direction. Its cross-section is also supposed to be an unbounded and
stratified medium where an appropiate perturbation of the refraction index has been
introduced to ensure the existence of guided modes.

The method presented here appears as a combination of analytical methods
which take into account the unbounded and stratified character of the propagation
medium and numerical computations which can be reduced to a neighborhood of the
perturbation. In this report, we give a complete description of the method, present
its main mathematical properties and achieve the convergence analysis with respect
to the various approximation parameters,
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Analye mathématique d’ubne méthode numérique pour
le calcul d’ondes guidées en optique intégrée

Résumé : Dans ce rapport, nous proposons une nouvelle méthode pour résoudre un
probléme de valeurs propres en milieu non borné pour un opérateur différentiel du se-
cond ordre. Ce type de probléme appatrait pour le calcul d’ondes électromagnétiques
guidées en optique intégrée dans le cadre de I'ypotheése du faible guidage.

Nous considérons un guide ouvert invariant par translation dans une direction
et occupant tout 'espace R3. La section transverse du guide apparait comme une
perturbation locale d’un milieu stratifié et on fait I’hypotheése que la distribution de
lindice de réfraction est telle que des modes guidés existent.

La méthode présentée ici apparait comme une combinaison de méthodes analy-
tiques pour la prise en compte du milieu non perturbé et de méthodes numériques
pour la prise en compte de la perturbation. Nous décrivons cette méthode en
détail, présentons ses principales propriétés mathématiques et menons ’analyse de
la convergence par rapport aux divers parametres d’approximation.

Mots-clé : Modes guidés, ondes électromagnétiques, optique integrée, théorie
spectrale, conditions aux limites transparentes, estimations d’erreur.
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1 Introduction

An open electromagnetic waveguide consists, basically, of a dielectric structure which
allows the electromagnetic energy to be confined inside, at least for certain frequen-
cies depending on the geometry of the medium and on the refraction index n of the
materials of which it is composed.

In the past few years, with the rapid growth of integrated optics communica-
tion techniques, the need for rigorous mathematical models describing in detail the
guiding properties of open electromagnetic waveguides has also increased, because
the design criteria which result from approximation methods often do not have the
desired accuracy. The advantage of these devices versus the traditional optics com-
ponents are their lighter weight and smaller size, lower cost and more stability. That
is why the interest of the study.

In this work we shall be interested in open stratified electromagnetic waveguides.
In this case, the device is composed by parallel layers each of them having a charac-
teristic refraction index. The guide is supposed to be invariant with respect both
to the geometry and to its physical characteristics under any translation along one
privileged space direction, let us say x3, which coincides with the propagation di-
rection of the waves. In particular the refraction index will depend only on the two
transverse coordinates z = (x1,x2) of the cross section of the guide.

Z2

z3 T1

Figure 1.1: Sketch of an open stratified waveguide and the choice of the coordinate system

If the materials composing the different layers are chosen with a suitable refrac-
tion index, then the energy of the wave is vertically confined in the material with the
largest index. Nevertheless, to confine the light laterally —which is interesting for
the design of these devices— it is necessary to introduce a compact perturbation
where the refraction index depends on the two transverse coordinates, while in the
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A numerical method to compute guided waves in integrated optics 5

rest of the cross section depends only on the xy coordinate. It is this perturbation
which, if chosen appropriately, confines the waves inside a layer in a neighborhood
of the perturbation. The dimensions of this perturbation are very small in com-
parison with the stratified medium and this is one of the reasons which leads to
suppose, from the mathematical point of view, that the cross section of the guide is
an unbounded domain.

For the sake of simplicity, we are going to consider a three-layer stratified medium
where the perturbation of the refraction index involves only the central layer but,
in fact, the method we outline in this work can be extended to an arbitrary number
of parallel dielectric homogeneous layers, even if the perturbation is not completely
embedded in one of them (cf. [13]).

Our aim will be to compute the guided modes (or guided waves) supported by
such device. These are electromagnetic waves of finite transverse energy which can
propagate without attenuation along the waveguide. The main difficulty to solve
the problem comes from the unboundedness of the domain (the cross section of the
guide) which makes the existence of guided modes not a priori obvious.

For the cases where the refractive index profile corresponds to an optical fiber
or to a perturbed diopter, theoretical studies of the problem have been carried out
by Bonnet [3], Bamberger and Bonnet [2], Djellouli [7] or Gmati [12].

In our case, the originality of the study lies in the stratified character of the
reference medium, which, at the same time, provides an additional difficulty.

In the case of a non perturbed stratified medium, the main references are the
monographs by Wilcox [33] (for a scalar propagation model in acoustics) and Weder
[32], which deals with a vectorial problem in electromagnetism.

In the case where the stratified medium is a perturbed medium, the more com-
plete reference to our knowledge is the work by Bonnet et al. [4] who derive existence
conditions for guided modes and bounds for the number of such guided modes. The
main tool is the Min-Max principle, which allows characterizing the point spectrum
below the essential spectrum. The analysis made in [4] shows that, contrary to what
happens for optical fibers, the number of guided modes can remain bounded as the
wave number tends to infinity.

From the numerical point of view, nothing has been done completely, to our
knowledge, for the stratified perturbed case we are interested in, except an approxi-
mate method by Mahé [22].

There are some previous works for computing guided modes in the area of optical
fibers but none of them can be applied to our situation due to the stratification of
the media around the perturbation.

RR n 3933



6 D. Gomez Pedreira and P. Joly

The idea in all of these works is to formulate a problem equivalent to the initial
one but set in a bounded domain by introducing an artificial boundary which en-
closes the perturbation and to impose a transparent boundary condition:

e A first approach (cf. Johnson and Nedelec [16] or Jami and Lenoir [19] for
scattering problems) consists in coupling finite elements and integral equations,
taking into account an integral representation of the solution in the outside
domain. The method requires the knowledge of the Green’s function of the
problem. This function is known analytically in a homogeneous media but is
difficult to obtain in general stratified media (see Gmati [12] for a two layered
medium). We can also refer Urbach [30] for a variant in volume of such an
approach.

e Bonnet [3] for the scalar case and, more recently, Joly and Poirier [17] for the
vectorial one propose, in the case of optical fibers, a “localized finite element
method” (see also Picq [25], Masmoudi [23], Lenoir and Tounsi [20] or Givoli
and Keller [11]) for analogous works) consisting in reducing the domain of com-
putation to a circle containing the perturbation. The solution of the exterior
problem can be obtained by means of a Fourier expansion using separation
of variables in polar coordinates. This allows to write an explicit “Dirichlet
to Neumann” transparent condition. In our case there is no a separation of
variables in polar coordinates because of the stratification of the medium.

e For a stratified reference medium as the one we are interested in, Mahé [22]
propose an approximate method consisting in the introduction of two artificial
horizontal boundaries where a Dirichlet or Neumann condition is applied. In
a second step, the computational domain is bounded by considering two verti-
cal boundaries enclosing the perturbation where exact transparent boundary
conditions are imposed. The main drawback one can find in this method is
that it is not exact: to get convergence to the true solution it is necessary
to make the two horizontal boundaries go to infinity, which is very expensive
numerically. It can also be expected that the accuracy of the results depends
on frequency in the sense that this method will give very good results at high
frequencies when the energy of the mode is very well confined in the vertical
directions.

The method we propose in this work could be considered as an improvement of the
Mahé’s method in the sense that we give an approximation of the guided modes
which converges to the exact ones for limit values of the approximation parameters

INRIA



A numerical method to compute guided waves in integrated optics 7

involved. The construction of the whole method extensively exploits the stratified
nature of the reference medium. In particular, outside the perturbation, the two
space variables z; and x5 will be treated in a different way. Globally, it will appear
as a mixed method combining three different techniques: Fourier transform, Fourier
series and mixed finite elements.

The outline of this article is as follows: We begin with the statement of the
problem in Section 1. We show how the study of guided modes under the weak
guidance assumption amounts to the spectral analysis of a one-parameter dependent
selfadjoint operator with non compact resolvent. The essential spectrum of this
operator and bounds for its eigenvalues are determined.

In Section 2 we reformulate the problem and give a first description of the method
we propose to compute the guided modes. We essentially insist on the ideas and do
not consider the mathematical aspects that will be treated in detail in Section 3.
The main point of the method involves the introduction of a selfadjoint operator
S that we shall decompose, in view of numerical treatment, as the sum of three
other operators. The main spectral properties of these operators will be the aim of
Section 4.

In Section 5 we present the numerical approximation of the problem and finally,
in Section 6, we derive the main theoretical results which justify this numerical
approximation.

1.1 Mathematical setting

The propagation of electromagnetic waves is described by the Maxwell’s equations

2 B—H 4+curlE = 0
ot
5E (1.1)
e——curlH = 0
ot
where E(zx, x3,1) is the electric field, H(z, z3,t) is the magnetic field, ¢ > 0 denotes
time and € and p denote, respectively, the dielectric permittivity and the magnetic
permeability of the material, specific characteristics which determine its electro-
magnetic behaviour. It is classical in guided optics to assume that p is constant
and equal to po (the permeability of the vacuum), and then ¢ is related with the
refraction index by the formula ¢ = gyn? (g being the permittivity of the vacuum).
We will be interested in the computation of specific solutions of the Maxwell’s
equations called guided modes. By definition, a guided mode (or guided wave) is

RR n° 3933
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solution of (1.1) in the form

E(.’L’, $3’t) = E(.T) ei(wt—ﬁms)’

i 1.2
H(z,73,t) = H()e@!hm), (1.2)

where
e w > 0 is the pulsation of the wave,
e 3 > 0 is the propagation constant of the mode,

e E(z) = (Ei(z), Ea2(x), E3(z)) and H(z) = (Hi(z), Ha(x), H3(z)) are 2D vec-
tor fields describing the distribution of the electromagnetic field in each cross
section and must satisfy

/RZ(EUEF + ulH?) dz < oo. (1.3)

The expression (1.2) represents an harmonic plane wave propagating without
any attenuation (w and f are real numbers) in the z3-direction, with phase velocity
w/B. Such a solution is periodic in the direction z3 and the period A = %7‘ is called
the wavelength.

The square integrability condition (1.3), which determines if a mode is guided
or not, physically means that the energy of the mode remains practically confined
in some bounded region of the cross section.

Our goal will be to compute numerically the frequencies for which guided modes
can propagate in an open stratified waveguide. This means that the refraction index

distribution n(z) : R — R} , in addition to the usual hypotheses

n € L°(R?),

inf  n(@q,x2) >0,
(z1,22)ER?

(1.4)

is such that there exists a compact set K € R? such that
n(z) = n(za), Vz= (.'171,:132) ¢ }Ca

where 7 € L*®°(R) is a positive function depending only on the zs variable which
represents the refraction index of the reference medium associated to the guide. We
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suppose 7 is given by

ng if x9 <0

Axg) = Mo if 0<ze <L
ni, if z9>1L

The values n, and nf, play symmetric roles, so we can assume without loss of
generality that

Neo < Ny. (1.5)

We also introduce:
n, = sup n(x),
z€R2

_ = inf
no= inf n(), (1.6)

n, = sup n(rs).
T2€ER

The vectorial eigenvalue problem

By substituting the particular form of the guided modes into Maxwell’s system and
eliminating for instance H, the problem to solve can be formulated as a vectorial
eigenvalue problem in terms of the electric field

curlg(p~'curlg(E)) = w’cE. (1.7)

In (1.7) curlg denotes the differential operator obtained from the curl by replacing
0/0zs by multiplication by —if, i.e, if 2= (21, 22, z3),

t
curlg? = (% + iBzy, —ifz1 — Oz 0z _ %) _
85172

The simplified scalar model

We shall consider a particular case of problem (1.7) which arises under the as-
sumption of weak guidance (that is, large wavenumber and weak variations of the
refraction index). In this case (see, for instance, Snyder and Love [29], Bonnet [3],

RR n 3933



10 D. Gomez Pedreira and P. Joly

Vassallo [31]), the third components of both magnetic and electric field can be ne-
glected (E3 ~ 0 ~ Hj) and all the transverse components satisfy the same scalar
equation for zero-order approximation of the Maxwell system, in such a way that
searching of guided waves can be reduced to

Findw > 0,3 >0 and u € L2(R?) (u # 0) such that
(P){ —Au+p*u=wnu, (1.8)
where u(x) = E1(x), Es(x), Hi(x) or Hy(x).

For a given 8 > 0, this is a family of two dimensional scalar eigenvalue problems
parameterized by 8. The unknown w? plays the role of eigenvalue of the operator
Ag =n"?(—A + (3?) and u is its associated eigenvector.

At this point, the first question is about the existence of guided modes or, in an
equivalent manner, the existence of eigenvalues of the operator Ag, which is not a
priori obvious since Ag has not compact resolvent.

This question is not the objective of our work. It has been exhaustively in-
vestigated by Bonnet et al. in [4] (see also [13] for complementary results). By
using modern mathematical techniques related to spectral theory, they derive exis-
tence conditions for guided modes and bounds for the number of such guided modes
which are related to conditions on the refraction index (not all perturbations lead
to existence of such guided modes).

Remark 1.1 It is important to notice that guided modes, even when they exist, do
not ezist for just any values of w and § but for w and B linked by w = w(B), the
dispersion relation. The corresponding curves in the (8,w)-plane are by definition
the dispersion curves.

Thus we will be interested in the computation of the guided modes assuming
they exist.

1.2 Mathematical framework

In this section, our aim is to provide a rigorous mathematical framework for the
eigenvalue problem (1.8). We begin by giving a variational formulation and, after
that, we rigorously define the operator Az as an unbounded operator on L?(R?)
associated with a symmetric bilinear form. We also establish the main properties of
this bilinear form and of the operator Ag. The main results are Theorems 1.1 and

INRIA
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1.2 which determine the essential spectrum of A5 and give lower and upper bounds
for the eigenvalues belonging to the discrete spectrum.

We shall consider that the Hilbert space L2(R?) is endowed with the (weighted)
inner product

(u,v) = /]1{2 n?uv dz, (1.9)

and denote by || - || 2(g2y the corresponding Hilbert space norm. || - [|g g2 will be
denote the usual L? norm. Then we can define on H!(R?) x H!(R?) a symmetric
bilinear form a (3;-,-) by

a(B;u,v) = /R2(VU'V’U + 8% uv) d. (1.10)

By Green’s formula, the variational problem associated to problem (P) states

{ For 8> 0, find w > 0 and v € HY(R?) (u # 0) such that

a(B;u,v) = w? (u,v), VYoe H(R?). (1.11)

To formulate our problem under a suitable form to use spectral theory, let us
consider Ag as an unbounded operator

Ag : D(Ag) = H2(R?) C L2(R?) —— L2(R?)
given by
Agu = 1 (—Au+ f%u) Vu € D(Ap).

2
n
Then a second formulation of our problem is
For 8> 0, find w > 0 and u € D(Ag) (u # 0) such that

(1.12)
Agu = w?u,

which is the spectral formulation of the guided mode problem.
To study the eigenproblem (1.11) or (1.12) we need a rather detailed study of
the bilinear form a(8;.,.) and of the operator Ag.

Lemma 1.1 The bilinear form a(B;-,-) defined in (1.10) is continuous symmetric
on HY(R?) x H'(R?) and satisfies

. 1 2 2 2
o(Bruu) > (19l 2y + B2l ey ) - (1.13)

RR n° 3933



12 D. Gomez Pedreira and P. Joly

From previous classical characterizations of selfadjoint operators and the spec-
trum (cf. Schechter [28]) we deduce the following properties for the operator Ag:

Theorem 1.1 (i) Ap is a selfadjoint and bounded from below operator.
(ii) The spectrum o (Ag) of Ag satisfies

o (Ag) C [B%/n%, +00) .

As for any selfadjoint operator, the spectrum of Ag splits into two different and
complementary parts: a discrete set, the discrete spectrum oq4(Ag), which is the set
of isolated eigenvalues of finite multiplicity and a continuum, the essential spectrum
Oess(Ag), which is the complementary set of the discrete spectrum in o(Ag). We
determine now the essential spectrum of Az while the discrete spectrum will be
studied later.

The essential spectrum of Ag

The essential spectrum of Ag can be characterized by a perturbation technique. We
consider the operator Ag as a perturbation of the operator Ag

Ap : HY(R?) c L2(R?) — L2(R?)
given by
_ 1
Agu = ﬁ(—Aquﬂ? u) (1.14)

associated with the non perturbed stratified medium obtained by replacing the func-
tion n(x) by n(z2), the refraction index of the reference stratified medium.

By using partial Fourier transform with respect to the z; variable, the spectral
analysis of ./1[3 can be easily reduced to the spectral analysis of a family of selfadjoint
ordinary differential operators in the zo variable, namely Ag,k, formally defined by
(k € R is the dual variable of z;)

_ 1 2
Agpu= -3 (_Z_u + (8% 4+ k?) u) . (1.15)

Z2

It is then straighforward to establish the following result

INRIA
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Lemma 1.2 The spectrum of the operator ./_l,g is purely continuous and satisfies
O-(Aﬂ) = Oess (Aﬁ) = [06(/6)7 +OO); (116)

where o¢(B) is given by

dv |? 91 19
—| + 87 |v|]° | dz
R \ |dz2
oe(8) = inf (1.17)
v€H1(R)-{0} /ﬁ2 (o2 dazs
R

Then, by using compact perturbation techniques, it is not difficult to prove that
the essential spectrum of Ag is the same as the essential spectrum of Ag.

Theorem 1.2 The essential spectrum of the operator Ag is given by
Oess (Aﬂ) = [o'e(ﬁ), +OO)
where o.(3) has been defined in (1.17).

Remark 1.2 The lower bound oe(B) is nothing but the lower bound of the spectrum
of the differential operator Agy. An immediate consequence of formula (1.17) is the
inequality

ﬂZ
0elB) <~ 55 - (1.18)

We can be more precise about o.(3) (see Fig. 1.2 and [13]):

(i) When ny = nk, the spectrum of Agy is purely continuous and o.(3) =
B2 [nd?.

(ii) If @4 > nd,, there exists a value B, > 0, called the first threshold of the
reference stratified medium, such that

— for B < By, 0e(B) = 52/nL? (the spectrum of Ag g is continuous),

— for B> By, 0e(B) < B%/nL?, and it is the smallest eigenvalue of Ag,o.

Moreover, one can prove the following behaviors

RR n 3933
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O¢ (ﬂ) A n%’f
Case (i) Case (ii)
\9 2
%g_
By E

Figure 1.2: Cases for o.(03)

oe(B) ~ B2 /nt? when B — 0 (see Proposition 2.8 in Mahé [22]),
oe(B) ~ B%/nk  when B — +oo  (see Lemma 1.9 in Mahé [22]).

In fact, 0¢(B) can be characterized as the solution of a simple transcendental
equation and one shows that:

oe(8) = B2/n2 +7(B), 7(B) — 0 ezponentially when 8 — +oc.

The point spectrum of Ag
The eigenvalues of Ag can be divided into two categories (see Figure 1.2)

(i) The ones which are strictly smaller than ¢.(3) which correspond to guided
modes which propagate more slowly than any wave in the reference medium.

(ii) The eigenvalues greater than o.(8) which are called embedded eigenvalues.

g g
nZ oe(B) ni?
| R

Figure 1.3: Sketch of the spectrum of the operator Ag. The continuous line represents the
points in the essential spectrum, the dotted line represents the points in the resolvent set
and the cross signs x represent the eigenvalues. There are two types of eigenvalues: those in
the discrete spectrum (which are isolated points in the spectrum) and those in the essential
spectrum.

The existence of both eigenvalues is not obvious and will depend on the nature
of the perturbation n(z). Eigenvalues in the discrete spectrum can be characterized

INRIA



A numerical method to compute guided waves in integrated optics 15

with the help of the min-max principle (we refer to Bonnet et al. [4] and G. Pedreira
[13] for various existence results).

Although, in particular situations, eigenvalues embedded in the essential spec-
trum may exist (cf. Bonnet and Mahé [5]) there is a conjecture that the set of em-
bedded eigenvalues is “generically” empty (with respect to the distribution n(x)).
Such modes are thus very unstable with respect to the physical imperfections of the
guide.

That is why we shall be interested only in the eigenvalues corresponding to the
discrete spectrum of Agz. These eigenvalues continuously depend on n(z). In what
follows we shall call guided mode a mode corresponding to such an eigenvalue, and
we shall look for eigenvalues w? satisfying

i <w? < oe(B) (1.19)
nZ w” < oe(B), .

assuming that we are in a case where these eigenvalues may exist. More precisely,
we are interested in computing the dispersion curves 8 — w?(3) , where w?(3) is an
eigenvalue of Ag. Note that these functions are defined for 3 varying in an interval
of the form |G, %[, 0 < B« < 0% < +00, where [, (respectively 5*) is by definition
a lower (respectively upper) threshold for the mode. These thresholds are such that

Jim w(8)? = 0u(B),  lim w(8)? = ou(B). (1.20)

2 Presentation of the method

In this section, we make a sketch of the method proposed in this work for compu-
ting the guided modes. In order to lead the reader through the general framework
in which development is taking place, we insist more on ideas than on rigorous ma-
thematical aspects which will be developed in the following sections. Moreover, for
the sake of simplicity of the exposition, we shall restrict ourselves to a simple model
case that we present in the next paragraph.

2.1 Some notation

A cross section orthogonal to the z3 axis has been illustrated in Figure 2.1. We have
denoted by Q7 , Q; and QF the different layers, with respective constant refractive
index n, no and nk. The z, axis is taken perpendicular to the interfaces between
the layers, which coincide with the planes 9 = 0 and 9 = L.

RR n° 3933
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Lo o+

Figure 2.4: Cross section with three different layers.

More precisely, we shall use the following notations related to the geometry of
the model domain:

eI’ = T U, T ={(z1,0), z1 €R}, Tt ={@,L), 71 € R}.
o O, = {(z1,m2) ER?, 23 <0}, QF ={(z1,12) €R?, 2o > L}.

e O, = Q_ UQS.

e O = {(x1,12) €R?, 0<z9 <L}

e 0 = QUQ.=R\T.

o K the perturbed compact region, K C ;.

e n :  the outer unit normal vector to T~ or T'T.

Finally, ¢ being a function defined on 2 with sufficient regularity, [¢]r+ and [g]p-
will respectively denote the jump of function ¢ across the boundaries I'™ and '~
(we asssume here that traces of ¢ in 't and I'~ exist in some sense). More precisely

e+ = (alg,)Ir+ = (@) |p+s (2.1)

[qlr- = (91,) I~ — (2] ) |-

INRIA
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2.2 A new formulation of the problem
According to inequality (1.19) we introduce the set
_ 2 B 2
E={w,MeR /w>0,8>0, & <w” <0ef }. (2.2)

ny

Our goal is the resolution of the problem

For 3 > 0, find w such that (w,3) € E,and u € L2(R?) (u # 0) satisfying
P
(P) —Au+2u=w?n’u.

(2.3)

The method we propose here consists in reducing the initial problem (P), posed
in R?, to another one posed only on the two artificial boundaries, 't and I'~ (see
Fig. 2.1), and whose unknown ¢ will be the trace of u (the solution of (P)) on I.

In the sequel, we adopt the notation H>(T) = H> (D) x H? (07). We introduce an
operator S(w, 8) of Dirichlet-Neumann type depending on (w, 8) defined as follows:

S(w, ) : H2(T) — H~2(I),

5 _[Oute)| ([ Ou(p) Ou(yp)
S(w,ﬂ)cp—[ On ]r_([ On :|I‘+, [ On :|I“>7

where u(p) € H(R?) is the solution of the boundary value problem

(Py)

{ —Au(p) + (B2 —n?wHulp) = 0 in Q,
(2.4)

ulp) = @ on I.

The idea is the following: take a function ¢ defined on I and solve the boundary
value problem (P,), (which consists, in fact, of two decoupled problems: one outside
the strip €; and another one inside). By construction, the function u(y) is conti-
nuous. In order that u(y) be a solution of problem (P), it is enough to ensure the
matching of the normal derivatives on the lines 9 = 0 and x9 = L: this means that
the the jump of the normal derivative of u(yp) across I', namely S (w, B)p, must be
equal to 0.

In this way, looking for guided modes is equivalent to solve the problem:
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18 D. Gomez Pedreira and P. Joly

For 8 >0, find w > 0 with (w,3) € E, and

(P3) 1 &
¢ # 0,90 € H2(T") such that S(w,B) ¢ = 0.

In other words, for a given 3, the values of w? for which the operator S (w, B) is
not injective, are the eigenvalues of the operator Az associated to problem (7).

Remark 2.1 As we shall see in §4, the operator g(w,ﬁ) will not be defined for all
pairs (w, B) in E but only for w ¢ G;(B), where G;(B) is a finite set of real numbers,
to be defined later. This set can be assimilated to the famous irreqular frequencies
appearing in the solution of scattering problems by integral equations.

Remark 2.2 Notice that if u is a solution of (P), u belongs to H2(R?), so that
o = u|p belongs to H3/2(F). In fact, since I' does not intersect K, we even know
that ¢ belongs to H*(T"), for all s > 0 (elliptic regularity).

Remark 2.3 For theoretical purposes it will be useful (see §5) to introduce the res-
triction S(w,B) of the operator S(w,B) to HY(T), in such a way that S(w,B) will
appear as an unbounded selfadjoint operator with domain D(S) = HY(TI"). Then, the
problem (Pgz) will be reformulated as

For g >0, find w > 0 with (w,3) € E
such that 0 is an eigenvalue of S(w, ).

(Ps)

Let us notice that:

e With the new formulation, we have replaced the problem originally posed in
the whole domain R?> by a new one posed in T.

¢ Doing so, we have added a new difficulty: instead of looking for w? by directly
solving an eigenvalue problem, now we look for values of w which make that
the operator S, which depends on w, has 0 as an eigenvalue. This can be seen
as an additional non linearity. This fact is rather general in numerical methods
for solving open waveguide problems (see, for instance, Duterte [9]).

Of course, the efficiency of such method relies on an efficient way to evaluate nume-
rically the operator S(w, 3). This is the aim of the next section.
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A numerical method to compute guided waves in integrated optics 19

2.3 Decomposition of the operator S

The construction of the operator S (w, B) requires, a priori, the resolution of the pro-
blem (P,). This problem cannot be directly solved because of the unboundedness of
the domain. From both theoretical and numerical points of view, we shall represent
S(w, B8) via a decomposition into another three operators

S, B) = Siw, ) + Spw, B) — Se(w, B) (2.5)
that will be defined below. Let us write:

u(p) = uep) in Q,
ue) = u;(p) in Q,
where
o u. = u(yp) is the unique solution in H!(Q,) of
~Aue + (B2 -nE?2w®)ue =0 in Q. =QF UQS
(Pe) _
U =¢ on I’
o u? = ul(p) = ui(p) + up(p), with u; = u;(p) the unique solution of
—Au; + (B2 -niwHu; = 0 in
(Pi) - I
u; = ¢ on

and up, = u,(¢p) the unique solution, if w ¢ G;(B) (cf. Remark 2.1 and
Theorem 3.5), of

P,) Ay, + (B2 -n?w)u, = (n?-nl)w’y; in Q
P up, = 0 on I'

Then, we define the operator ge(w, B) as

ou
On

ou,;
r+  On

immwz( r), (2.7)

and, similarly, the operators gi(w, 3) and gp(w, 3) as

~ ou; ou;
Si(w,B) ¢ = (% r+’ On F_);
(2.8)
= ou Ou
Sp(w, B) p = (6—1;) o+ 6—5 1‘—)'
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20 D. Gomez Pedreira and P. Joly

ut -
u_ga+
S -
uU=@p
rt+ rt
u=<p+ u=0
—> u; ° —> up
u =@ u=0
T~ T~

Figure 2.5: Computation of u? = u; +u,

Notice that u, is the solution outside the strip, and u? the solution in the pertur-
bed layer; u; is the solution inside in absence of perturbation and u, the correction
due to the perturbation (see Figure 2.3).

) . (2.9)
-

By construction
ou?
Then, by substracting (2.7) from (2.9) we get formula (2.5).

on

ou?

r+’ On

(%%m+$Wﬁ0¢:<

2.4 Application to the computation of the operator S

For a given ¢ € H%(F), §(w, B)¢ will be computed via the decomposition (2.5). This
computation will involve a combination of analytical and numerical techniques. More
precisely:

e Exploiting the fact that problems (P.) and (P;) are invariant under translation
in the z; direction, they can be solved explicitly using the partial Fourier trans-
form in this direction. Therefore §i(w, B)p and ge(w, B)p are known explicitly
via their Fourier transform.

e Since the boundary condition for problem (7P,) is homogeneous and the right
hand side has compact support in €; , we can reduce the solution of (P,) to a
rectangular domain €2, containing K. This domain is delimited by boundaries
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A numerical method to compute guided waves in integrated optics 21

I't and I'” in the zs direction and by two additional artificial boundaries,
namely two “vertical” segments 1 and X~ (see Fig. 2.4) on which we ap-
ply appropriate transparent boundary conditions. This will be detailed in

Section 3.3.
_______ i - — - — - — =
| Qp 1
a !
Trans_parentl 1
condmnis I '
1= ot
| Mo 1
1 =a T = at

Figure 2.6: Bounded domain 2, and transparent boundary conditions.

3 Mathematical study of the problems (P,),(P;) and (P,)

In what follows, if O be an open subset of R, we shall denote
HY(A,0) = {v € HY(0); Av € L2(0)} (3.1)

endowed with the norm:

H’U”H(A,(’)) = (H”H%l(o) + ||A”||i2(o))1/2-

Besides, if O has Lipschitz continuous boundary, we have the Green’s formula
(cf. Dautray and Lions [6] or Girault and Raviart [10])

<3u

—‘ o) =/Auvdx+/Vu-Vfudw, Vu € H(A,0),0 € H(O). (3.2)
onlso’ 's0 Jo 0

3.1 Study of the exterior problem (P,)
First note that w? < o.(83), coupled with inequality (1.18) and (1.5), implies that
B —nilw? >0,

3.3
B* — nlw? > 0. 3.3)

Then we have the following classical result, which is a direct consequence of the
Lax-Milgram Lemma and of well-known estimates for Dirichlet’s non homogeneous
problems for the Laplace operator (see, for instance, Girault and Raviart [10]).
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22 D. Gomez Pedreira and P. Joly

Theorem 3.1 Problem (P.) has a unique solution u. belonging to H(A,Qe). Be-
sides, we have the following estimate

el s 0.9 < Cllellgh o (3.49)

As the refraction indices nl, and n_, are constant in QF and €2, , u. can be calcu-
lated explicitly by using a Fourier transform in the x; direction:

For
Ue(T1,2) — Ue(k, z2)

(k € R denotes the dual variable of z1). A simple computation gives

ot (k) e~t= k) (@2=L)  §f gy > L,

el 22) = 7 (k) eb (k) 22 if 2o <0, 45

where
Ehk) = (K + 82 —w?niH)V?2 >, (3.6)
Exk) = (B2 + 82 —w?n )2 > 0. (3.7)

Then, it is immediate to obtain an expression for the operator ge(w, B) in the
Fourier domain.

Theorem 3.2 For any ¢ € H%(F), we have

@mm4m=MMmm, (3.8)
where
ot (k) —¢L (k) 0
k=1 __ M.(k) = ~ : (3.9)
@~ (k) 0 (k)

3.2 Study of the problem (7;)

The existence and uniqueness of the solution is not as obvious as for (P.) since
B2 — n2w? is not necessarily positive. However, the coerciveness of the problem is
preserved thanks to the
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Lemma 3.1 The following property holds

oty < L (T4 52). (3.10)
—n2 \L?
Proof. We start from the formula
L 2
/ B g de
0 dfﬂQ 7-[-2 9
ﬁ{l I 7 = ﬁ (ﬁ ) . (3.11)
0,
ueuo;é(o ) / n? u|® dz °

For any v € H}(0, L) we consider its extension by 0 to R, i.e., the function of
H'(R)

0 otherwise.
2 L
d
—I—ﬂ2\\11\2) dx :/ ( L
0 diUQ

and since 7 = n, in (0, L)
L
/n2|\I/|2 dzx :/ n2|y|? dz.
R 0

It is easy to conclude thanks to formula (1.17). O

v :{ W(z) if z € (0,L),

We have
A

Lz

dzy

2
+ﬂ2|¢l2> dx

Theorem 3.3 If w? < 0.(8), the bilinear form

ai(w, B;u,v) = [ Vu-Vodr+ (8% - nng)/ wv dx
Q; Q;

is coercive in H§(S%;). As a consequence, problem (P;) has a unique solution wu;
belonging to H(A, ;). Besides

Juillnca g < Cllellyy (3.12)
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Proof. Let u € H{(€2; ). We can write

ai(w,ﬂ;u,u) = E/

[ \vu|2dx+(1—g)/ Vul? do + (52 —nng)/ luf? da,

Q; Q;

where 0 < € < 1 has to be properly chosen. From

L 2 2 L
du T
— | dzy > — 24 3.13
/0 dzy| 2277 ), |u|® dzs (3.13)
we deduce )
T
|Vu|? dz > —/ |u|? dz
/Q»,; L2 Q; ’
and then

2
ai(w, B;u,v) > E/ |Vau|? dz + [(1 —€) (% + ﬂ2> - nng] / |u|? da.
Q;

i

We choose now ¢ such that:
? 2 2 2
—L2+ﬂ (1-¢)>njw

which is possible thanks to inequality (3.10) because w? < o.(8). The coerciveness
of aij(w,B;.,.) deduces easily. Then the existence and uniqueness results follows
immediately from Lax-Milgram’s Lemma. Inequality (3.12) can be deduced in the
same way as (3.4). O

In the same way as in the previous section, u; can be computed by using Fourier
transform in the x; variable. Indeed, it is easy to check that

_ sinh (& (k) z2) sinh (& (k) (L — 72))

w;(k, ) = sinh (£g(k) L) o (k) + sinh (9(F) L) o (k), (3.14)

where

(k2 + % — n2w?)!/? if k2462 —n2w? >0,
o(k) = (3.15)
i(n2w? —K2 -2 i B 482 -n2w? <.

Remark 3.1 The importance of the condition w* < c.(3) appears in formula (3.14)
by expressing that sinh(é,(k)L) must be different from zero. Indeed, the equality could
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take place only for k* + % —nlw? < 0, which occurs for some k when 8 < now.
This corresponds to the equation

sin(po(k)L) =0 (3.16)

with po(k) = (n2 w? — k? —ﬂ2)1/2. However, the condition w? < .(8) combined with
(3.10) implies
0 < po(k)L <7, VEkER,

so that equation (3.16) never holds.

We deduce from (3.14) an expression for the operator S; in the Fourier domain.

Theorem 3.4 For any ¢ € H2 (T) we have
|:§i(w7/8)(p:| (k) = M;(k) p(k) (3.17)

where p(k) denotes the same vector as in (3.9) and

olk
€o(k) coth(&(k) L) —smlig%

o= £o(k) : (3.18)
~sinh(é, (k) L) &0 (k) coth(&,(k) L)

We conclude this paragraph with a technical lemma which will be usefull in the
2

sequel. (.,.)r will be denote in what follows the duality pairing between H™2 (I") and
1
H2(T).

Lemma 3.2 Let ¢ € H2(T). The solution u; of the problem (P;) satisfies
ol gy < Nz (3.19)
Proof. The result could be proved using the explicit expression of u;. We prefer
to use a more direct transposition technique. Let G : H2(Q;) N HL(Q;) — L2()

the operator given by
Gz=—-Az+ (B> —n2w?)z.
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Due to standard regularity results, G is an isomorphism. Multiplying problem (P;)
by z € H2(; ) N Hj(£; ), integrating over €; and using Green’s formula twice, we

get
0z
fmee=={og),

Choosing z = G~ 1u;, we get

%
on

0z
2 _
||ui||L2(Qi) == <<P> %>F < ||<P||H_%(F)

ud )

Moreover, by trace theorem

[52], 1, < Gl < Ol
Therefore
luillczy < Cllel,-y (3.20)
On the other hand, we already know that
el @y < C ol (3.21)

One concludes by interpolation (cf. Lions and Magenes [21]). O

3.3 Study of the problem (P,)

The existence and uniqueness of solution is not a priori obvious since the problem
is no longer coercive in the general situation. In fact, we can distinguish two cases
depending on the maximum of the refraction index: If the maximum of the refraction
index is equal to the refraction index n, of the central layer, then the problem is
coercive and thus well-posed. Otherwise the problem is well-posed except for a
certain number of singular frequencies w whose number increases with 3, and which
play the same role as the irregular frequencies which appear in integral equations
for solving scattering problems.

To understand this, we introduce the operator A, g of domain H?(Q;) N H{(Q;)
defined by

i(—Au + B2 u).
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The problem (Pp) can be rewritten:

2 2y, ,2,.

Find u, € H*();) such that A, gu, — w?u, = g, with g = w € L2(%).
n

Therefore, the problem (P,) is well-posed if and only if w? does not belong to the

spectrum of A, 3. Then Theorem 3.5, the main result of this section, follows imme-

diately from Lemma 3.1 and from the following result, that we shall admit here and

whose standard proof can be found in [13] for instance.

Lemma 3.3 A, 3 is a positive selfadjoint operator whose essential spectrum satisfies

Uess(Ap,ﬁ) = [nl_g (2_3 + ﬂ2> , +00).

If ny = no, the discrete spectrum o4(Apg) of App is empty. If ny > n,, there
exists an increasing sequence [, tending to +oc such that if g, < 8 < ﬁfnﬂ, then
04(Ap,g) consists of m eigenvalues, denoted G;(8), counted according to algebraic
multiplicities.

In what follows, we set G;(8) = 0 if ny = n,.

Theorem 3.5 If w? < 0.(B), the problem (P,) is well-posed if and only if w? ¢
Gi(B). The solution u,, when it exists, belongs to H2($);) and

[upllm2(a) < Clluillz () (3.22)

The function u, appears to be as the solution of a boundary value problem
in the strip €2; whose right hand side has compact support included in K. As n
depends on (z1,x2), it is not possible to compute u, analytically. But, since u,
verifies an homogeneous Dirichlet condition, one can compute it by using the so-
called Localized Finite Element Method (according to the teminology of [20]). This
consists in rewriting the problem (7,) as an equivalent one (in a certain sense) set
in a bounded domain, with the help of transparent boundary conditions.

The idea is to introduce two fictitious vertical boundaries, ¥ and X7, to split
the entire region 2; into a bounded subdomain, namely the domain €, containing
the perturbation and another one, €2; \ €, where the refraction index is constant.
Then two separate problems are considered: a problem in the subdomain €, and
another one in the subdomain €; \ €, and we shall say that the whole problem in
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Iy rf
1 T
1 s 1
- I
1 1
1 I
Ty T1=a z1 =at I‘;."
analytically numerically analytically

Figure 3.7: Computation of u,,.

(); is solved if the continuity across the artificial boundaries of u, and its normal
derivatives is ensured.

Therefore, the computation of u, will be made by a mixed procedure: a numerical
one inside €, and an analytical one outside (see Fig. 3.3).

Before giving more details, let us make precise some notations. We shall set

° E+—{ , T9) ER2 .’L‘QE[O L]} 272{(a7,$2)ER2;£C2€ [O,L]},
o QF ={(z1,72) € V321 >a"}, Q7 ={(x1,22) € Qy5m1 <a},
o T ={(z1,32) €T;31 > a™}, I, ={(z1,22) €521 <a™}.

In the sequel, it will be useful to identify ¥ and ¥~ with the segment ¥ = [0, L].
We shall denote by {wy} the orthonormal basis of L%(X) (or L?(XF) or L2(X7))

given by

2
wi(@2) = |/ T sin (kt_j”) cHX(®), k>1 (3.23)

These are nothing but the eigenfunctions of the operator —d?/dz% in . with homo-
geneous boundary conditons. If ¢ is any function in H~!(X) we shall set
Pk = (P Wi)s

where (.,.)s denotes the duality product between H}(Z) and H=1(X). Of course if
¢ belongs to L2(%), ¢}, = (¢, WE)12(x), and the ¢y are the expansion coefficients of
¢ in the basis {wy}.

1
Let us recall that the Hilbert space Hj,(X) is characterized by

1 00
Hgo(X) = {p € LQ(E)/H%II;% . = ler*(1+ £ < +o0} (3.24)
oo k=1
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1
while its topological dual, namely H},(X)', is characterized by

1 . B e
H () ={p e HI(Z )/||<P||2 b sy = o’ 1+ E*) /2 < +oo}. (3.25)
Hgo k=1

The idea is first to compute the solution u, in the exterior domain Qj and
assuming that its traces gt and ¢~ on ¥ and ¥~ are given. This leads us to
1

consider the following problems, (g% and g~ being given respectively in HZ (S)
1
and Hgy(X7))

—Aup+ (B2 —n2w?)u, =0 in QF, wu,eHY(Q),
(Pi") u, =0 onT},
up, =gt on IV,

—Aup+ (2 —n2w?)u, =0 in Q, wu,eHY(Q ),
(Pi") up =0 only,
u, =g on XN .

The following lemma concerns the definition of two operators T (w,3) and
T_ (w, B) related to the transparent boundary conditions.

Lemma 3.4 Problem (P;") (respectively (P; )) has a unique solution u™ (respecti-
vely u™) belonging to H'(QF) (respectively H'(2;)) given by:

o0
— —at .
ut (21, T2) = E gF Wi(@2) e (T i gy > o,
k=1

- (3.26)
Uy (T1,79) = B g We(z2) e T i gy < a7
k=1
where & s given by
& = (/L% + 32 —n2w?)?, keN (3.27)

Proof. The proof is straighforward. Formula (3.26) follows immediately from a
classical technique of separation of variables. 0
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Using the trace Theorem 1.5.3.10 in Grisvard [15] applied to H'(A, Q) and
H'(A,€; ), we can define the two operators T’y and T_:

1 1
Ty (w,8): Hgp(E2F) — Heo (5F)
o o 529
ov |s+ Oz [+
1 1 ,
T_(w,8): Hgp(X") — Hgo(27)
81/ 3 8.7,‘1 ¥

where u.f and u,; are the respective solutions of (P;") and (P;") .

Through the identification ¥+ = £~ = X = [0, L], we can identify T (w,3) and
T_ (w, B) to a single operator

T(w,B) € LIH(X), H (X))

Using Lemma, 3.4 it is easy to prove the following theorem.

1
Theorem 3.6 The operator T(w,p) diagonalizes in the basis {wi} of HZ,(X) and
has the following expression:

[T, Bpl@2) = Ekw, B) Wk (w2) % (3.30)
k=1

where & is defined by (3.27).

Let us denote u;’, the restriction of u, to the domain €},. By construction of
T} (w,p) and T" (w, 3) the continuity of u, and of its normal derivatives across the
two interfaces ¥ and ¥~ shows that ug satisfies the following boundary conditions:

oud

-, T Trup=0 onX*,
v

ou?

=, TT-up=0 onX"
v
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This naturally lead us to introduce the following problem posed in the bounded
domain 2,

—Au;’, + (8% — n*w?) ug = (n?—nd)w?u; in O, u;’, € H()
b
u, = 0 on Iy,
(Py) P ’
oub b N
E = —T:t ’U,p on X s

(3.31)

where u; is the solution of (P;) and we have set I'y = I' N 9.
The problem (P,’) is equivalent to the problem (7,) in the following sense (we omit
the proof which is trivial):

Theorem 3.7 (i) Let uy be a solution of the problem (Pp). Then u := Up|q, iSO

solution of the problem (PY).
(i) Conversely, let ug be a solution of (’sz). Then u?

» can be extended to ; in a
unique way yielding a solution u, of (Pp) as follows :

( .
ub(x1, T2) if (T1,79) € Uy,

(ub) wi(z2) e 6@1=") if gy > o,

NE

=
Il
—

(3.32)

Up(T1, T2) = <

M]3

(ub) Wi(z2) e (@ T if gy < a7,

B
Il
—

\

where (u;’,),‘: and (u;’,),; are the expansion coefficients of the traces ofuf, on T and

Y~ in the basis {wy}.

Remark 3.2 Toward this end, we shall denote f = (n? —n?2)w? u;, where u; is the
solution of (P;).

From Theorem 3.7 we deduce that the problem (’PpE) has unigque solution u, €
HY(A, Q) which satisfies

C(w, B £ llL2(y); (3.33)
Clw, Bl fllr2(y)- (3.34)

||Up||H1(Q,,)
[ Aup|lL2(a,)

IN A

RR n° 3933



32 D. Gomez Pedreira and P. Joly

This theorem clearly shows that the computation of u, has to be done in a mixed
way, in the following sense:

e One computes u, inside € by solving the boundary value problem (sz)_
e Knowing u, inside 2, we compute it analytically in the exterior domain Q;"
and € via formula (3.32).
4 The operator S and its spectral properties

In this section, we show that the operator g(w,ﬂ) (as well as S (w, B), S, (w B8),
Sp(w, B)) can be reduced to an apropriate domain to be a selfadjoint operator, namely
S(w, B), in L2(T"). Then we make the spectral analysis of S(w, 3).

4.1 Definition of the operator S

Let us introduce the bilinear form

5@, 80,9) = (S, D, ¥)p = <[31;H ] ,¢> (4.1)

where u(y) is the solution of (P,) (see (2.4)). Thanks to Green’s formula, it is easy
to show that

s@. g0 = [ VurVuw + [ (67— n'uPuoue) Vep  HAD)
(4.2)

which allows us to establish the following result

Lemma 4.1 The bilinear form s (w,B;-,+) is symmetric and satisfies the Garding’s
inequality (where the constants C1 > 0 and Cy > 0 may depend on (w, 3))

5@, 550,0) 2 Cullollly ) = Callelitary, Voo € HAD).

Proof. The symmetry of s (w, 3;.,.) is obvious from formula (4.2). Moreover we
have
s, B0,0) > min{l, B2 H|u(e)F ey — w?nd [u)If ro

v

2
Cillpl?y ) = P ol
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by trace theorem for u(y). To conclude, it is sufficient to prove that

[u(@)llorz < Cllelliz(ry- (4.3)

For this, we shall employ a duality argument. Let v(p) be the solution of the
problem (which exists because w? ¢ G;(3))

—Av(p) + (82 — n*w?)v = u in €,
() + ( ) v(p) (#) (4.4)
v() = 0 on I
Since u(y) € L2(R?), then v(p) € H2(Q) (elliptic regularity)
o) llm2(0) < Cllu@)llo g2- (4.5)
.| Bv(p) 1 .
By trace theorem, the function 3 belongs to H2(I') and using (4.5)
o1y
37)(%)]
<C . 4.6
1%521],..p, = Gl (16)

Let us multiply (4.4) by u(yp), integrate over Q and apply Green’s formula in §2; and
Q.. We get

- |u(p)|” dz = /R V(o) Vu(p) dz + /R (B2 = n*whu(eule) do + ( {%} "0>p'

We apply once again Green’s formula in {2 to the right hand side. Taking into
account the equation (2.4) satisfied by u(yp) and the fact that v(y) vanishes on ', we

obtain
2 gy — [50(90)}’ .
/R [l de = (| T3 | 0).

Ov(yp)
2 0 <
ol < || %52] . Tl

which together with (4.6) finishes the proof. O
As a consequence of previous lemma we have the

Then

Theorem 4.1 The bilinear form s (w, 3;-,-) defines a bounded from below selfadjoint
operator S(w, B) in L2(T)with domain

D(S(w, B)) = {¢ € H2(I)/S(w, B)p € LAD)}, (4.7)
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that is to say,

(Sw,B) ¢, P2y = s W, B;0,%), Vé,9 € D(Sw,B)) x Hz(T). (4.8)

Of course, S(w, ) is also the restriction of §(w,ﬁ) to D(S(w,B)). We shall prove
later that D(S(w,8)) = HY(I'). This will use a decomposition of the operator S
analogous to (2.5).

4.2 Decomposition of the operator S

Let us introduce the three bilinear forms on H2(TI') associated respectively to the
operators Se(w, 8), Si(w, 8) and Sp(w, B):

Oue(p)

se(w, B; 0, 9) 1= <§e<p,¢>p = ( on >¢>

Ou; ((P)

w @‘P;@b) - < 1()07¢> :_< ’¢> (49)

0
0,55 0,9) = (Sppr ) o= (2 “p“" )

where u(y), ui(p) and uy(p) are the respective solutions of problems (P.), (P;) and
(Pp) introduced in Section 3. Using Theorem 3.2 and Theorem 3.4 and Parceval’s
identity, we deduce the following expressions for s¢(w, 3;.,.) and s;(w, S;-,.)

selw, By, ) = /R (M (BB (k) dik
(4.10)

siw, B o) = /]R (Mi (k) R)D(k)) dh

Then, using standard arguments based on the fact that the hermitian matrices
M. (k) and M;(k) depend analytically on k£ and satisfy

Mi(k) = [F|T + O(—

B Motk = [k + O

‘k|) |k| — 400 (4.11)
it is no difficult to prove the following result (we do not give the details but the
same type of arguments will be used in Section 4.4, lemmas 4.4 and 4.5).

Lemma 4.2 The bilinear forms s, (w,B;-,:), and s; (w,B; ) define two selfad-
joint operators in LQ(I‘) Se(w, B) and Si(w, B) , with domain HY(T) (these are restric-
tions to HY(T) of Se(w,B) and S;(w, B)). The spectrum of these operators is purely
continuous.
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Contrary to the operators S; and S, which are unbounded in L2(I'), we next
prove that the operator Sy(w, ) can be uniquely extended as a bounded selfadjoint
operator in L2(T'). This will be a consequence of the following result about the
bilinear form s, (w, 8; -, -).

Lemma 4.3 The bilinear form s, (w,f; +,+) associated with the operator gp(w,ﬂ)
satisfies:

159 @, B; 0, )| < C ll@lloy 1lley Ve, % € HE(D). (4.12)
) )

Proof. Let us recall that by definition, for any % € H%(F), u;(v) is the solution
of the problem

—Au;(Y) + (B2 —n2wH)ui(yp) =0 in Q;,
i ( ow?) ui(1) i (4.13)
ui(¢) =1 on I.
Moreover, classical regularity results imply that
[up(P)llm2(;) < Cllui(®)llL2(q), (4.14)
where, for any ¢ € H%(I‘), up(p) denotes the solution of
—Aup(p) + (B2 = n*w)up(p) = (n® —ng) W’ ui(p) in (4.15)
ui(p) = 0 on I .

Let us multiply the first equation in (4.15) by u;(¢) and integrate over €2;. Thanks
to Green’s formula we get

Oup(p) 2 .2y, 2.. . _
( o ’¢>r+/ni (n? — n2) w? ui(p) ui(y) de =
(4.16)
/Q Vg (p) - Vui () + /Q (82 — n*w?)up(p) ui(v) da.
In the same way, from (4.13) we obtain
/Q Vuy(p) - Vui(v) dz = — /Q (B2 — n2 wup(p) ui(y) dz. (4.17)

RR n° 3933



36 D. Gomez Pedreira and P. Joly

By substituting (4.17) into (4.16) we deduce, by using (4.9),

sp (W, B; 0, 1) = / (nd — n®) wup(p) ui() do — / (n? — n2) w? ui(p) ui(y) dz.

i Q;

Therefore, we obtain the estimate

|8p (W, B;0,9)] < (n2 —n?)w? /vaup<so)uz-<¢)| dr + (n% —nl)w’ /Q |ui(p) wi(¥)| dz

IA

C1 lup(@) L2 ) lui W) 20, + C2 llui(@) L2 o) lwi@) L2 (0
and by using (4.14) with ¢ = ¢
sp W, B; o, )| < Clluile)llnz(ou i)z @)-
We conclude thanks to Lemma 3.2. O
As a corollary, we have:
Theorem 4.2 The operator Sp(w, ) : L2(I') — L") defined by
(Sp(w, B, ¥) = sp (W, B; @, 9)

extends the operator §p(w,,8) to the domain L*(T).

Since we have the identity

5@, 5; %) = 8i (W, B; $,) — 5¢ (@, 55 b, %) + 8 W, B; $,9) Ve, € H3 (D)
(4.18)

we deduce immediately that
S(w, B) = Si(w, B) — Se(w, B) + Spw, B),

as an equality between unbounded operators in L?(T"). This allows us to characterize
the domain of the operator S(w, 3).

Theorem 4.3 The domain of the operator S(w, ) coincides with the set H(T).
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Proof. We know that S(w,s) € E(H%(I‘),EI 2()). Usmg regularlty results for
problem (P,) (cf. Remark 2.2), we deduce S(w,3) € L(H?(T),H?(T)). Then, by
interpolation (cf. Lions and Magenes [21]),

S(w, B) € LH(T),L2(I)),

which means that HY(T') C D(S).
To prove the reverse inclusion, let ¢ € D(S(w, 8) ), which means that there exists
a constant C(¢) such that

|5 (w, B; ¢, )| < C(@) |92y (4.19)

Using decomposition (4.18), Lemma 4.3 and identity (4.19) allows us to state, with
another constant C(¢)

|(si = se)(w, B; &, 9)| < C(@) [¥ll2(ry- (4.20)

Equivalently, thanks to (4.10),

~

[ = M) 306) 50 db < O [l (4.21)
From (4.11), we deduce that
Mi(k) — Mo(k) = 2| + Q(k), |Q(k)| < C,VE € R. (4.22)

Therefore, with another constant C(¢)
M@, ) db < 0@ Wllyzgry Vo € L20)

Since H3(I') is dense in L), we deduce that |k|$(k) belongs to L%(R), i.e., ¢
belongs to HY(I'). O

4.3 Smoothing and compactness properties of the operator 5,

In this section, we shall prove that the operator Sy(w,3) is a compact operator
which maps the space L? into smooth rapidly decaying functions.

Theorem 4.4 The operator Sy(w,B) is a compact operator of LX)
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Proof. 1t is enough to consider the chain
L20) —— LXQ) —— HXQ) —— H2(T) < LAD)
L Oup(p)
% () — Up(p) .

on P YIr
compact continuous continuous.

where u;(¢) is the solution of problem (P;) and uy(¢) is the solution of (P,) .

Notice that, according to inequality (3.19), it makes sense to apply the operator
Sy(w,B) to functions ¢ € LAT). Since the injection of H'/2(€4) into L2() is
compact (€2 is a bounded domain, cf. Section 2.4), the compactness of the mapping
¢ — u;(p) follows immediately from the chain

LX) —— H2(Q) —— H2(Q) —— L2
2 — ui(p) = uilp)|g, FH—  uilp)
continuous continuous compact
where we have used Lemma 3.2. The continuity of the other ones follows from

classical regularity results and a trace theorem. [

We give below a more precise result. Let m be a positive integer and o > 0. We set
H™(T) = H™*(IF) x A™*('),
where H™*(T't ) and H™*(I'~ ) are identified to H™*(R), defined by:

m
H™*R) = { ¢ € H*(R) / Z/ |D7 2 d < 00 (4.23)
j=0 'R

which is a Hilbert space equipped with the norm

m
o2 =3 / Dig[2eol"! da.
j=0"R

We have the following

Theorem 4.5 For all m € N, Sp(w, ) can be extended as a bounded selfadjoint
operator satisfying
Sp € L(L*(I),H™(T"))

2 1/2
where a < o = 2 (W— + B2 —n? w2> > 0, (a* > 0 deduces immediately from

L2
(1.19) and (3.10)).
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Proof. We only sketch the proof and refer the reader to [13] for more details.
Let € > 0, we set
Q) ={z € Q; /d(z,T) < €}

For € small enough,
KnQsT) =0.

The first step of the proof consists in proving that u,(¢) belongs to H™(Q¢(T")) with
llup (@) lm 0s(ry) < C(m, €)l|ellLz(r)- (4.24)

This is obvious for m = 2 since we already know that u,(¢) belongs to H2(€;).
For greater m, it suffices to remark that in Qf(T'), u,(p) satisfies the homogeneous
equation with constant coeflicients:

—Aup(p) + (87 = ngw®up(p) = 0.

Then it suffices to use a localization procedure and a bootstrap argument to derive
(4.24) (the fact that the boundary I is smooth and that up(y) satisfies homogeneous
Dirichlet conditions on T' is also used in an essential way). The use of a trace
theorem, allows us to deduce that S, maps continuosly L*(I") into H*(T'), for all
s>0

lup@)llas(ry < C(s, €)@l ry- (4.25)

The second step of the proof consists in obtaining weighted estimates of the type
(this one concerns the trace on '™, i.e, the line z3 = 0)

. 2
/ o (%) (21, 0)
at

3m{ 0z2
This part of the proof uses the expression of u, for 1 > a* given in Theorem 3.7.
We immediately get the following estimates for the trace of the normal derivative of
up on a3 = 0:

& ([ duy
37{ (3—.’132) (-’Eb 0)

Since (see (3.27))

e**1 d.’L'l <C ||(p||L2(F) V] € N. (426)

o0
P e
< \/%%Z \u;ﬂk{ie Ee(z1—a ), Vo, >a™.
k=1

<& < C(K2+1)3, we get

5
aj aup) _a* _at bt ;

. ’0 <C 5 (z1—a™) E + k]+1 .
oz (3552 0 = Ce ]|

k=1
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But for m > j#, we have

l

i |U,;‘ kj+1 (Z k2> (Z k2(2+j) |uz|2> i k2m 2. (427)
k=1

k=1

Using the well-known result

o
Z (k2m u;’;)2 < C ||Up||%_12m(2+) Vm e N, (428)
k=1

o Ouy
3—33{ <8—$2> (z1,0)

and consequently, for & < «* and m > j%Q, we have

/+ el <aup>( 0)2
at 8:1:1 0z o

To conclude it is sufficient to notice that, in the same way one proves (4.25), one
can show

we deduce )

< O o @m—at) [ F2m 53+

aa+

ari € 2
e“tdx; < C a ||up||H2m(E+). (4.29)

up(@)lmss+y < C(s,)ll@ll2my, Vs €N
because ¥ N K is empty. O

Remark 4.1 The compactness of S, also follows from Theorem 4.5 and the fact
that the embedding
H™(T') — L2(T)

is compact for m > 1 and a > 0.

4.4 Spectral properties of the operators S;, S, and S

In this section, we treat the operator S(w,3) as a compact perturbation of the
operator (S; — S,)(w, 8). We first give two properties of this operator.

Lemma 4.4 The operator (S; — Se)(w, B) is an isomorphism from H'(T) into L2(T).
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Proof. 1t suffices to prove that

(i) For all k € R, (M; — M,)(k) is invertible.

(ii) There exists C' > 0 such that [(M; — M)~ (k)| < C(1 + |k|>)~1/2-

To prove (i), we could use an explicit expression of (M; — M,)(k) but this leads
to tedious computations. We prefer a more indirect proof based on the fact that
(cf. Section 3)

. di.  da; di.  da;
(M; — M) = {— (dm _ dm) (), (dmz _ dm) <o>}

where ¢ = ((Z"‘, a_) € ker[(M; — M,)(k)] and u; and 4, are the respective solutions
of

4 ~

_ u;—{—(kQ—kﬂQ—nonQ)ﬁi = 0 in (0, L),
dz;
< u(L) = ¢,
\ wu0) = ¢,
and
4 D
e g2y nEa, = 0 iR\ [0,
dz;
< (L) = &%
\ B(0) = ¢ .

The equality [(M; — Me)(k)]a = 0 means that the function % defined as:
u = u; in[0,L],
u = u inR\][0,L],

satisfies
u € H*((0,L) U(R\ [0, L)),

[’ZL\]M:() = [’E]wz:lz =0,

[ dﬂ] [ d@]
_ = | — = 07
de z2=0 dw2 xo=L
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which implies that & € H?(R) and satisfies

d*u 2 2 =2 9\~ :

—— 4+ (k" +p°—n"w)u=0 in R
2

dz;

If % were not identically 0, this would mean that w? € o(Agy) (Agx being the
operator introduced in (1.15)). This is not possible because

w? < 0e(B) = info(Agp) = iI{lf inf o(Ag¢) < info(Agy)
Therefore, © = 0 which implies ¢ = 0. To prove (ii) it suffices to remark that from
(4.11) we deduce that
(M; — M) (k) = |2k| T+ O([k|®).

g

Our next result characterizes the spectrum of the operator (S; — Se)(w, 3). The
main consequence we shall derive is that 0 does not belong to the essential spectrum
of this operator.

Lemma 4.5 The spectrum of (S; — Se)(w, B) is purely continuous and of the form:
O'(Sz - Se) = o'ess(Si - Se) = [a*(w,ﬂ), +OO)
with o.(w, ) > 0.

Proof. The fact that the spectrum of S; — S, is continuous derives from the fact
that the matrix M; — M, depends analytically on k. Moreover, o(S; — S,) is the set

(k) k € R} U {Aa(k), k € R}

where A\ (k) and A2(k) are the two eigenvalues of (M; — M,)(k) which are continous
functions of k satisfying (cf. (4.22))

Ai(k) ~2|k|, k— +o00, 1=1,2.

As a consequence, the spectrum of S; — S, is an interval of the form [0y, +00). The
fact that o.(w,3) > 0 is a consequence of Lemma, 4.4 which indicates that 0 cannot
belong to the spectrum of (S; — Se)(w,B). O

As a consequence of the previous properties and the decomposition of the operator
S we deduce the

INRIA



A numerical method to compute guided waves in integrated optics 43

Lemma 4.6 0¢55(S) = 0ess(Si — Se) = [04(w, B), +0).

Proof. Since Sp(w,3) is a compact symmetric operator of LXT), S(w,B) is a
compact perturbation of the selfadjoint operator (S; —S.)(w, 8) and thus, as a conse-
quence of the Weyl’s theorem (cf. [27]), they have the same essential spectrum. O

This permits us to reformulate the characterization (Pg) of our guided mode
problem as follows

Theorem 4.6 There exists a guided mode associated to a pair (w,B) if and only if
0 ¢s an isolated eigenvalue of finite multiplicity of the operator S(w, ().

A priori it seems we have not made a big step from (Ps) to Theorem 4.6. Ho-
wever, Theorem 4.6 establishes an important property from the numerical point of
view since isolated eigenvalues are those which can be easily distinguish from the
others after discretization procedures.

4.5 Reformulation of the problem (Ps). Introduction of the opera-
tor K

One of the difficulties appearing in the numerical approximation of (Pg) lies in the
fact that the unknown function ¢ is defined on an unbounded domain, namely the
boundary I'. A possible approach would consist in a spectral approximation (in the
physical space or in the Fourier domain) using appropriate bases of L?(R) such as
Hermite polynomials. We have preferred to study an alternative approach based
on a truncation method which will be developed in the next section. To justify
it, we need to work in the space L2(I) instead of D(S) = HY(T'). This is our first
motivation to reformulate our problem by introducing a new operator

K(w, ) = (8i — Se)™" Sy, (4.30)

which is well defined as a linear operator in L?(T") since S; — S, is an isomorphism
from HY(I') into L2(I"). The relationship between S(w,3) and K(w, ) is simply

S(w, B) = (Si = S {1+ K(w, B}, (4.31)

so that it is obvious that the problem (Pg) is equivalent to:

For a given g, find w > 0 with (w,3) € E\ Gi(8),

(Px) such that —1 be an eigenvalue of K(w, 3)

RR n 3933



44 D. Gomez Pedreira and P. Joly

or, equivalently, there exists ¢ € L2(T"), ¢ # 0 such that

(I+Kw,B)¢=0. (4.32)

Problem (Pk) is the one we shall work with from the numerical point of view.
The algorithm for searching guided modes will be:

1. Compute the eigenvalues A(w, 8) of K(w, 8)).
2. Solve the equations A(w, 3) = —1 in the plane (w, §).

Let us summarize the most interesting properties of the operator K(w, 8) in the
following

Theorem 4.7 The operator K(w, 8) is a compact operator from L2(T) into L2(T).
Ezcept for 0, its spectrum is made of a sequence of non zero real eigenvalues having
zero as unique accumulation point.

Proof. The compactness of K is a consequence of the compactness of Sp. If
we except 0, the general theory of compact operators says us that the rest of the
spectrum is purely made of finite multiplicity eigenvalues having 0 as unique possible
accumulation point. The fact that the spectrum is real comes from the fact that K
can be written as the product of two selfadjoint operators. Indeed, let A such an
eigenvalue and ¢ € L2(I") the corresponding eigenfunction. Note that necessarily
¢ = A"1Kp € H{(I") (K maps L2(I') into H'(T') because of (S; — Se)~!) and that:

I+K)p=(A+1)p.
Multiplying this equality by (S; — S.) we obtain
S =(14X)(Si — Se)p

which implies
(S, )2y = (1 4+ A) ((Si — Se)o, ©)L2(r)

which allows us to conclude because (S; — Se)g, ¢)r2(r) is real strictly positive
(cf. Lemma 4.5). O

Remark 4.2 Note that K is not selfadjoint because S, and (S; — Se)~! do not
commute.
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Apart from the interest of working in the space L?(I'), the advantage is that
K(w, 8) no longer has continuous spectrum and that the theory of the approximation
of the spectrum of compact operators, that we shall use in Section 6, is well-known
(see Babuska and Osborn [1]).

5 Numerical approximation

5.1 Introduction of the parameter R. The truncation of the domain
r

We propose a truncation procedure which leads to work with functions defined on
the bounded domain (see Figure 5.8)

Tr=TN{(x1,72) /] a~ —R <z <a® +R},

where R > 0 is an approximation parameter devoted to tend to +o0.

I'r
_______ . JE
Qp
R | R
B — | e
[
_______ | - — =
a” at
T'r

Figure 5.8: Truncation method.
We shall set T'g =T \ I'r and use the orthogonal decomposition
LA(T) = L2A(Tg) ® L%(TR). (5.1)

where L2(T'g) (respectively L2(T'g)) denotes the subspace of functions in L?(T") whose
support is included in T'g (respectively T'g).
We also introduce the orthogonal projector IIg on L2(I'g) defined by
Mg: LXT) — LX)

5.2
o — IIrp = xzep (52)

where x, denotes the characteristic function of I'g.
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Let us start from equation (4.32). The idea would be to write an equation for
[Irp, the “restriction” of ¢ to I'r. Such an equation does not exist but we are going
to see that we can write an approximate equation, up to exponentially small errors,
whose unknown g will be an approximation of IIgp.

Let us decompose ¢ as

¢ =g + (¢ — Irp).
Applying the operator IIg to (4.32), we obtain
Mgy + MrKIg ¢ + TRK(I —TIr) ¢ = 0
that we can rewrite as
Mre + Mgr(Si—Se) ' MrSlre
+ {HOr(Si—S8e) " (I-1IIr) SpIIr
+ HOr(Si—8) 'S, (I-Tg)} ¢ = 0.
The following estimates will be proved in the next section (y = y(w, 3) > 0)
18p T = TRl cazry < Ce ™%, (5.3)
1= TIR) Spllcaery < Ce ™ (5.4)
This allows us to approximate the equation (4.32) by
{T+Kgr}op =0, ¢, € LATR) (5.5)
where
Kg = IIg(S; — Se) ' TR Spllg, (5.6)

and where ¢, will be an aproximation of IIrp.
The most interesting properties of Kg are the following:

(i) According to the orthogonal decomposition (5.1), the operator Kg has the
following block structure

Ky = ( H%R 8 ) . Ky € LIATR)). (5.7)
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This shows that Kr has an infinity dimensional kernel, namely L2(fR) and
that
o(Kr) = {0} Uo(Kg).

Moreover, identifying pgr with its restriction to I'r equation (5.5) can also be
rewritten as

T+ Kn}py =0, @ € LATp). (5.8)

In practice, we shall only have to work with the operator Kg, that is to say,
in the bounded domain I'g.

(ii) Kg appears to be the product of two selfadjoint and compact operators, namely
Mg SpIlg and Hg(S; — Se) !IIg. As Sy is compact (cf. Theorem 4.4), Ky is
compact too. Moreover, IIg(S; — Se) " 'IIy is strictly positive when restricted
to L2(I'r). This shows that the spectrum of Ky is made of 0 plus a sequence
of real eigenvalues tending to 0. From the numerical point of view, looking for
the eigenvalues of Kg will lead, after discretization, to a classical symmetric
generalized eigenvalue problem.

5.2 Introduction of the parameter N. The series truncation

The second difficulty one meets in the numerical approximation of our problem and,
more specifically, of problem (PPE) is linked to the fact that the operator T'(w, 3)
described in Theorem 3.6 is not well suited because it involves a series. In order to
solve numerically the problem (’PPE) we are led to truncate it at rank N (see [20],
[18] for similar questions and developments).

1 1
We shall denote T'v(w,8) € LIH, (), HE, (X)) the truncated operator defined
as

N
[Ty (w, B)@l(x2) =D &x(w, B)Wi(z2) - (5.9)
k=1
In the sequel, the following problem will be referred to as the semidiscrete problem:
—Au) + (8> —n*w?)u) = (n? —nd)wu; in Qp, u) € H'(Q)
(PE)N Ug = 0 on Fb,
oul
a—: = —Tnuy on ©F.
(5.10)
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Thus, the solution ug of (’PPE) will be approximated by the solution u; of the
semidiscrete problem (’PPE) ~ - The existence of solution of this problem, which is
not a trivial question, will be proved in Theorem 6.7 of Section 6.2.

To compute the operator Sy, we need to know u, outside €2;,. Consistently
with Lemma 3.4 (or Theorem 3.7), u; will be extended in the exterior domain
Qezt = \ 7 by:

uy (€1, 22) = » (up) " wi(z2) e 6k (@—a®) jf g S gt

(5.11)

M= 1=

uy (@1, m2) = Y (ug)” Wi(z2) e~ (07 —51) if g < g

ES
Il
—

Remark that u; is defined in such a way that
—Auy + (B — n2w?) uy =0 in Qegy,
and such that its normal derivative across the two boundaries £* is continuous
Ouy
191%
However, even though ug is H? in both domains Q and Qg , it is not continuous
across ¥ | more precisely

nt

Nevertheless, this is sufficient to define an approximation S]],V of the operator Sp.
Let us denote

Fegt =T \ Ty = Fe+act U F;act
with

Ity =TenNDT,
Iy =TeeNT™.

The operator SI],V is defined as follows:

ou)

(S]])VSO)h‘b = ap )
n r,

. (5.12)
N Ouy
Sy Oir,ee = 5

Teat
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More precisely, we shall prove in Section 6.2 that, if w ¢ G;(3), (5.12) defines, at
least for IV large enough, SIJJV as a bounded operator in L?(T"). Moreover, according

to formula (5.11), we have the following explicit representations of (S} (,0)|r L

ext

/

N
Yo, = D CDFJERE @) Te S it gy > ot
ext _
< k]_vl (5.13)
(SN, = 2 GV @) el i 2y <,
L ext k=1
and similar expressions on I',,. In (5.13), (u} )" and (u} )~ denotes, as usual, the

expansion coefficients of the trace of u; on £t and X~ in the basis {wy}.
This approximation of S}, leads naturally to introduce the approximation of K,
namely Ky defined by

Ky(w,B) = (Si — Se) 1 8) € L(LA(T)).

Remark 5.1 It is easy to see that the operator Ky is compact. The compactness
of Kn derives from the one of SI],V, which can be easily proved as the compactness of
Sp (see Theorem 4.4).

5.3 Description of the global numerical method

In practice, we need to make approximations with respect to N and R and then to
define the operator

K§ (w,8) = (IIg (S; — Se) ™" ) (IIg S Ir),

and consider the approximate problem

For a given g, find w € R with (w,3) € E\ Gi(8),

such that —1 is an eigenvalue of Ky (w, §).

However, one still cannot handle the operator Kg numerically since the compu-
tation of SIJ,V involves the resolution of the boundary value problem (PPE) ~. This
problem needs a numerical approximation, for instance, using a finite element me-
thod associated to a mesh of stepsize h. This approximation will produce a new
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approximate operator Sg’N of S;,V . We do not present in detail the step of the
numerical method since it is quite standard.
In its turn, this leads to a new approximation of the operator K& (w, 3), namely,

Kip™ (@, 8) = (T (S; — Se) ™" Ty (e S Tig),

and the numerical method we propose consists in solving the problem

(Poww) For a given g, find w > 0 with (w, ) € E \ G;(8),
Kh,N
R such that —1 is an eigenvalue of K?{’N(w,ﬂ).

We summarize the meaning of the different parameters in the Figure 5.9.

R R

<> B
Qh FR
h $ . T(waﬂ)
N
I'r

Figure 5.9: Reinterpretation of the numerical method.

Hence, after the numerical approximation, the problem of searching guided
modes can be reduced to:

1. Compute the eigenvalues A(w, 3) of K%’N(w,ﬁ)).

2. Solve the equations /\%N(w,ﬁ) = —1 in the plane (w, 3).

6 Analysis of the error in the numerical approximation

In this section, we present an analysis of the numerical error due to the approxi-
mations related with the parameters R and N. More precisely, if A(w, 8), An(w, 8),
Ar(w, ) and AyRr(w,B) denote, respectively, the eigenvalues of K(w, ), Ky(w, )
Kgr(w, 8) and Kg (w, B), we derive error estimates for

|A(w7 ﬂ) - AN("‘)a ﬂ)'a ‘A(wa ﬂ) - AR(Wa ﬂ)| and ‘A(waﬂ) - AN,R((‘JMB)‘-
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For simplicity, in what follows we shall use letter C to denote a positive generic
constant, not necessarily the same at each occurrence, which is independent of the
approximation parameters involved, unless we specify the contrary.

6.1 Analysis of the truncation related to R

We are going to prove that the nonzero eigenvalues of Kg(w, 3) converge exponen-
tially to the nonzero eigenvalues of K(w, ). This would be immediate via Osborn’s
theory for the approximation of the spectrum of compact operators if the operator
Kr(w, 8) would converge to K(w, 3) in the operator norm. This is not the case since
(K(w, 8) — Kr(w, 3))¢ = K(w, B)¢ for any ¢ with support in I" \ T'g.

That is why we introduce the intermediate operator

Kr(w,8) = (S; — Se) ' g S, Tg.
Notice that Kg = IIg IN(R. The idea of the proof is the following

e We prove that KR(w, B) has the same nonzero eigenvalues as Kg(w, 3) (Theo-
rem 6.1).

e We prove that |Kg(w, ) — K(w, 8)| converges to 0 (Theorem 6.2).

e We apply Osborn’s theory to conclude (Theorem 6.3 ).

Theorem 6.1 Operators Kg(w,8) and KR(w,ﬂ) have the same mon zero eigenva-
lues. The corresponding eigenfunctions have their support included in I'g.

Proof. Let A # 0 be an eigenvalue of Kg. Then
(Si = 8e) 'R Sp IR = A, @ #0. (6.1)

Let us notice that ITg ¢ # 0. Otherwise we would have ¢ = 0. By applying Il to
(6.1) we obtain

Kr (IIr ¢) = A(Ir ¢),
which proves that ) is an eigenvalue of Kg.

Now, let A # 0 be an eigenvalue of Kg. Then, there exists ¢ € L2(I"), ¢ # 0,
such that

Kro=Tgr(Si — Se) ' Mr SpIlr o = Ae.
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Notice that since A # 0, the support of ¢ is included in I'r. We set
~ 1 ~
¢ =9+ X(I_HR)KR(P-
Since the two addens are orthogonal, ||¢]|12 > ||¢||12 and then ¢ # 0. We have

Kr$ = Kgro (since Kg(I — IIg) = 0)
= MrKre+(1-Tr)Kr e

1 -
= Krp+A <X(I_HR)KR‘P)

= /\<<P+)\(I—HR)KR<P>
= Ao
Then, A is a nonzero eigenvalue of Kg. O

The estimate of ||Kg(w, ) — K(w, 8)|| will follow from the estimates (5.3) and
(5.4) announced in Section 5.1 and which are the object of our next two lemmas.

Lemma 6.1 The following inequality holds
1T = TIR) Spll oy < Ce 'R

1/2
where v = y(w, 8) = & (w,B) = (%;—I—ﬁQ—nng) >0

Proof. Let ¢ € L%(I) and u, be the solution of (P,) associated with ¢. From
the definition of the operators S, and IIg (cf. (2.8) and (5.2)), the proof reduces to
get bounds, in terms of [|¢||r2(ry, of the integrals

2

+00 +o0
/ aup 1‘17 dwl) / %(.’I)]_,L) dl‘l:
at4+R at+R | O
2 a” —R 2
/ 3Up ~'L‘170) d.’El, / %(.’El,l}) dwl-
[e's) —00 n
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Let us restrict ourselves to the first one (the other ones can be treated in a similar
way). We have (cf. (3.26))
Z uk e—tr(z1—at)

2
[ ol - 2
at+R at+R |
2

2 / —2{1(1‘1—a+) )
— dz U
L ( at+R kE:' k

21 2
= _2£1R ﬂ-

L2, (Z i ) '

The series has been estimated in the proof of Theorem 4.5 (it is a particular case of
(4.27) with j = 0). Indeed, from formulas (4.27) and (4.28), we deduce that

00 2
(Z |u1_:|k) < Cllup|lpz(s+)-
k=1

Using (3.19) and (3.22), we have

2
aup

d
(9.’132 7

(517170)

IA

00 2
(Z Jug | k) < Cllupllaz(s+y < Clluilliza,y < Cllglliz ), (6.2)

so that we deduce

Oup
On

2
(€1,0)| da1 < Ce Rl 2.

/+oo
at+R

Lemma 6.2 The following estimate holds

O

18p(X = TR) | r2(ry) < Ce TR
where v has been defined in Lemma 6.1.

Proof. For ¢ € LA(I) given, we set &g = (I — IIg)p € L2(I). By definition

Oup
Sp@R = % r
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Ql?{,emt
a— at a”—-R at+R
= +
FR,ezt FR 1_‘R,e:ct

Figure 6.10: Sketch of a function ¢ € L?(T) and the resulting & = (I — IIg ).

with u, = u,(®r). By trace theorem we have

ou
I58nlhon < |52 | < Cllulhoy < Clulhoy, 63

H2(T)

Therefore, it is enough to find a bound for [u;||;2(g,)- In what follows, we shall
denote

* TReww = {@,32), z1<a —R, 23=0 or zy =1L}
° Fl—i’:,emt = {(@1,%2), T1>at+R, z3=0 or zo =L}
° g = {(@ —R,13), z2€(0,L)}

o Q. = {@nz)eR, z<a —R, 0<z3<L}

The function g may be considered as the sum of two functions: one of them
is supported by I'y ., and the other one is supported by Ff{ ezt - We shall restrict

ourselves to the case supp ®r C I'y ., - The other one deduces in a similar way.
Since we have homogeneous Dirichlet boundary conditions on I'\ T _ ., if we set
% = uj|y,-, we can write

R

o0
(%1, T2) = Z P Wi(z2) e @R g 5 07 R,
k=1
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where 1 are the expansion coefficients of 1 in the basis {wy} of L2(0, L). Then

00 at 00 1
U(.’L‘) 2 d.’,Cld.’L'z — ¢2/ e—?fk($1—07+R) d.’L'l S C Q/}Z L e_2£kR.
| 7 | 2 k - ; k 2£k

Qp

Hence, by using the asymptotic behaviour of & for large k, the definition of the
||¢||(H1/2(2_)), norm (see (3.24)) and the inequality & < & =+, we have
00 R

—R
||ui||L2(Qb) <Ce” ||¢||(H(1)(/)2(21_1))’ (6.4)

A trace theorem which can be derived from Theorem 1.5.3.4 of Grisvard [15],
allows us to write

||¢||(H(1)(/)2(E;())’ < C“ui“L?(A,Qﬁ,wt)' (6.5)

On the other hand, since ®g € L2(T") we can immediately deduce, as a consequence
of Lemma 3.2, the estimate

luillL2a,ny < ClI®rlL2my < Cllelleem-

This inequality, together with (6.4) and (6.5), allows us to conclude. O

Theorem 6.2 There exist two strictly positive constants C and 7, depending on w
and B such that

IRr(w, 8) — K, | g2y < Ce ™. (6.6)
Proof. We simply write

K, 8 =K@, ) < [1(Si = S)7H | {118, T = TR)|l + [|(T-TIR) Syl },

and use lemmas 6.2 and 6.1. O

Theorems 6.2 and 6.1 will be used now to deduce estimates for the rate of conver-
gence of the nonzero eigenvalues of K(w, 3) by those of Kg(w, 3), taking into account
some classical results of spectral theory for compact operators which can be found
in Dunford and Schwartz [8] or Babuska and Osborn [1].
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Theorem 6.3 Let A\w, 3) be a nonzero eigenvalue of the operator K(w, 8) with al-
gebraic multiplicity m and assume its ascent is 1. Then, there is Ro > 0 such that,
for R > Ry, there exist )\%{(w,ﬂ), )\%{(w,ﬁ), ..o, AR (w, B) eigenvalues of Kr(w, B) that
converge to Aw, 8). Besides, we have the following estimate

Aw, ) — Xy, B <Ceny forj=1,...,m,
with v = y(w, 8) > 0.

Proof. The proof follows immediately, taking into account the compactness of
the operators K(w, 8), Kr, Theorem 6 of Osborn [24] which states

A, B) = Mg (@, B)] < C (K = Kr) |17
and Theorem 6.2. [

Remark 6.1 An important property to be emphasized is the fact that there exists
¥« > 0 independent of w and 3, such that

Y(w, B) such that w < o¢(B), v(w,B) > v« > 0. (6.7)
Indeed, for w < o.(8), we have
Y@, 8) > H(B) = (x*/L* + B> —nd oe()) 7.

From Lemma 3.1, we know that ¥(3) is a strictly positive continuous function of
which satisfies ¥(0) = w/L and furthermore (cf. Remark 1.2):

~ 1
¥(B) = (7?/L? + (1 — n/nd?) B%)2,
- T
F(8) — T when f— +oo,
which proves that vy, = inf75(8) > 0.
This result is very important in that our truncation process guarantees a uniform
(in B) exponential rate of convergence in R even though the eigenmode u(8) one looks

for has not a uniform exponential decay in the variable x1. Indeed, if w(B) is the
pulsation of the eigenmode, one easily shows that this decay is given by

C exp(—[ (7e(8) — w(B)?)7 |21] ])

where (0e(B) — w?) > 0 goes to 0 when § approaches a threshold (cf. (1.20)). The-
refore, the accuracy of our method does not deteriorate at the vicinity of thresholds,
which would be the case with a brutal truncation method.
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6.2 Analysis of the truncation related to N

The aim of this section is to analyze the numerical error due to the truncation para-
meter N (cf. Section 5.2). The effect of the series truncation is that we approximate
the eigenvalues A(w, ) of the operator K(w, 3) by the eigenvalues Ay (w, ) of the
operator Ky (w, 8). In order to get an error estimate on A(w, 8) — Ay (w, ), we need
an estimate of
|K(w, B) — Kn (W, Bl £12(r))s
that is, an estimate of
185 = Sp" Neqrz(ry)-

For this, we shall establish an error estimate of the type

lup — uy l12e0,) < €(N) llollL2(ry,

where €(N) denotes some positive function which tends to 0 when N tends to +oo.
The estimate of u, —u; outside {2 is then quasi-explicit using formulas (3.32) and
(5.11). The main difficulty is thus reduced to the approximation of (P,’) by (P>)n.
The analysis appears not so obvious and will be splitted in several steps:
1. Ezistence and uniqueness of u, solution of (’PPE)N. The idea is to prove an
existence and stability result (this means that we want to get estimates on u; which
are independent of N) by using the fact that the problem (PI,E ) is close enough, at
least for N large enough, to the problem (PPE), which is well posed since w ¢ G;(3).
The main tools will be a perturbation method and a fixed point technique. A
technical difficulty arises due to the fact that the difference Ty (w, 8) — T'(w, 8) does
not converge to 0 in the operator norm. To overcome this difficulty, and following
ideas developed by Razafiarivelo in [26] for instance, we write two problems (PpEO)
and (P)°)% which are “equivalent” to the original problems (P,’) and (P,’)x (in a
sense to be precised later) but posed in a subdomain Q, of €, namely the rectangle

Qo :{(551;-7;2) / U,7+£<5E1<U,++£, O<:I?2<L}.

The advantage with these new problems is that the operators T'(w, 8) and Ty (w, 3)
appearing in (PPE ) and (731,E )~ are replaced, respectively, by T™ (w, 8) and Ty (w, 3)
where the difference T (w, 3) =Ty, (w, ) converges exponentially to 0, which permits
to make the fixed point procedure work. Then, we are able to prove the existence
and uniqueness of u; only for IV large enough, which is rather classical in the ap-
proximation of boundary value problems which are not coercive but only compact
perturbations of coercive problems.
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2. Derivation of the error estimates. Following the existence proof, error estimates
for u, —u; are then obtained in three steps: first in the smaller domain €2, using a
perturbation technique, then successively in the domains 3 \ 2, and €; \ €} using

two different but not difficult techniques.

Analysis of (PI,E) ~ and construction of Ky

We shall begin by introducing two auxiliary problems posed in two vertical bands
C™T and C~, contained in the domain €, where the refraction index n is constant
and equal to ny. This allows making analytical computations in these domains.

Te- o Tt
1 1
_ I Qo 1 ot
C . .
| 1
== bl @ >y »t
I 1
|
Te- | o ' Ty
a” a +/ at —¢ at

Figure 6.11: Sketch of the subdomains C* and C~.

Let LeR, 0 < £< (at —a")/2. We shall denote (cf. Figure 6.11):

o O, = {(w1,x2)ER2 /] e~ +L<z <at—4 0<zy <L}
o F = {(x1,1)€R? / 31 =aT -4, 0<z9 <L}

o ¥ = {(@,1)€R / z1=0a +4 0<mzy <L}

o Ct = {(x1,1)€ER / at—4<m <a™, 0<z9 <L}

e C = {@=z,19)€R? / a <z1<a +4 0<z9 <L}

o Iy = FﬂC+,

e I'e- = T'nC™

o I, = I'NnoQ,

1 1
Let g7 and ¢~ be any functions belonging to HE,(2}) and HE, (X ), respectively,
and let Ty be the truncated operator introduced in (5.9). We consider the problems
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—Au+ (2 -ntw?’)u = 0 in C*, wueHYCH),
(PC+) u = 0 on T'cg+,
u = gton XIF,
ou +Tyu = 0 on X1,
ov
and
—Au+ (B2 —nlw?)u = in C, ueHY(C),
o U = on I'c-,
(P7) u = g on X,
0
au +Tyu = 0 on X~
ov

The following results will be useful for our purposes.

1
Lemma 6.3 For every g* € HZ\(Z7), the problem (PC"Y) has a unique solution
vV € HY(CT) given by:

N o]

v (@1, @) = Y age M wr(ma) + D ap (6_5”1 + eg’“(“_mﬂ) wi(z2) (6.8)
k=1 k=N+1

where

gl_:eé-k(a‘-‘r_e) zf k S N’

ap — gl_!— egka-‘r . (69)
— kEk>N+1
2 cosh(&x) ifk2N+1,

1
and g denotes the ezpansion coefficients of g™ in the basis {wy} of H3)(SF). Be-
sides, there exists a constant C independent of N such that

0¥ [ma,c+) < C gl (6.10)

1 .
HE ()
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Proof. The proof is straighforward. Formula (6.8) follows immediately from a
classical technique of separation of variables. 0
By the symmetry of the domain, we have a similar result to Lemma 6.3 but in the
subdomain C~.

We now define transparent boundary conditions on ¥} and ¥ to formulate a
problem posed in the domain 2, whose solution is the restriction of the solution to
problem (’PPE) ~ to this domain. More precisely, as we did for the operators 7'y and
T_ , we define two new Dirichlet-Neumann operators as follows:

(Tx)* (w; B) : Hgp(25) — Ho(Sg)

o™ (6.11)
gt L, 9
ov
(Ty)* (w,8): Hgo(B5) — Hgo(Bg)
N % SN (6.12)
g | _—
ov |sz

n being the solution of (PC+) or (P¢") associated with the Dirichlet data g% or g~
(here, v denotes the outgoing normal vector to the boundaries ¥ or X7 from C*
and C~ respectively.)

As we have done for the operator T, making the identifications &} = X5 =
¥ = (O L) we can identify (T%)* and (Ty)* to a single operator T belonging

to L’(Hgo( o) HgO(E )'). Using Lemma 6.3 it is easy to prove the following theorem.

Theorem 6.4 The operator Ty has the following representation:

[T% (w,8) ¢] = Zﬁwmmw Vo € Hgp(So), (6.13)
k=1

1
where ¢y, denotes the expansion coefficients of ¢ in the basis {wr} of Hjy(2,) and

. {& if k<N, (6.14)

7 g tanh(&l) if k> N.

This leads us naturally to introduce the problem:
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—Aul, 4+ (B2 —n*w?)u), = (n*—nd)w’u; in Q,, ud,€H(Q,),
(P )y Uy, = 0 on Ty,
—aup’o = -Tyxuy on ©F
81/ - N “p,0 o -

(6.15)

Problems (P)’)y and (P)°)} are equivalent in the sense of the following theorem

(whose trivial proof is omitted)

Theorem 6.5 If u) is a solution of (P,)n, then Uy |, 8 @ solution of (PXe)n-

Conversely, if u,, denotes a solution of (PPE")*N, then uy, can be extended to a

solution of (Py’)n in a unique way by solving (PCTY (respectively (PC)) with g+ =
up |+ (respectively g~ = uy |y ).

The main result of this section is Theorem 6.7 which ensures the existence of solu-
tion of the problem (P))%, and consequently, taking into account the equivalence
of both problems, the existence of solution of the initial semidiscretized problem
(731,E )~ The proof of Theorem 6.7 will use Lemma 6.4 and Theorem 6.6 below. In

the sequel, we shall denote o = n/{/L.

1 1
Lemma 6.4 Let T* (= T) € L(HE) (%), H (o)) be the operator given by (3.30),
once Lo has been identified to [0,L]. There exists a constant C independent of N
such that

T —T% 1 1, < Ce2N, 6.16
| N”c(Hgo(EoLH(?o(Eo)) (6-10)
1
Proof. Let ¢ € Hjy(2,). We have
2
T —T% ol - 2 (1 _ tanh(gp0))? — 25
I( N)wllHéo(zo), D & (1 - tanh(&L)) 1+ k)12

k>N+1

Since ¢2 < C(k* 4+ 1) and 1 — tanh(z) is a decreasing function of z, it results that

T* = T3)el? < Cll—tanh(Enpf) S (142 gy
Hgo (Zo)' E>N+1
< C[1—tanh(én1) llel? ,
Hio (%o)
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Thus, taking into account that £x414 > Na and 1 — tanh(z) < e™%, we obtain

1T —TxIl 1 I
N w2 (o) H2,(20))

with C' a constant independent of N. O
The following theorem extends the inequalities (3.33) and (3.34) to any function
f € L?(£2;) with compact support in €.

1
Theorem 6.6 Let f € L?(%);), with supp(f) C U, g € HE(Z)'. Let T be the
operator defined in (3.30). The problem

Find v € H' () such that
—Au+ (82 —n?w?)u =f in O

(6.17)
u =0 on T
(9_u +Tu =g on X%
ov
has a unique solution u € HY(A, Q) which satisfies
[l ) + 1AullL2q,) < CUIf L2y, + llgll_3 ) (6.18)

HE(ZY

The following theorem provides an existence and stability result for problem

(P

Theorem 6.7 Problem (’sz")*N has a unique solution uy , for N large enough. This
solution satisfies

||uN,o||H1(Q,,) <C ||f||L2(Q,-)- (6.19)

Proof. The boundary condition on ¥ of (sz°)}*v can be written as

8“11220 * N * * N
W + T up,o = (T — TN)up,O' (620)

Taking this fact into account, the existence of solution of the problem (’PPE°)*N reduces
to prove the contractivity of the following mapping:
Ry : HY(Q,) —— HYA,Q,) Cc HY(Q)

7 —— Ryz=uy (6.21)
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with vy the unique solution of the problem:

—Avy + (82 —n2w?)oy = (n? —ndw?u; inQ,
5 oy = 0 on I, (6.22)
%—I—T*UN = (T* -T%)z onX=.
14

Notice that R is well defined because of Theorem 6.6.
Now we prove that Ry is a contractive mapping. Let (y = Ry z1 — Rn 2.
Then (y verifies:

—Aly + (B2 —n*w?)(y = 0 in Q,
w = 0 onT,, (6.23)
TEAT G = (T TR (- ) on TR
and taking into account (6.16) and (6.18) we get
||CN||H1(A,QO) = |[Ryvz1 — Rn z2||H1(A,QO)

< O(Q) (T =Ty ) (21 — z2)||H650(20),
< GO =T8Nt by 17~ 2 s,y
< O(Q) e |21 — 2o/l (q,),

from which it follows that Ry is a contractive mapping for N large enough.

From boundary condition (6.20) and Theorem 6.6 it results that

[upollut o,y < CUlf ooy +1I(T* = TR )upoll 3 )
HOO E0)

From Lemma 6.4 and trace theorem we deduce

ol o) < Cllfllzay + Ce N llupolla o,)-

Since (1 — Ce~2N) — 1, for N large enough we have (1 — C e~ 2*") > 0 and then

C
lupolle (o) < 7= =san [fll2(),

which finishes the proof. O

Theorems 6.5 and 6.7 allow us to state the following
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Theorem 6.8 The semidiscrete problem (’PPE)N has a unique solution u, for N
large enough. This solution satisfies

lup I () < Cllfll2ay)- (6.24)

Proof. To get the estimate in €, it suffices to use the estimate (6.10) with
gt =gt = ug|23r and to apply trace theorem to obtain an estimate in H!(CT).

One proceeds in the same manner to get the estimate in H(C™). O

In the sequel, we shall also need an H? estimate for u;;’ in €.

Lemma 6.5 Let u)) be the solution of the problem (PY)n. Then u) € H*(Q) and
lup lr2(0,) < CNI1fllL2 @) (6.25)

Proof. Let us denote § = 82 — n?w? € L*°. From (5.10), one has

—Au) +u) = (1—-8u) +(n*—n)wiu; in O,
oul)
(9—p = —Tnu, on nt,
v
u, = 0 onTy.

1
It follows immediately that Ty u, € Hg,(3) because it corresponds to a finite sum
of C* functions which vanish at the ends of 3. Therefore, classical regularity results
which can be found in [15], allow us to ensure that u) € H?(€) and

lup 2,y < CUIF+ A =) uyllLe e, + 1Tvuyll 3 ), (6.26)
Hoo(2)

and hence, using (6.24)

lup 20,y < C (12 + 1T uyll 1 ) (6.27)
Hgo(X)

On the other hand, by definition of Ty , we have

> G+ k)2,

k<N

Ty u)|®>, =
PlHg )
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Then, since &2 ~ C(1 + k?) for large k, we get

ITn up |1 4 <C & (up)h < CE& lluy|® y
0 ksz;v " " Hg () (6.28)

< CN? Jlug I g,y < CN2IF]]

HY(Qp) = iz(ﬂb)'

Then estimate (6.25) results from (6.27) and (6.28). O

It is now easy to get an H? estimate in 2. for the function uy, defined by (5.11).

Lemma 6.6 The function u; defined by (5.11) satisfies:
[y 12 (en) < CN 1fllL2a,)- (6.29)
Notice that

uy = (43 oy %5 I, ) € HO() % H (Qeat)

Ouy
On
so that the definition (5.12) permits to define S} as a bounded operator in L*(T").

Proceeding as for the proof of Theorem 4.4, it is not difficult to prove that SZZ,V is
compact in L?(T") and hence the operator

Ky = (Si— Se)”'SY € L(L*(I)

implies
Ouy)

1 1
— H2 (T H2 (T
Fba on )E 2( b)x 2( ezt),

Text

is compact too.

Error estimates

We derive error estimates for u, — u, first in the domain Q, (Lemma 6.7), then
by extension in the domains C* and C~ (Lemma 6.8) and finally in the exterior
domain Q.;; (Lemma 6.9).

Lemma 6.7 Let u, be the solution of the problem (’sz) and uy be the solution of
('PPE)N. There exists a constant C independent of N such that

llup — ugHHl(A,QO) < Ce 2N ||f||L2(Qi)' (6.30)
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Proof. It is immediate to check that up|, ~satisfies

—-Au+ (82 -n*w?)u = (n?-nd)w?u; in Q,

(ppEo) 5 u = 0 on Iy,
u *

5, T TTuw =0 on ©F,

where we recall that 7™ is the analogous operator to the operator T" but defined on
the boundaries ¥ and I .

On the other hand, u;|, satisfies (PPE")}‘V. Thus, the difference u" = up, — uy
satisfies:

—ATY + (B2 —n2wt)a¥ = 0 in €,
av, = 0 on Ty, (6.31)
W—FT u¥ = —(T* —Ty)u, on oE.

By Theorem 6.6 and Lemma 6.4

— N < C|(T* —T% uy
||’LLp Up ||H1(A7QO) - ||( N )up ”Ho%()(zo)l

Ce N [luy [l (020)

IN

and taking into account (6.19) we get (6.30) O

Lemma 6.8 Let up (respectively uy)) be the solution of (’sz) (respectively of (’PpE)N).
There exists a constant C independent of N such that:

lup = up lra,cty < Ce™ N 1f 2y (6.32)
Besides
Oup _ Ouy N
‘ B ov luk ey < Cllup = up [[ua,c)- (6.33)

Proof. We explain how to get the estimate in CT. We denote by g and ¢g" the
traces of up and u; on ¥,. The difference u" = u, — u; satisfies:

AN + (62 —n?w)u = 0 in Ct,
a¥ = 0 on [I'c+,
J u¥y = g—g~ on X, (6.34)
% +T*uY = —(T* —Tx)uy on TT.
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We decompose u” as
;&:N — ZN + ,UN
where the function zV satisfies

N ¢ HY(CT), N <Clg—g" ,
z (C), 2V larcr) < Cllg—g HHO%O(E)

2N(r1,m9) =0 ifat —p <z <at, withgy>0.
The existence of such a z" is guaranted by the trace theorem. Then, it is not difficult

to check that v" satisfies (it suffices to write the equation satisfied by v", to multiply
by vV and to integrate over C™)

/C+{|VUN\2 + (82 = nw?)|vV P+ < Ty o™, 0" >yt =

(6.35)
= +{VzN.V1JN + (82 = nlw?)" vV} = < (Tn —T)up,v" >y -
C
Since the operator is positive and
AV da et (3 = 2?0 ) > Ol o
we easily get
o™ sy < C (lg = g™ | + 1T — T)upl)). (6.36)
Therefore, by the triangular inequality
aN || <C (g —g" Ty =T 6.37
[ isicry < C g =9"lL3 o 41w ~Thgll g ), (637

and from Lemma 6.7 and trace theorem, we know that

19 =815 gy < O I e

Moreover, if uy, are the coefficients of the expansion for the trace of up on T in the
basis wy, we have

I(Tn = T)upll? 4 =Y AR PP lul? < O ) (L4 K2 fuy .
k>N k>N
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In the region z1 > a™ — [ in which n = n,, we know that up is of the form
o0
_ _aqt
up(z1,29) = Z A wi(zg) e @),
k=1

therefore, if u are the coefficients of the expansion trace of u, on X7 in the basis
Wi, we know that up = uze_%kl. Consequently, since éxy1] > aN,

Ty —Twl?, < C > A+ e ug)?
H(?0<Z+) k>N
< e—2§N+1l||up||2 . (6.38)
HE ()
<

Ce_ZO‘NHUpH%{l(QO)'

In the same way, it is possible to extend estimates (6.32) and (6.33) to the do-
main Qgz:. We do not give the details of the proof which is very similar to the
previous one (see [13]).

Lemma 6.9 There exists a constant C independent of N such that
lup =y 1 (2,0 < C €™M IfllL2ay- (6.39)

In order to get a bound for [|S, — S || £(12(r)), We shall need H? estimates instead
of H' ones. To obtain them, we shall use the following intermediate result

Lemma 6.10 The following properties hold:

@) TN (up — upy)l < CON Jlup = up [l (a,)- (6.40)

1
HG(2)

(i) T -Tv)upll 3 < Ce™N|flliq,)- (6.41)
HZ, (%)
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Proof. (i) If (up—u, )i, denotes, as usual, the k' Fourier coefficient of Up|y—Up |5,
in the basis {wy}, we have

1T (up — up)|| 4 = >l )i (14 k%)1/2
00( ) E<N
< L S up — )3 (14 K22
k<N
< COA+N?)[lup —u)l*,
00(20)
< C@A+N?%)|u, _up“Hl(Qb)'

(ii) Using the notations (in particular u) of the proof of Lemma 6.8, we can write

T =T )upll®y = D&l 1+ K (wy)”
00(2) k>N
< O (AR () e X < Ce vl luy|fRy 5,
k>N
<

Ce_QaN ||up||H2(Q ) < Ce_QaN ||f||L2(Q )
which concludes the proof. We have used the fact that
. 1/2
(Z (1+ k2)3/2(uz)2>
k=1

is a norm equivalent to the norm of the interpolation space [H?(E0)NHg(Zo), L(20)]1 /4,
which coincides with the space H2 (3o)NH}(S,) (cf. Grisvard [14], Theorem 8.1.1). O

Now we prove H? estimates.

Lemma 6.11 There exist constants C independent of N such that

lp — ) ll2() < CN €™M [IfllL2(qy)- (6.42)
lup — ) lu2() < CN e[| flliz (- (6.43)

Proof. The difference 4" = u, — u,) satisfies:
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AN + (62 —n?w?)a = 0 in Q,
'ZI:N = O on I‘b, (6.4:4:)

@ = Ty u¥—-Tu, on X+

ov N7 P )

Classical regularity estimates yield

N <clr —uy T-T
||Up Up ||H2(Qb) < {H N (up Up )HHO%()(E) + I( N)UPHHO%O(E)} ’

and estimate (6.43) follows from Lemma 6.10.

In the domain Q;F (2, is treated in the same way), 4" satisfies

—ATY + (B2 —n2w®)a¥ = 0 in Qf,
u¥ = 0 on Fj ,
ou™

5 = Ty uy —Tuy, on %,

and the same type of argument applies. O

We use this lemma to establish the main result of this section.

Theorem 6.9 There exists a constant C independent of N such that

1Sp = SNl czry < CNe X, (6.45)

||K - KN||[,(L2(F)) S C’Ne_O‘N. (646)
Proof. Estimate (6.46) is a direct consequence of (6.9), since
K—Ky = (S — 8) 7" (Sp — S,

while (6.45) is a direct consequence of Lemma 6.11 through trace theorems in H2. [0

A consequence of the previous result is obtained thanks to the approximation theory
of compact spectral problems.
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Theorem 6.10 Let A(w,B3) be a nonzero eigenvalue of the operator K(w, 3) with
algebraic multiplicity m and assume the ascent of A — K is . Then, there is Ny > 0
such that, for N > N,, there exist A\, (w, ), \%(w,B),...,\"(w,B) eigenvalues of
Kn(w,B) converging to Aw, 8). Besides, we have the following estimate

Aw,B) — Ny, B <CNe v, forj=1,..,m,

with o > 0.

The global error estimate with respect to R and N

We are going to obtain error estimates for the eigenvalue approximation |A — Ay r]|.
For this purpouse, it is necessary to introduce the intermediate operator

KN = (S; — Se)_IHRSI],V IIR.

Notice that Kﬁ = HRIA{Q . Then, using analogous arguments as those in Section 6.1,
the idea is the following

e The operator Kg has the same non zero eigenvalues as Kg . We omit the proof
of this step because it is analogous to the proof of Theorem 6.11.

e We prove that |K — KQH converges to zero (Theorem 6.11).

e We apply the Osborn’s theory to conclude (Theorem 6.12)

Theorem 6.11 There exists strictly positive constants C1, Cy, a and v (C1, Cy
independent of N) such that

IK — Ky || < C1 Ne N 4 Che R (6.47)
Proof. We simply write
K — KR || < |IK — Kgl| + [Kr — K§ |-

The norm ||K — Kg|| has been estimated in Theorem 6.2. For the other term, we
take into account that

IKr - K{|

||(SZ — Se)_IHRSpHR - (Sz — Se)_IHRSI])VHRH
= [I(Si — Se) 'R (Sp — S|
< OISy =Syl
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Then estimate (6.47) deduces immediately from (6.6) and (6.45). O
In the same way as for Theorem 6.2, we have the following consequence of the
previous result

Theorem 6.12 Let A(w, 8) be a nonzero eigenvalue of the operator K(w, 8) with al-
gebraic multiplicity m and assume the ascent of A— K is 1. Then, there are N, > 0
and Ry > 0 such that, for N > N, and R > R, , there exist A}V,R(w, B), A?‘V,R(w, By
)\’A’}’R(w,ﬂ) eigenvalues of Ky r(w, B) converging to A(w, ). Besides, we have the fol-
lowing estimate

Aw,8) =N @, <CINe™ T +Cye a1, forj=1,...,m,

with o > 0 and v > 0.
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