4D-Var/SEEK : A Consistent Hybrid Variational-Smoothing Data Assimilation Method

Fabrice Veersé 1 Dinh-Tuan Pham 1 Jacques Verron 1
1 IDOPT - System identification and optimization in physics and environment
Inria Grenoble - Rhône-Alpes, CNRS - Centre National de la Recherche Scientifique : UMR5527
Abstract : A mixed variational-smoothing data assimilation method is derived under the perfect-model hypothesis. An incremental 4D-Var analysis scheme is supplemented with a low-rank approximation of its equivalent Kalman smoother, under the perfect-model assumption. A consistent method results, where the analysis and forecast error covariances provided by the smoother part describe the errors performed respectively during the incremental 4D-Var analysis and the model prediction phases. This is because the whole method is built around a low-rank approximation of the forecast error covariance matrix, and different hypotheses for the computation of the analysis and that of its error covariances are avoided. The method provides both flow-depen- dent analysis and forecast error covariances. In addition, most current developments for pre-operational or operational variational data assimilation systems are either already embedded within the method or may be straightforwar- dly included to it.
Type de document :
[Research Report] RR-3902, INRIA. 2000
Liste complète des métadonnées

Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 10:48:31
Dernière modification le : mercredi 11 avril 2018 - 01:55:56
Document(s) archivé(s) le : dimanche 4 avril 2010 - 23:20:55



  • HAL Id : inria-00072752, version 1



Fabrice Veersé, Dinh-Tuan Pham, Jacques Verron. 4D-Var/SEEK : A Consistent Hybrid Variational-Smoothing Data Assimilation Method. [Research Report] RR-3902, INRIA. 2000. 〈inria-00072752〉



Consultations de la notice


Téléchargements de fichiers