Sparse Linear Algebra and Geophysical Migration

Yann-Hervé De Roeck 1
1 ALADIN - Algorithms Adapted to Intensive Numerical Computing
IRISA - Institut de Recherche en Informatique et Systèmes Aléatoires, INRIA Rennes
Abstract : The pre-stack depth migration of reflection seismic data can be expressed, with the framework of waveform inversion, as a linear least squares problem. While defining this operator precisely, additional main characteristics of the forward model, like its huge size, its sparsity and the composition with convolution are detailed. It ends up with a so-called discrete ill-posed problem, whose acceptable solutions have to undergo a regularization procedure. Direct and iterative methods have been implemented with specific attention to the convolution, and then applied on the same data set: a synthetic bidimensional profile of sensible dimensions with some added noise. The efficiency with regard to computational effort, storage requirements and regularizing effect is assessed. From the standpoint of the global inverse problem, the extra feature of providing a solution that can be differentiated with respect to a parameter such as background velocity is also discussed.
Type de document :
[Research Report] RR-3876, INRIA. 2000
Liste complète des métadonnées
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 10:52:06
Dernière modification le : vendredi 16 novembre 2018 - 01:23:58
Document(s) archivé(s) le : dimanche 4 avril 2010 - 23:21:56



  • HAL Id : inria-00072777, version 1


Yann-Hervé De Roeck. Sparse Linear Algebra and Geophysical Migration. [Research Report] RR-3876, INRIA. 2000. 〈inria-00072777〉



Consultations de la notice


Téléchargements de fichiers