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Abstract: Rarefied gas flows obey to the Boltzmann equation, but numerical sim-
ulations of this equation are not always possible, so that simpler models have been
introduced. The ES-BGK equation is one of these models. It gives the correct trans-
port coefficients for the Navier Stokes approximation, so that Boltzmann or ES-BGK
simulations are expected to give the same results for dense gases, but in the case of
a rarefied flow, complete numerical comparisons are needed.

In this paper we present numerical comparisons between the two models in transi-
tional regimes (where the ES-BGK model is expected to be useful) for reentry flows
around a compression ramp and a plate. We also emphasize that the ES-BGK model
gives flow predictions closer to the Boltzmann result than the simpler BGK model.
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Comparaison entre les modéles de Boltzmann et de
ES-BGK pour les gaz raréfiés

Résumé : Les écoulements de gaz raréfiés obéissent a I’équation de Boltzmann,
néanmoins, compte tenu de sa complexité, les simulations numériques de cette équa-
tion ne sont pas toujours possibles, et des modéles simplifiés ont donc été introduits.
L’équation de ES-BGK fait partie de ces modéles simplifiés. Elle donne des coeffi-
cients de transport corrects dans I’approximation par les équations de Navier-Stokes
quand le gaz est dense. Dans ce cas une simulation Boltzmann ou ES-BGK donne
les mémes résultats, mais des comparaisons numériques complétes sont nécessaires
pour des gaz raréfiés.

Dans ce rapport, nous présentons des comparaisons numériques entre les deux mo-
deles pour des régimes transitionnels (I’équation de ES-BGK semble alors la plus
utile) dans le cas d’écoulements autour de corps de réentrée (rampe de compression,
plaque). Nous insistons sur le fait que le modéle ES-BGK donne des résultats plus
proches de ceux de Boltzmann qu’un autre modéle de relaxation, le modéle BGK.

Mots-clés : Théorie cinétique, Simulation de Monte Carlo, Méthodes particulaires,
Equations de BGK
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1 Introduction

Rarefied gas flows obey the Boltzmann equation

Of +v.Vaf =Q(f). (1.1)

Because of the quadratic aspect of the kernel Q(f) and the multiple integrations
in its analytical formulation, this equation is complicated and difficult to compute.
Henceforth different simpler models have been introduced, especially the BGK model
[5] which is mainly a relaxation towards a maxwellian equilibrium state.

Ouf + v.Vuf = AMLf] - ). (1.2)

Although it describes the right hydrodynamical limit, the BGK model does not
give the Navier Stokes equation with correct transport coefficients in the Chapman-
Enskog expansion, and to correct this defect the so called ellipsoidal statistics (or
ES-BGK) model was introduced by Holway [11]. It is a relaxation towards a Gaussian
distribution (see section 2 for details)

Ouf +0.Vof = MG - 1) (1.3)

Our new interest for this model is originated from the recent theoritical progress in
[2] where the entropy inequality is proved.

The ES-BGK model appears now satisfying from a theoritical point of view, but
since it is not derived from the Boltzmann equation it is not so sure in which extent
it describes correctly rarefied gas flows. On the other hand the BGK model has been
used numerically extensively, with very satisfactory results. For example in Aoki and
al.[3] the flow around a plate is studied, precise numerical computation can be found
in Loyalka [18], see also [9]. We can expect the ES-BGK model to approximate at
least Boltzmann flows as well as the BGK model does, and to be able to cover a wider
range of parameters. On the other hand, it was usually thought that the ES-BGK
model does not satisfy the entropy inequality (H-theorem). Therefore no recent ex-
tensive numerical comparison between BGK, ES-BGK and Boltzmann models have

been performed in the literature. Here we aim to show that, for a similar complexity,
ES-BGK is more accurate than BGK model.

We compare some numerical simulations for a rarefied gas flow using the Boltz-
mann, BGK and ES-BGK models on two different test cases: flows around a plate

INRIA



Numerical comparison between the Boltzmann and ES-BGK models 5

and around a ramp. The simulation is based on a random particle method as ex-
plained in [6],[13]. A special emphasis of our numerical tests is a comparison for
small knudsen number in the boundary layer.

Although the numerical method we use here is rather classical, we would like
to emphasize that the validation of simpler models also aims to use recent methods
which could be more efficient in transitional regimes, where the ES-BGK model seems
to perform well enough. As examples of recent improvements at the numerical level,
we would like to indicate an implicit method by Pareschi and al. [21], determinist
schemes by Rogier and Schneider [23], Mieussens [19] (which actually motivated this
work).

The outline of the paper is as follows: in section 2 we briefly recall the underlying
models and equations which are studied numerically, in section 3 we present the
outlines of the numerical scheme. The results of two different test cases (plate and
ramp) are presented in section 4. Section 5 is devoted to the study and comparison
of the distribution functions numerically obtained.

2 The models of rarefied flows

For simplicity we first present the Boltzmann, BGK and ES-BGK equation for
monoatomic gases. We also present briefly the polyatomic ES-BGK model, wich
is completely described in [2]. The polyatomic Boltzmann model used in the com-
putations classically follows the ideas of Borgnakke-Larsen ([15], see also [7]) and we
do not present it here.

The equations for rarefied flows are of kinetic type, this means that the variables are
the time ¢ > 0, the position z € IR® and the velocity v € IR,

2.1 The Boltzmann equation

The Boltzmann equation can be written under the form (1.1) where Boltzmann’s
collision operator Qg(f)(z,v,t), which describes the evolution of the distribution
function due to binary collisions between particles, can be written, using standard
notations (see Cercigani [9], Lions [17])

QB(f) (CL‘, v,t) = /*GIR3 /652 (f/f/* B ff*)b(lv — 'U*|7w)dv*dw (2.1)

RR n’° 3872



6 P. Andries, J.F. Bourgat, P. Le Tallec, B. Perthame

It conserves mass, momentum and energy

Qs(f)(z,v,t)p(v)dv =0, for ¢(v) =41, v, %|v|2}, (2.2)

vER?

and satisfies the local entropy dissipation inequality

at/H(f)deiv/vH(f)dv <, (2.3)
where H(.) denotes Boltzmann’s entropy functional
H(f) = [ n].

2.2 The BGK model

These last properties (2.2, 2.3) are also true for the simpler BGK operator which
describes the relaxation of f to the local Maxwellian equilibrium

M[fl= —L e (-'V_“|2). (2.4)

2rRT)2 P\ 2RT
QBck(f) = g(M[f] - /), (2.5)

It is defined by using the macroscopic density p, velocity u and translational temper-
ature T of the original non-negative distribution f obtained through the moments

plz,t) =< f>, (2.6)
1
u(z,t) = — < vf >, (2.7)
p
RT L . lc*f > (2.8)
= c , .
3p(a,t)
with the notations
< f>(z,t) = [z, t,v)dv, c=v—u.
R3

Using this collision operator (2.5), a first order Chapman-Enskog expansion applied
to the BGK equation gives the correct Navier-Stokes viscosity p. But, the associated
heat conduction is given by x = gR,u which leads to a Prandtl number given by

_ ok

Pr =
2 K

(2.9)

INRIA
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For most gases, we have Pr < 1. In particular, for a monoatomic gas, the maxwellian
model for Boltzmann collision operator leads to Pr = 2/3. Thus, this simple ap-
proximation will generally not give the correct Navier-Stokes heat conduction.

2.3 The ES-BGK model

In order to introduce the ES-BGK model, we need further notations. We define

P = pRT (kinetic pressure), (2.10)
F= 3 <lof'f >= Jp(lul* +3RT) (total eneray), (2.11)
and the opposite of the stress tensor
Q:%<g®gf>. (2.12)
Therefore the translational temperature is related to the stress tensor by the relation
1
T= ﬁtrg.

We finally introduce the corrected tensor

T=0-v)RTId+ vO, (2.13)

which can be viewed as a linear combination of the initial stress tensor © and of the
isotropic stress tensor RT1d developed by a Maxwellian distribution. -

The ES-BGK model introduces a corrected BGK collision operator by replacing the
local equilibrium Maxwellian by the Gaussian G[f] defined by

1

Glf]= 5(9—@) T -(y—g)). (2.14)

P e (_
det (2777;)
The corresponding collision operator is now
P
Qesf) = =y @11 = D). (215

where the parameter —% < v < 1is used to modify the value of the Prandtl number
through the formula

2 1
<< Pr=——< . 2.1
3 " 1_1/_—|—oo ( 6)

RR n’° 3872
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Especially, Pr = 2/3 corresponds to v = —1/2 and (2.13) gives rise to a non convex
combination. For this reason it was expected that the ES-BGK model is not entropic
i. e. that (2.3) does not hold. In [2] it was proved that, unexpectedly, the H-theorem
is satisfied and (2.3) holds true even for such negative values of v.

2.4 The polyatomic ES-BGK model

The extension to polyatomic gases can be performed using an internal energy pa-
rameter [ which takes into account the (continuous) internal degrees of freedom in
a general way. This kind of formalism has been widely used, see [8], [14], [16]. The
polyatomic distribution function f(¢,z, v, I) describes the number of particles with
position z, velocity v and internal energy e(/) = I?/% at time ¢, and defines the
macroscopic quantities (2.6), (2.7), (2.11) by

plz,t) =<< [ >>, (2.17)
1
u(z, t) = p << uf>>, (2.18)
Lo, ros L2
Bz, t) =<< (Gll" + 1) ] >>= gplul” + pe, (2.19)
under the new notation
<< f>> (g,t):/ flt,z, v, I)dvdl.
vER? I€IR*
Here, the ratio of specific heats v = g—f and the number of additional degrees of

freedom of the gas § are related by

845

= —. 2.20

v
By example, for a diatomic gas, we have § = 2 and thus v = 1.4 is a usual value.

1 1
The specific internal energy e = —F — §|u|2 can be divided here in two parts,

the internal energy of translational motion e;. and the energy associated with the
internal structure e;,;:

€ = €+ €ing,

INRIA
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e = — << Sl f >>, e = << If>>
p 2 p

We associate to these energies the corresponding temperatures Ty, Ty, Tins by

3+ 3 1)
€= TRTeq’ Er = §RTtr7 €int = §RTint-

As before, we also introduce pressure and the opposite of the stress tensor
P = pRT,,, (2.21)

pO =<<c®cf >>. (2.22)

Next, we have to introduce two relaxation parameters 0 < 8 < 1 and —% <v <l
We define a relaxation temperature

Tret = 0Tcq + (1 — 0)Tins, (2.23)
a corrected tensor

T=(1-6)((1-v)RT,1d+ v@) + ORT.,1d, (2.24)

and the generalized Gaussian

- A5 1 _ ]2/5
Glf1= P exp <——g-I et : (2.25)
det (277;) (RT6/2) 2 o RTrel

rel

We are now able to define the Gaussian-BGK polyatomic collision model

P

prirmi U (2.26)

Q) =
Here, the constant A is defined by

As™t = /6_12/50!]

<K G[f] >>=<< f>>.

so that

The parameters 0 < 8 < 1 and —% < v < 1 can be chosen to obtain the correct

RR n° 3872
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Prandtl number of the flow and the second viscosity through the formulas (whose
derivation is explained in [2])

2
- < = .
3_Pr 1—1/—|—91/<+OO7 (2.27)
and -y 5
a=(-1- 5000 ). (228)

3 The numerical method

We briefly describe the simulation of Boltzmann and ES-BGK equations (notice that
BGK is a special case of the ES-BGK with v = 0). They only differ in the collision
step, especially in the strategy for computing collision frequencies. These are detailed
in the next subsections.

3.1 The random particle method for solving Boltzmann equation

Here we present the numerical method used to compute the Boltzmann equation
around a body. It is a variant of the classical DSMC method (Direct Simulation
Monte-Carlo, see Bird [6], also [13], [22]), based on recent development as those of
Babovsky [4].

It is a random particle method using identical particles. Each particle has a position,
a velocity and an internal energy, denoted (z;,v;,1;), and at each time step the
distribution function is approximated by

fa o)== b6z —2)6(v—v)d(I 1), 1<i<N,

=1

with N; the total number of particles.

In order to simulate collisions and to compute macroscopic quantities, we use a uni-
form rectangular mesh for the space variable z. For each time step, we perform a
splitting of the Boltzmann equation into a free transport step and a collision step.
The convergence of this fractional step method has been proved by L. Desvillettes
and S. Mischler [20] for the BGK equation. During the free transport step, a par-
ticle with position z; and velocity v; is transported to the position z; + Atv;, and
reflections around the body are preformed.

INRIA
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The collision step consists, for each cell, in changing velocities and internal en-
ergies of particles of the cell by simulated binary collisions. For this, we randomly
couple the N particles of the cell and for each pair (v;, v;), we decide if a collision
occurs according to the probability

N-1 2705
iVoo ﬂf(% — W)

;= At |Ui — 'U]‘|2(1_w). (3.1)

Here Ni represents the cell density, and w is the exponent of the viscosity law

w
1= oo <%Z) , % <w<l(w= % corresponds to hard spheres collisions).

To decide if a collision occurs or not, we choose randomly a value @ in (0, 1) uniformly
distributed and, if @ > ¢;; the collision does not occur, if a < ¢;, we perform a
collision. We compute velocities and internal energies after collision with a model
which conserves momentum and total energy (1|v;|> + I;) of the incident particles.
In the polyatomic case, exchange between translational and rotational energies is
obtained with the Larsen-Borgnakke model. In order to obtain the right relaxation
of internal energy, a relaxation collision number Z,; is chosen (for nitrogen Z,.,; =
5). With a probability ﬁ we exchange internal energy and translational energy
(inelastic collisions) , else we exchange only translational energy (elastic collisions).
To take into account external boundary conditions, we inject particles via a layer
of boundary cells in which particles have velocities and internal energies distributed
following a Maxwellian function M (peo, oo, Too)-

The cell size is chosen less than the free stream mean free path, as far as possible.
The hydrodynamical time step is chosen so that a particle is transported at most in
a neighbouring cell. For collisions, we need to divide this time step in order to obtain
collision probabilities less than 1 in (3.1) and hence we need to compute several cyles
of collision.

3.2 Random method for the ES-BGK model

We only describe here the collision step since it is the only difference with the ran-
dom particle method for solving Boltzmann equation. We present the most general
case: polyatomic gas, variable hard spheres collisions. At the time step n, after free
transport, we have in each cell in the physical space a set of particles with velocities
and internal energies (v;, Ii)lgigN, where N is the number of particles in the cell,

and we want to compute (vt ]Zm_l)lgigN-

RR n° 3872
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3.2.1 Collision probability of a cell

Here, in opposition to the binary collisions of Boltzmann equation, either we change
velocities and internal energies of all particles of the cell, or none of the particles have
collision. This is because the collision probability law is defined with macroscopic
quantities.

Practically we compute in each cell mean velocity, translational temperature, rota-
tional temperature and equilibrium temperature by

U =
=1
1 N
e ]2
RTtr’_ 3_N z_; |UZ u| s

9 N
Trot = —= Iiv
Bl = 55 Z;
_ 3Ttr + ‘5Trot
eq — 3+ 5 )

where ¢ is the number of internal degrees of freedom of the gas.

Next, we introduce the collision probability of the cell

N P

Proba = At RT,, =
Neo L

with
— the cell density,
1
Pr = —— the Prandtl number,
1—v+46v

Ttr “ . .
= Hoo | 7 the viscosity.

Then, we decide with a random test if the cell is a collisional cell or not. For this,
we choose a random number ay € (0,1) uniformly distributed and, if a; < Proba,
we perform a collision of all the cell particles, else we keep the quantities v} and I7".

INRIA
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3.2.2 Gaussian collision of the cell particles

In the case of a collisional cell (a; < Proba), we compute the tensor ® by
1 N
O = ¥ Z;(Uf —d)(f =), 1<k <3,

and then we compute the corrected tensor
T=(1-0)[(1-v)RT;, Id+v®]+0RT., Id

with the parameters v , 8 chosen according to the Prandtl number and second vis-
cosity (see formulas 2.27, 2.28). Notice that

1
~3 <v<l and 0<68<1.

Then, we generate the new values ('Uf“"l7 I?H)ISZ'SN according to the gaussian dis-
tribution
A 1 1%/°
P25 o exXp (—5(2—2)'2_1'(2—2)+RT , (3.2)
det (2772) (RTre/l ) rel

where the relaxation temperature T,; is defined by
Tra = HTeq + (1 - 0) T, ot

First step. Generation of velocities

We generate (wi)lgiSN according to the centered and normalized maxwellian distri-

bution
1 ) 1 | |2
7(277)3/2@@ b w ,

which gives w? = /—21In by cos 27h,, wf =/ —2Inbysin 27by, wi = +/—21In bz cos2mby,
where by, by, b3, by are random numbers uniformly distributed between 0 and 1. The
new velocities are obtained by the formula

'Ui:u+ll/2-wi.

RR n° 3872
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Second step. Generation of internal energies

In the polyatomic case, internal energies (I;);<;<n are generated by

&
I = — 5 RTrelln a,

where «a; are random numbers uniformly distributed between 0 and 1.

Third step. Correction to assume conservation laws

To enforce the conservation laws, which are fundamental quantities in the hydrody-
namical limit, see [2], we conserve momentum by introducing w@;, with mean value
zero, defined by

1/2

Next we impose the conservation of total energy using vectors Az"/* - w; obtained

with

A = <32ﬂRTeq -* Tk Ii>1/2‘

ﬁ 2521 |£1/2 <l |2

Finally the new velocities are
v; = u+ /\;1/2-152-.

Remark 3.1 The symmetric matriz 7'/? is computed with the help of eigenvalues

and eigenvectors of T, according to the formula

3
T2 = Zvec(i, k) -y val(k) - vec(j, k).

k=1

Remark 3.2 The BGK model and monoatomic ES-BGK model can be deduced from
the polyatomic ES-BGK model :

v=_0o0r 8 =1 corresponds to the BGK model. Hence Pr =1,
1

_V.

0 = 0 corresponds to the monoatomic ES-BGK model, Pr = 1

INRIA
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Remark 3.3 As for the Boltzmann collision operator, it is natural to choose for 6
the inverse of the relaxation collision number Z.,; to exchange translational and

rotational energies.
1

Zrot

6=

Hence, for nitrogen 8§ = 0.2. Bul 8 = 0.4, which corresponds to Pr = 0.77 seems
better.

4 Numerical comparison between ES-BGK and Boltz-
mann models

The comparison tests concern semi-rarefied monoatomic flows around a plate (Kny, =
51072 and 1.44 1072, Mach., = 18.3) and a near-continuum diatomic flow over a
ramp with a flap deflection of 25 degrees (Kny, = 6 107, Mach., = 10).
Experimental results around a plate obtained by Allegre and al [1] have inspired our
tests for a plate. In the ramp case, experimental results were obtained by Chanetz
and al [10] and a precise Monte-Carlo simulation of the Boltzmann equation was
computed by Ivanov and al. [12], allowing to validate our simulations.

4.1 The plate test case

It is a simple case (monoatomic gas, hard spheres collision) in order to perform a
first comparison of the ES-BGK, BGK and Boltzmann models.

4.1.1 Plate data

We consider a semi-rarefied flow around a model plate of 10cm length, without
incidence.

10cm

0.5cm

1.4cm

RR n° 3872



16 P. Andries, J.F. Bourgat, P. Le Tallec, B. Perthame

The gas is monoatomic with R = 297. The free stream conditions are: A, =
510~*m (hence Kn., = 51073), poo = 5.610°kg/m? T, = 13.6 K, V., =
1503 m/s, from which we deduce Mach., = 18.33

Diffuse reflection model with complete accomodation is used for wall reflection

with a wall temperature Ty = 286 K.

For the viscosity law : p = poo <%>w we choose w = 0.5 (hard sphere model)

and fioo = 0.125107° Pa.s (hence Re,, = 604).

The Prandtl number is Pr = £ for the ES-BGK model (v = —%,6 = 0) and
Pr =1 for the BGK model. The computational domain is a rectangle of size
0.116 m x 0.07 m, meshed with rectangles of size : h, = h, = 5107*m. The time
step is : At = 2.821077s. Macroscopic variables are computed over 1000 time steps
after 1500 time steps to reach a stationary state. A free stream cell contains 25

particles.

4.1.2 Results of the plate test case for Kn = 51072

Results of this test case are presented on figures 1,...,14.

Globally, results of ES-BGK model are not far from those of Boltzmann equation,
except for the shock of the Mach number whose junction with the free stream zone
is too diffusive. This is slightly visible on the temperature where only the relative
error would be significantly large, but it is amplified on the Mach number because
VT is small in this zone, and we have the formula Mach = %.

For the wall coefficients, the difference is only visible at the beginning of the plate,
especially on the lower part. The global aerodynamic coefficients, drag, lift and heat,

are less than 5% different

ES-BGK Cp =0.0934 Cp, =0.0750 Cy = —0.0286
Boltzmann Cp = 0.0975 C; =0.0775 Cgx = —0.0303

Comparison between Pr = 2 (continue line) and Pr = 1 (large dotted line) is pre-
sented on figures 7,...,14.

We observe that Pr = % is clearly better than Pr =1 in the boundary layer (fig. 7
and 8), especially for the temperature whose maximum value is too high in the case
Pr=1.

For the wall coefficients C), C¢, C} (pressure, skin friction, heat flux coefficients)
presented on figures 7, 8,9, Pr = % and Pr = 1 give both results close to Boltzmann

3
results.

INRIA
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4.1.3 Plate results for Kn = 1.44 1072

We are interested here by the behaviour of the three models when the Knudsen
number Kng, is increasing. The data are the same except that A, = 1.441073,
from which we deduce Kno, = 1.44 1072

The results are presented on figures 15,...,26.

Globally, ES-BGK results are still not too far from Boltzmann results, especially
near the wall, but the differences are more important.

The results obtained with the BGK model are still different of those obtained with
the ES-BGK model in the boundary layer, but not more than for smaller Knudsen
number, especially for temperature (fig. 20). It seems that this difference is not
proportional to the Knudsen number. On the other hand, the connexion of the Mach
shock with free stream is worst and linked to the knudsen number. We will later see
that it disappears for the ramp when Kn,, ~ 1073,

4.2 The ramp test case

We compare here the ES-BGK and Boltzmann models in a more realistic diatomic
case.

4.2.1 Ramp data

We consider a concave body consisting of a plate extended by a ramp at a 25 degrees
angle, in a cold near continuum flow, without incidence. This test is difficult because
of a shock-boundary layer interaction and a recirculation zone which requires a very
long computational time to establish a stationary regime. The test is performed with
Mach 10.

8.95cm

17 9em 5.16cm

1cm¢

3cm
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The gas is nitrogen with R = 297. The free stream conditions are: A, =
1.07107*m, (hence Kny, = 6107* for a characteristic length L = 0.179 m which
corresponds to the length of the flat part of the body), peo = 3.9107* kg/m?>, T, =
52 K, Vo, = 1477 m/s, hence Mach,, = 10.

The wall temperature is Ty = 290 K, and the the wall reflection of particles is
modelized by the diffuse reflection model with total accomodation.

For the viscosity law : u = pioo <1T{):)w, we choose w = 0.75 and i, = 0.507 1075 Pa.s.
Hence Re., = 20300, based on the total length of the body : 26.85 cm.

The two parameters of the diatomic ES-BGK model are v = —0.5, § = 0.4,
hence Pr = 0.77. Size of the computational domain is : 0.31m x 0.09m. It is
meshed with rectangular cells with size h, = 21073 m, h, = 510~*m. The time
step is At = 41077 s. Macroscopic quantitites are computed over 5000 time steps
after 10000 time steps to obtain the steady solution. A free stream cell contains 25
particles.

4.2.2 Results of the ramp test case

We present here results obtained with ES-BGK, Boltzmann and BGK models for
the ramp test case. The ES-BGK and Boltzmann solutions are very close, especially
the density, the Mach number and the translational temperature; this is true both
in the boundary layer and in the shock (fig.29, 30, 33, 34, 37, 38).

Wall coefficients and tangential velocity are nearly coinciding (fig. 41,...,44).

The parameter 6 adjusts exchange between internal and translational energy.
The choice v = —0.5, 8 = 0.4 which corresponds to Pr = 0.77 seems to be the best.

We note that the BGK solution is not so good in the boundary layer than the ES-
BGK solution, in particular for the density(fig.30), the global temperature(fig.31,32)
and the translational temperature(fig.37,38).

The small value of the Knudsen number, Kn = 6 10~* explains the good agree-
ment between ES-BGK and Boltzmann solutions. In fact, the beginning of the ramp
can be considered as a plate with a Knudsen number Kn = 1072 (with the charac-
teristic length of the plate), and we observe in this case a good connexion between
the Mach shock and the free stream, in opposition to the plate with Kn = 51073,

Hence, for a near continuum flow, with recirculation zone and shock-boundary
layer interaction, the ES-BGK model gives nearly the the same results as a Boltz-
mann simulation. Moreover, the computational time is 30% smaller (21h against 30h
on a HP 9000 station (PA 8200, 240Mhz)) because the collision step for Boltzmann
equation needs subcyles to obtain a correct probability of collision.
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5 Study of the velocity distribution function

The cases studied above show clearly a good agreement between the ES-BGK and
Boltzmann simulations. A limitation of these results is that rarefaction effects should
be quite small, except at the boundary. In such a situation one can expect the dis-
tribution functions to be close to a maxwellian equilibrium in most of the flow, since
the Boltzmann and ES-BGK models have the same Chapmann Enskog expansion,
the agreement of the solutions follows naturally.

To put evidence on this, we conducted a more accurate study of the velocity distri-
butions in different cells, with a special interest in the cells in the boundary layer
and in the shock layer, where desequilibrium can be expected. Such a study is close
to that of Aoki and al.[3] for a thin plate, with the BGK model.

As before we study the flow around a plate, for a monoatomic Hard Sphere gas.

To compute the velocity distribution in a given cell, during the time steps used
for averaging, the program sorts the velocities in the cell inside a fine velocity grid.
Here we consider a 2D flow, so that we study the velocities v, and v,, the cell in
velocity is of a width of 20m.s™!, and the velocities are supposed to be between
—1900m.s~! and 2100m.s~! (the infinite velocity being w., = 1502m.s™!). Thus
there are 200 x 200 velocity cells.

At each time step, if a particle has a velocity which fits into a velocity cell, then the
counter of that cell increases by one, at the end we divide all such numbers by the
total number of particles for all the time steps.

Then we draw the 2D velocity distribution, for example we can represent the distri-
bution function isovalues.

This study can be performed in different spatial cells (see figure below), and we con-
sider different situations: a cell(4) before the shock layer, a cell(3) inside the shock
layer and two cells(1 and 2) in the boundary layer, in the case of a simulation of the
Boltzmann equation.

— DD QO

10cm z

0.5cm

1.4cm

RR n’° 3872
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Before the shock, the flow is mainly at equilibrium, velocities and temperatures
are Ueo, oo, the velocity distribution is close to a maxwellian, for the 2D isovalues,
we thus observe circles, and the radius is quite small (see fig.45). The variance of the
distribution being the square root of T, it is quite small, and in 3D the distribution
is close to a Dirac. Then, as the cell gets inside the shock layer, the distribution
“spreads” (as the temperature increases). A remarkable fact is that thought the
isovalues are close to circles, it is no more isotropic, mainly the distribution spreads
specificially more in one direction (see figure 45).

Near the wall, the distribution differs completely from a maxwellian (see figure
46). Compared to a maxwellian, the distribution is spread unevenly, it looks a
lot like a two hilltop distribution. To understand it better, we can consider one
dimensional cuts, for example the distribution of v,. It is obtained by integrating
over v,. In particular one can still observe the peak corresponding to the flow at
infinity (particles which have not yet collided, this corresponds to a peak around
the 1500m.s~! velocity), mixed with the velocities given by the wall condition (in
our case particles colliding are reemitted on a maxwellian with zero velocity and
temperature Tqy) . This effect is still observed with a good agreement in the ES-
BGK distribution, but is not at all taken into account by a BGK simulation where
the peak corresponding to the flow at infinity has disappeared (see figures 47 to 50).
The explanation seems to be that the ES-BGK model has a lower collision rate
than the BGK model, the ratio between the two being the one of Prandtl numbers.
A BGK simulation with this smaller collision rate give also a distribution taking
correctly into account particles wich have not yet collided.

6 Conclusion

The Monte Carlo simulation of the ES-BGK equation performed in realistic con-
ditions gives results in good agreement with the Boltzmann equation especially for
Kn < 1072. In strong desequilibrium region, the ES-BGK model performs bet-
ter than the usual BGK model. This can be noticed in the boundary layer where
both the distribution functions and macroscopic quantities are better predicted us-
ing ES-BGK model than using BGK model. It is naturally explained by the correct
transport coefficient obtained with the ES-BGK model.

Since the equation is simpler to solve, one can expect new schemes adapted to BGK
type equation, allowing a resolution in cases where the usual DSMC gives no result.
Especially one can expect deterministic schemes following the ideas of [19],[23].
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Figure 1: plate, Kn = 5 1073, ES-BGK isodensities
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Figure 2:

plate, Kn = 5 1072, Boltzmann isodensities
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Figure 3: plate, Kn = 5 1073, ES-BGK isotemperatures
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Figure 4: plate, Kn = 5 1073, Boltzmann isotemperatures
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Figure 5: plate, Kn = 5 1073, ES-BGK isomachs
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Figure 6: plate, Kn = 5 10~2, Boltzmann isomachs
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Figure 7: plate, Kn = 5 1073, cross section of the density at x/L=0.3
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Figure 8: plate, Kn = 5 1073, cross section of the temperature at x/L=0.3
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Figure 14: plate, Kn = 5 1073, tangential velocity
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Figure 15: plate, Kn = 1.44 1072, ES-BGK isotemperatures
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Figure 16: plate, Kn = 1.44 1072, Boltzmann isotemperatures

INRIA



Numerical comparison between the Boltzmann and ES-BGK models

31

i il
RIS

L ) I
/AL S

Py ]
S

%

0

¢ 3

e
. I Q
% =

modul ef bour gat 01/03/ 99
nmach pl abgknonos
31373 ‘QUADRANGLES
18 17.50
17 16. 50
16 __  15.50
15 14.50
14 13.50
13 12.50
12 1150
1 10. 50
10 9.500
9 8500
8 7.500
7 6.500
6 5.500
5 4.500
4 3.500
3 2.500
2 . 1500
1 . 5000

18 | SOVALEURS

Figure 17: plate, Kn = 1.44 1072, ES-BGK isomachs
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Figure 18: plate, Kn = 1.44 1072, Boltzmann isomachs
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Figure 19: plate, Kn = 1.44 1072, crosss section of the density at x/L=0.3
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Figure 27: ramp, diatomic, ES-BGK isomachs
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Figure 35: ramp, diatomic, cross section of the pressure at x=0.1
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Figure 36: ramp, diatomic, cross section of the pressure at x=0.2
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Figure 37: ramp, diatomic, cross section of the translational temperature at x=0.1
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Figure 38: ramp, diatomic, cross section of the translational temperature at x=0.2
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Figure 39: ramp, diatomic, cross section of the rotational temprature at x=0.1
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Figure 40: ramp, diatomic, cross section of the rotational temperature at x=0.2
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Figure 42: ramp, diatomic, Cf coeflicient on the upper wall
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Figure 44: ramp, diatomic, tangential velocity on the upper wall
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BOL 3 BOL 4

Figure 45: plate, Kn = 1.44 1072, 2d velocity distribution before the shock(right)
and in the shock(left)
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Figure 46: plate, Kn = 1.44 1072, 2d velocity distribution against the wall(left) and

just above(right)
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Figure 47: plate, Kn = 1.44 1072, x-velocity distributions at point 1
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Figure 48: plate, Kn = 1.44 1072, z-velocity distributions at point 1
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Figure 49: plate, Kn = 1.44 1072, x-velocity distributions at point 2
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Figure 50: plate, Kn = 1.44 1072, z-velocity distributions at point 2
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